LIU Fangyuan, WEI Lianfeng, ZHANG Weiwei, ZHENG Yong, SHANG Qiao, WANG Yafeng, ZHANG Ran
Owing to their high melting point, strength, and hardness, ceramic coatings have been widely used as wear-resistant, corrosion-resistant, and thermal barrier coatings in fields such as aerospace, nuclear power generation, and weapon equipment. Plasma spraying is a highly promising surface cladding technology and has the advantages of a high heating temperature, high deposition rate, low substrate temperature, wide range of spraying materials, and low investment cost, making it one of the most widely used methods for preparing high-performance ceramic coatings. However, with the rapid development of the modern industry, critical equipment or components operating in extreme environments have higher requirements for the service performance of ceramic coatings. Therefore, improving the density and mechanical properties of plasma-sprayed ceramic coatings has become a popular research topic in this field. In recent decades, researchers worldwide have produced various high-performance dense ceramic coatings using optimized plasma spraying technology. Thus, summarizing the current research progress in this technology is highly significant owing to its large-scale promotion and application. First, the technical characteristics, microstructural features, and main issues of conventional atmospheric plasma spraying (APS) ceramic coatings are introduced from the aspects of the working principle and coating deposition process. Owing to the rapid energy dissipation and severe arc fluctuations associated with conventional APS technology, typical atmospheric plasma-sprayed ceramic coatings contain a large number of unmelted or semi-melted powder particles, as well as rich defect structures, such as large-scale pores and interlaminar cracks. This makes it difficult for the performance of ceramic coatings deposited by the conventional APS process to meet the requirements of industrial applications that require coatings with low porosity and mechanical properties, such as wear-resistant coatings, electrolytes of solid oxide fuel cells, and environmental barrier coatings. Subsequently, the structural design, working principle, and coating performance of eight plasma torch technologies for preparing dense ceramic coatings are systematically reviewed. By optimizing the electrode structure, powder feeding method, plasma jet protection, and heating method of the plasma torch, the operational stability, plasma jet energy output, powder heating, and acceleration efficiency of the plasma torch can be effectively improved. This is beneficial for preparing dense ceramic coatings with low porosity and excellent mechanical properties. Subsequently, the principles, process characteristics, and coating features of three typical high-efficiency plasma spraying processes for preparing dense ceramic coatings are elaborated in detail. By improving the operating pressure, plasma jet length, and powder injection method of the plasma spraying process, three dense ceramic coating plasma spraying processes, namely, very-low-pressure plasma spraying, long laminar plasma spraying, and suspension or solution precursor plasma spraying, are developed. These technologies effectively enhance the energy input and utilization efficiency of the plasma spraying process, significantly improving the heating and acceleration performance of refractory ceramic particles in the plasma jet, and are successfully applied in the preparation of various types of high-performance dense ceramic coatings. Finally, the development status of plasma-sprayed dense ceramic coating technology is summarized, and future development trends are discussed. This paper systematically summarizes the plasma torch technology and plasma spraying process used for preparing dense ceramic coatings, and is expected to provide a reference and guidance for the widespread application of plasma-sprayed dense ceramic coating technology.