Wetting Behavior of Molten CMAS on the Surface of Thermal Barrier Coatings with Different Roughness

WANG Yihao, WANG Weize, FANG Huanjie, YANG Ting, YUAN Baohan

China Surface Engineering ›› 2022, Vol. 35 ›› Issue (6) : 206-213.

PDF(20401 KB)
PDF(20401 KB)
China Surface Engineering ›› 2022, Vol. 35 ›› Issue (6) : 206-213. DOI: 10.11933/j.issn.1007-9289.20220218002

Wetting Behavior of Molten CMAS on the Surface of Thermal Barrier Coatings with Different Roughness

  • WANG Yihao, WANG Weize, FANG Huanjie, YANG Ting, YUAN Baohan
Author information +
History +

Abstract

With the increase of inlet temperature of turbine in aero-engine, silicate environmental sediment (CMAS) becomes a significant threat to the failure of thermal barrier coatings (TBCs) on high-temperature components. The study of the interaction between TBCs and CMAS can provide a basis for improving the service life of TBCs. At present, the effect of surface roughness (Ra) on the wettability of high-temperature melts has not formed a clear and uniform conclusion, and there are few studies on the wettability of TBCs / CMAS systems. The effect of surface roughness of yttrium oxide partially stabilized zirconia (YSZ) coating on the wetting behavior and infiltration behavior of molten CMAS at 1 300 ℃ is studied by the site-drop method. The results show that with the decrease of Ra, the wetting radius of molten CMAS decreases, the contact Angle increases and the infiltration depth decreases. It is thus considered that rough surface is conducive to the enhancement of the non-wettability. Rough surface provides driving force for the spreading of molten CMAS and promotes the movement of three-phase lines. At the same time, rough surface has a larger actual contact area and more infiltration directions, which provides favorable conditions for CMAS infiltration. The results provide a theoretical and practical basis for further development of CMAS corrosion resistant thermal barrier coatings with non-wetting surface.

Key words

thermal barrier coatings (TBC); calcium-magnesium-alumina-silicate (CMAS); roughness; wetting behavior; infiltration behavior

Cite this article

Download Citations
WANG Yihao, WANG Weize, FANG Huanjie, YANG Ting, YUAN Baohan. Wetting Behavior of Molten CMAS on the Surface of Thermal Barrier Coatings with Different Roughness[J]. China Surface Engineering, 2022, 35(6): 206-213 https://doi.org/10.11933/j.issn.1007-9289.20220218002

