射频等离子体改性PTFE表面液滴撞击接触起电对润湿性的影响∗

李昱鹏, 孟祥任, 刘玉霞, 霍磊, 雷明凯, STARINSKIY Sergey V, TEREKHOV Vladimir

中国表面工程 ›› 2023, Vol. 36 ›› Issue (6) : 145-154.

PDF(643 KB)
PDF(643 KB)
中国表面工程 ›› 2023, Vol. 36 ›› Issue (6) : 145-154. DOI: 10.11933/j.issn.1007-9289.20230106002
等离子体表面改性

射频等离子体改性PTFE表面液滴撞击接触起电对润湿性的影响∗

  • 李昱鹏, 孟祥任, 刘玉霞, 霍磊, 雷明凯, STARINSKIY Sergey V, TEREKHOV Vladimir
作者信息 +

Effect of Contact Electrification During Water Droplet Impact on the Wettability of PTFE Surfaces Modified by Radio Frequency Plasma

  • LI Yupeng, MENG Xiangren, LIU Yuxia, HUO Lei, LEI Mingkai, STARINSKIY Sergey V, TEREKHOV Vladimir
Author information +
文章历史 +

摘要

液滴撞击固体表面是自然界的常见现象,研究超疏水表面的液滴撞击对其润湿性的影响,对于超疏水性材料的潜在应用具有重要的科学意义。采用 3、10、20 min 氧等离子体处理(OPT)和 1 min 八氟环丁烷等离子体聚合沉积(PPD)的等离子体方法改性聚四氟乙烯(PTFE)表面,获得具有不同尺寸和间距的微 / 纳米锥的超疏水 PTFE 表面,研究射频等离子体改性 PTFE 表面的液滴静态接触角、滚动角及液滴撞击动力学行为,分析在不同个数液滴撞击后 PTFE 表面的润湿性和液滴撞击行为变化,确定 PTFE 表面液滴撞击起电效应的影响机制。结果表明:通过 1~9 个液滴撞击后,PTFE 表面的静态接触角随撞击液滴数量增加而减小,导致静态接触角低于 150°;液滴滚动角随撞击液滴数量增加而增大,造成液滴滚动角高于 10°。 撞击液滴的接触时间随撞击液滴数量增加而增大,回弹系数随撞击液滴数量增加而减小。随撞击液滴数量增加,回弹液滴的正电荷和 PTFE 表面的负电压增大,PTFE 表面的负电荷对液滴产生强吸引作用,导致低粘附超疏水性被破坏。3 min OPT 和 1 min PPD 改性 PTFE 表面的纳米锥间距小,密度大,表面负电荷量增加明显,造成 PTFE 表面的疏水性降低的程度最显著。 研究结果可为改善超疏水稳定性的表面织构设计提供理论依据。

