WANG Hu, HE Yanchun, LI Zhonghua, ZHOU Chao, LI Kun, LI Xuelei, ZUO Huaping, WANG Xiaoyi, WANG Lanxi, YANG Miao, LI Yi, ZHOU Hui, ZHANG Bin
Within the orbital altitude range of 180 km to 650 km, oxygen molecules in the atmosphere tend to decompose into atomic oxygen when exposed to ultraviolet light. Due to its strong oxidizability, atomic oxygen, is capable of causing erosion effects on the surface materials of spacecraft. Complex structural evolutions, such as mass loss, thickness reduction, and changes in surface morphology are involved in this process. So that performance degradation inevitably occurs, highlighting the importance of protecting the surface materials of low-orbit spacecrafts. The adoption of protective coatings is an effective way to improve the atomic oxygen protection performance of materials and ensure the long lifespan and high reliability of low-orbit spacecraft. The research progress of atomic oxygen protective coatings is briefly reviewed, and the factors affecting the performance of atomic oxygen protective coatings are studied. The results show that surface roughness, defects composition and structure of the coating have significant influences on its atomic oxygen protection effect. A rough surface of the coating has advantage in increasing the probability of collisions between atomic oxygen and surface materials, while defects in the coating provide more channels for atomic oxygen and enhance the erosion effects, and the composition and structure of the coating will affect the probability of atomic oxygen reactions. The types of space atomic oxygen protective coatings are investigated, and the characteristics of different types of coatings are analyzed. Atomic oxygen protective coatings can be divided into inorganic coatings, organosilicon coatings, and composite structure coatings. Among them, inorganic coatings are generally solid oxides with a dense structure, and this type of coatings has excellent protective performance but poor flexibility. Organosilicon coatings are mainly composed of elements such as Si, H, C, and O. Good flexibility is achieved through the formation of a polymer-like network structure in organosilicon coatings. When eroded by atomic oxygen, a dense silicon oxide layer appears during the reaction between atomic oxygen and Si atoms located at the surface of coatings, which prevents further erosion. However, under the action of high flux atomic oxygen, the coating surface is prone to shrinkage, resulting in a “tiled” surface and coating cracking. The composite structure atomic oxygen protective coatings can make up for the shortcomings of single-structure coatings and adapt to the needs of different application conditions, however, the performance of this type of coatings is highly correlated with their structure and requires. The coating preparation methods are sorted and summarized, while the advantages / disadvantages and application objects of different preparation techniques are analyzed based on a comprehensive comparison: inorganic coatings with dense morphology can be obtained through magnetron sputtering process, which is mainly suitable for preparing coatings / films on rigid or semi-rigid substrates. Plasma-enhanced chemical vapor deposition in coating preparation corresponds to lower deposition temperature, less thermal damage to substrates. And a wider application range because both inorganic coatings and organic coatings can be achieved in this way. However, due to process limitations, this technology can only be applied to planar substrates and cannot be applied to three-dimensional complex structural parts; ion beam co-deposition can conveniently prepare multi-component composite structure coatings, so it is the main preparation technology for composite atomic oxygen protective coatings; atomic layer deposition has precise coating thickness control, a dense coating structure, no pinholes and other defects, and can form a uniform film on the substrate surface with complex configurations such as steps and grooves. Moreover, it can repair the defects on the substrate surface, therefore having obvious advantages in atomic oxygen protection and achieving good atomic oxygen protection performance at a relatively thin thickness. However, the disadvantage is the low deposition rate, low efficiency, and high stress when preparing thick coatings. Cracks are prone to occur when applied on flexible substrate surfaces. The sol-gel method for preparing coating materials has a low temperature during the process, uniform coating structure, easy control of the reaction process, and low cost. However, in general, the coating thickness is relatively high, requiring tens of microns or more and high quality, which is not conducive to the light weighting of spacecraft. Therefore, it is mainly applied to small structural parts. The precursor photolysis / hydrothermal curing method requires post-treatment such as irradiation and heating when preparing coatings, and the uniformity control is more difficult when implemented on a large area. Therefore, it is suitable for local coating and repair of easily damaged areas on the surface of structural parts. The further development trend of atomic oxygen protective coatings is analyzed and introduced. The research provides the necessary research basis and reference for the atomic oxygen protection of materials for low-orbit spacecraft in China and provides research ideas for the further development of atomic oxygen protective coating technology.