References

[1] SCHULZ U,LEYENS C,FRITSCHER K,et al.Somerecent trends in research and technology of advancedthermal barrier coatings[J].Aerospace Science andTechnology,2003,7(1):73-80.
[2] VA?EN R,JARLIGO M O,STEINKE T,et al.Overviewon advanced thermal barrier coatings[J].Surface &Coatings Technology,2010,205(4):938-942.
[3] DAROLIA.Thermal barrier coatings technology:Criticalreview,progress update,remaining challenges andprospects[J].International Materials Reviews,2013,58(6):315-348.
[4] KRAUSE A R,GARCES H F,DWIVEDI G,et al.Calcia-magnesia-alumino-silicate(CMAS)-induceddegradation and failure of air plasma sprayedyttria-stabilized zirconia thermal barrier coatings[J].ActaMaterialia,2016,105:355-366.
[5] 杨乐馨,李文生,安国升,等.LZO/8YSZ 双陶瓷热障涂层CMAS的腐蚀性能[J].中国表面工程,2020,33(1):91-100.YANG Lexin,LI Wensheng,AN Guosheng,et al.Corrosion properties of LZO/8YSZ double ceramicthermal barrier coatings[J].China Surface Engineering,2020,33(1):91-100.(in Chinese)
[6] 杨姗洁,彭徽,郭洪波.热障涂层在CMAS环境下的失效与防护[J].航空材料学报,2018,38(2):43-51.YANG Shanjie,PENG Hui,GUO Hongbo.Failure andprotection of thermal barrier coating under cmas attack[J].Journal of Aeronautical Materials,2018,38(2):43-51.(inChinese)
[7] 尹冰冰.热障涂层高温CMAS浸润性能表征与防护的试验研究[D].湘潭:湘潭大学,2018.YIN Bingbing.Experimental research on the wetting andpenetrating performance characterization of CMAS athigh temperature and protection of thermal barriercoating[D].Xiangtan:Xiangtan University,2018.(inChinese)
[8] APEL-PAZ M,MARMUR A.Spreading of liquids onrough surfaces[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,146(1):273-279.
[9] WENZEL R N.Resistance of solid surfaces to wetting bywater[J].American Chemical Society,2002,28(8):988-994.
[10] SHUTTLEWORTH R.The spreading of a liquid over arough solid[J].Discussions of the Faraday Society,1948,3(1):16-22.
[11] HITCHCOCK S J,CARROLL N T,NICHOLAS M G.Some effects of substrate roughness on wettability[J].Journal of Materials Science,1981,16(3):714-732.
[12] 吴茂,常玲玲,路新,等.粗糙度对金属/陶瓷反应润湿体系高温润湿性的影响[J].材料热处理学报,2016,37(7):25-32.WU Mao,CHANG Lingling,LU Xin,et al.Effects ofsurface roughness on wettability of reactivemetal/ceramic wetting systems at high temperature[J].Transactions of Materials and Heat Treatment,2016,37(7):25-32.(in Chinese)
[13] YOST F G,RYE R R,MANN J A,et al.Solder wettingkinetics in narrow V-grooves[J].Acta Materialia,1997,45(12):5337-5345.
[14] MANN J A,ROMERO L,RYE R R,et al.Flow of simpleliquids down narrow ssV grooves[J].Physical review.E.Statistical physics,plasmas,fluids,and relatedinterdisciplinary topics,1995,52(4):3967-3972.
[15] YIN B,SUN M,ZHU W,et al.Wetting and spreadingbehaviour of molten CMAS towards thermal barrier coatings and its influencing factors[J].Results in Physics,2021,26(10):104365.
[16] ZHANG B,SONG W,GUO H.Wetting,infiltration andinteraction behavior of CMAS towards columnar YSZcoatings deposited by plasma spray physical vapor[J].Journal of the European Ceramic Society,2018,38(10):3564-3572.
[17] KANG Y,BAI Y,DU G,et al.High temperaturewettability between CMAS and YSZ coating with tailoredsurface microstructures[J].Materials Letters,2018,229:40-43.
[18] GUO L,LI G,GAN Z.Effects of surface roughness onCMAS corrosion behavior for thermal barrier coatingapplications[J].Journal of Advanced Ceramics,2021,10(3):472-481.
[19] AYGUN A,VASILIEV A L,PADTURE N P,et al.Novelthermal barrier coatings that are resistant tohigh-temperature attack by glassy deposits[J].ActaMaterialia,2007,55(20):6734-6745.
[20] YU Z,HUANG J,WANG W,et al.Deposition andproperties of a multilayered thermal barrier coating[J].Surface & Coatings Technology,2016,288:126-134.
[21] FANG H,WANG W,HUANG J,et al.Corrosionresistance and thermal-mechanical properties of ceramicpellets to molten calcium-magnesium-alumina-silicate(CMAS)[J].Ceramics International,2019,45(16):19710-19719.
[22] FANG H,WANG W,HUANG J,et al.Investigation ofCMAS resistance of sacrificial plasma-sprayedmullite-YSZ protective layer on 8YSZ thermal barriercoating[J].Corrosion Science,2020,173:108764.
[23] WU J,GUO H,GAO Y,et al.Microstructure andthermo-physical properties of yttria stabilized zirconiacoatings with CMAS deposits[J].Journal of the EuropeanCeramic Society,2011,31(10):1881-1888.
[24] KR?MER S,YANG J,LEVI C G,et al.Thermochemicalinteraction of thermal barrier coatings with moltenCaO-MgO-Al2O3-SiO2(CMAS)deposits[J].Journal ofthe American Ceramic Society,2006,89(10):3167-3175.
[25] 王文辉.液滴润湿微观过程的分子动力学模拟[D].哈尔滨:哈尔滨工程大学,2018.WANG Wenhui.Microscopic mechanism of dropletwetting behavior using molecular dynamics simulation[D].Harbin:Harbin Engineering Universit,2018.(in Chinese)
[26] NARAPARAJU R,CHAVEZ J J G,NIEMEYER P,et al.Estimation of CMAS infiltration depth in EB-PVD TBCs:A new constraint model supported with experimentalapproach[J].Journal of the European Ceramic Society,2019,39(9):2936-2945
[27] NARAPARAJU R,HüTTERMANN M,SCHULZ U,etal.Tailoring the EB-PVD columnar microstructure tomitigate the infiltration of CMAS in 7YSZ thermal barriercoatings[J].Journal of the European Ceramic Society,2017,37(1):261-270.
[28] ZHAO H,LEVI C G,WADLEY H.Molten silicateinteractions with thermal barrier coatings[J].Surface &Coatings Technology,2014,251:74-86.
[29] 杨晓红,叶霞,徐伟,等.超疏水铝合金表面的复合制备与性能[J].中国表面工程,2020,33(3):78-87.YANG Xiaohong,YE Xia,XU Wei,et al.Compositepreparation and properties of superhydrophobic aluminumalloy surface[J].China Surface Engineering,2020,33(3):78-87.(in Chinese)
[30] 姬中峰,刘波,杜芳林.超疏水涂层的制备及其应用展望[J].青岛科技大学学报:自然科学版,2020,41(6):31-38.JI Zhongfeng,LIU Bo,DU Fanglin.Preparation andapplication prospect of superhydrophobic coating[J].Journal of Qingdao University of Science and Technology(Natural Science Edition),2020,41(6):31-38.(inChinese)
[31] SCHULTE A J,DROSTE D M,KOCH K,et al.Hierarchically structured superhydrophobic flowers withlow hysteresis of the wild pansy-new design principles forbiomimetic materials[J].Beilstein J Nanotechnology,2011,2(1):228-236.
[32] ENSIKAT H J,DITSCHE-KURU P,NEINHUIS C,et al.Superhydropho-bicity in perfection:The outstandingproperties of the lotus leaf[J].Beilstein J Nanotechnol,2011,2(3):152-161.

Funding

Supported by National Natural Science Foundation of China (52175136), Science Center For Gas Turbine Project (P2021-A-IV-002-002), and ShanghaiJoint Innovation Program in the Field of Commercial Aviation Engines.
PDF(20401 KB)

5

Accesses

0

Citation

Detail

Sections
Recommended

/