Abstract

A water droplet impacting a solid surface is a natural universal phenomenon. The impact behavior of water droplets and their effect on the superhydrophobicity of anti-wetting surfaces are important for the practical application of anti-wetting materials. In this study, radio frequency plasma modification methods including oxygen plasma treatment (OPT) and octafluorocyclobutane (C4F8) plasma polymerization deposition (PPD) are used to fabricate superhydrophobic surfaces on polytetrafluoroethylene (PTFE) substrates. Micro / nanocone arrays with different heights and spacing distances and fluorocarbon films with a low surface energy are fabricated on superhydrophobic PTFE surfaces by OPT for 3, 10, and 20 min, and PPD for 1 min. The height and distance of the cone structure on the PTFE surfaces increase as the OPT duration increases. The transition from a nanocone to a microcone array is achieved on the PTFE surfaces when the OPT duration is increases to 10 min. Complete droplet rebound behavior is achieved on superhydrophobic PTFE surfaces with a micro / nanocone array. The water contact angle increases, and the rolling angle decreases on the superhydrophobic PTFE surfaces as the OPT duration increases. Superhydrophobic surfaces with microcones having a wide spacing distance and low array density preserve a low adhesive force on water droplets under static conditions. The contact time increases and the restitution coefficient decreases when the water droplet impactes the superhydrophobic surfaces with an increased OPT duration. Superhydrophobic PTFE surfaces with nanocones having a low spacing distance and high array density exhibit a low adhesive force to the water droplet during droplet impact. Changes in the wettability and impacting behaviors of the water droplets are investigated after water droplet impact by changing the number of impacting droplets. The contact electrification on the PTFE surfaces with micro / nanocone arrays at different heights and spacing distances is analyzed by measuring the accumulated potentials of the PTFE surfaces and accumulated charge quantity of the impacting droplets. The water contact angle decreases and the rolling angle on the PTFE surfaces increases as the number of impacting droplets increases up to nine. A water contact angle of lower than 150°and rolling angle of lower than 10°are observed on the PTFE surfaces with the micro / nanocone array after the water droplet impactes with droplet number nine. The contact time of the impacting water droplet increases and its restitution coefficient decreases as the number of impacting droplets increases. The accumulated potentials of the PTFE surfaces and charge quantity of the impacting droplets increase. The attractive force of the accumulated negative charges on the water droplets resultes in the damage of superhydrophobicity on the PTFE surfaces and a change in the water droplet impacting behaviors. The PTFE surfaces fabricated by OPT for 3 min and PPD for 1 min preserve the nanocones at a low spacing distance and high array density. The PTFE surfaces with nanocones having a high array density preserve the highly accumulated negative charges after the water droplet impact under the increased number of impacting droplets. The high surface potential causes a remarkable increase in the wettability of the PTFE surfaces as well as a change in the contact time and restitution coefficient of the impacting water droplets. The accumulated negative charge and surface potential of the PTFE surfaces with the microcones having a wide spacing distance and low array density by OPT for 20 min and PPD for 1 min are low after droplet impact under the increased number of impacting droplets. The influence of the droplets on the wettability of the PTFE surfaces and the changes in the contact time and restitution coefficient of the impacting water droplets are weakened. In conclusion, this study demonstrates the effect of contact electrification on the superhydrophobic stability of surfaces with different textures under water droplet impact.

关键词

超疏水性表面 / 液滴撞击 / 接触起电 / 聚四氟乙烯(PTFE) / 接触角

Key words

superhydrophobic surface / water droplet impacting / contact electrification / polytetrafluoroethylene(PTFE) / contact angle

引用本文

导出引用
李昱鹏, 孟祥任, 刘玉霞, 霍磊, 雷明凯, STARINSKIY Sergey V, TEREKHOV Vladimir. 射频等离子体改性PTFE表面液滴撞击接触起电对润湿性的影响∗[J]. 中国表面工程, 2023, 36(6): 145-154 https://doi.org/10.11933/j.issn.1007-9289.20230106002
LI Yupeng, MENG Xiangren, LIU Yuxia, HUO Lei, LEI Mingkai, STARINSKIY Sergey V, TEREKHOV Vladimir. Effect of Contact Electrification During Water Droplet Impact on the Wettability of PTFE Surfaces Modified by Radio Frequency Plasma[J]. China Surface Engineering, 2023, 36(6): 145-154 https://doi.org/10.11933/j.issn.1007-9289.20230106002

参考文献

[1] WEN G,GUO Z G,LUI W M.Biomimetic polymeric superhydrophobic surfaces and nanostructures:from fabrication to applications[J].Nanoscale,2017,9(10):3338-3366.
[2] 何文博,欧军飞.超疏水材料应用于文物表面封护研究进展[J].中国表面工程,2022,35(1):72-85.HE Wenbo,OU Junfei.Research progress superhydrophobic sealing materials used in cultural relics protection[J].China Surface Engineering,2022,35(1):72-85.(in Chinese)
[3] ZHANG W L,WANG D H,SUN ZN,et al.Robust superhydrophobicity:mechanisms and strategies[J].Chemical Society Reviews,2021,50:4031-4061.
[4] 赵美云,田森,吴阳,等.织构参数对复合绝缘子硅橡胶表面疏水性能的影响[J].中国表面工程,2019,32(1):12-21.ZHAO Meiyun,TIAN Sen,WU Yang,et al.Effects of texture parameters on surface hydrophobicity of silicone rubber composite insulator[J].China Surface Engineering,2019,32(1):12-21.(in Chinese)
[5] DENG T,VARANASI K K,HSU M,et al.Nonwetting of impinging droplets on textured surfaces[J].Applied Physics Letters,2009,94,133109.
[6] ELLINAS K,CHATZIPETROU M,ZERGIOTI I,et al.Superamphiphobic polymeric surfaces sustaining ultrahigh impact pressures of aqueous high-and low-surface-tension mixtures,tested with laser-induced forward transfer of drops[J].Advanced Materials,2015,27(13):2231-2235.
[7] CHECCO A,RAHMAN A,BLACK C T.Robust superhydrophobicity in large-area nanostructured surfaces defined by block-copolymer self assembly[J].AdvancedMaterials,2014,26(6):886-891.
[8] LI Y P,LI X Y,LIU X,et al.Biomimetic random arrays of nanopillars and nanocones with robust antiwetting characteristics[J].The Journal of Physical Chemistry,2020,124(31):17095-17102.
[9] LIN S,CHEN X,WANG Z L.Contact electrification at the liquid-solid interface[J].Chemical Reviews,2022,122:5209-5232.
[10] SOSA M D,RICCI M L M,MISSONI L L,et al.Liquid-polymer triboelectricity:chemical mechanisms in the contact electrification process[J].Soft Matter,2020,16:7040-7051.
[11] ZHAN F,WANG A C,XU L,et al.Electron transfer as a liquid droplet contacting a polymer surface[J].ACS Nano,2020,14(12):17565-17573.
[12] XU W H,ZHENG H X,LIU Y,et al.A droplet-based electricity generator with high instantaneous power density[J].Nature,2020,578:392-396.
[13] SUN Q Q,WANG D H,LI Y N,et al.Surface charge printing for programmed droplet transport[J].Nature Materials,2019,18:936-941.
[14] LANGMUIR I.Surface electrification due to the recession of aqueous solutions from hydrophobic surfaces[J].Journal of the American Chemical Society,1938,60(5):1190-1194.
[15] DIGILOV R.Charge-induced modification of contact angle:the secondary electrocapillary effect[J].Langmuir 2000,16(16):6719-6723.
[16] PALUMBO F,MUNDO R D,CAPPELLUTI D,et al.Superhydrophobic and superhydrophilic polycarbonate by tailoring chemistry and nano-texture with plasma processing[J].Plasma Processes and Polymers,2011,8(2):118-126.
[17] 李昱鹏,郭振,刘霞,等.等离子体纳米织构化聚合物表面的液滴蒸发机制[J].中国表面工程,2021,34(5):1-8.LI Yupeng,GUO Zhen,LIU Xia,et al.Evaporation mechanism of water droplets on polymer surfaces by plasma nanotexturing[J].China Surface Engineering,2021,34(5):1-8.(in Chinese)
[18] TSOUGENI K,VOURDAS N,TSEREPI A,et al.Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces:from stable super hydrophilic to super hydrophobic surfaces[J].Langmuir,2009,25(19):11748-11759.
[19] PORTO C L,MUNDO R D,VERONICO V,et al.Easyplasma nano-texturing of PTFE surface:from pyramid to unusual spherules-on-pyramid features[J].Applied Surface Science,2019,483:60-68.
[20] WOHLFART E,FERNáNDEZ-BLáZQUEZ J P,KNOCHE E,et al.Nanofibrillar patterns by plasma etching:the influence of polymer cystallinity and orientation in surface morphology[J].Macromolecules,2010,43(23):9908-9917.
[21] AUCIELLO O.Ion interaction with solids:surface texturing,some bulk effects,and their possible applications[J].Journal of Vacuum Science andTechnology,1981,19(4):841-867.
[22] MUZAMMIL I,LI Y P,LEI M K.Tunable wettability and pH-responsiveness of plasma copolymers of acrylic acid and octafluorocyclobutane[J].Plasma Processes and Polymers,2017,14(10):1700053.

基金

国家自然科学基金(51975086, 52111530043, U21B2078);中央高校基本科研业务费(DUT22LAB107)资助项目
PDF(643 KB)

11

Accesses

0

Citation

Detail

段落导航
相关文章

/