Plating Bath Composition Optimization and Corrosion Resistance of Ni-Sn-Mn Amorphous Coating Prepared by Electrodeposition

MENG Qing-bo, QI Hai-dong, LU Shuai, GUO Zhao, LI Yun-gang and YANG Hai-li

China Surface Engineering ›› 2017, Vol. 30 ›› Issue (6) : 84-94.

PDF(8290 KB)
PDF(8290 KB)
China Surface Engineering ›› 2017, Vol. 30 ›› Issue (6) : 84-94. DOI: 10.11933/j.issn.1007-9289.20170615001

Plating Bath Composition Optimization and Corrosion Resistance of Ni-Sn-Mn Amorphous Coating Prepared by Electrodeposition

  • MENG Qing-bo, QI Hai-dong, LU Shuai, GUO Zhao, LI Yun-gang and YANG Hai-li
Author information +
History +

Abstract

To improve the corrosion resistance of mild steel in marine environment, Ni-Sn-Mn alloy coatings were prepared on the surface of Q235 steel by pulse electrodeposition. Plating bath composition was optimized by orthogonal experiment method. Surface morphology, element content, phase structure, and corrosion resistance of the Ni-Sn-Mn coatings were evaluated by scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Tafel curve and electrochemical impedance spectroscopy (EIS). The results show that the optimized plating solution consists of 10 g/L nCl2·2H2O, 55 g/L iSO4·6H2O, 50 g/L MnSO4·H2O and 160 g/L Na3C6H5O7·2H2O Ni-Sn-Mn coating deposited under optimized plating bath composition has an amorphous structure. Uniform and fine cellular particles are distributed densely on the surface of the coating. The mass fractions of Ni, Sn and Mn in the coating are 68.59%, 21.57% and 9.84%, respectively. Compared with the Ni-Sn coating, the Ni-Sn-Mn coating exhibits better corrosion resistance in 3.5% NaCl solution shown by a more positive corrosion potential (-0.346 V), a lower corrosion current density of 2.816×10-8 A/cm2, and a bigger charge transfer resistance of 12 580 Ω·cm2.

Key words

pulse electrodeposition;Ni-Sn-Mn amorphous coating;plating bath composition;phase structure;corrosion resistance

Cite this article

Download Citations
MENG Qing-bo, QI Hai-dong, LU Shuai, GUO Zhao, LI Yun-gang and YANG Hai-li. Plating Bath Composition Optimization and Corrosion Resistance of Ni-Sn-Mn Amorphous Coating Prepared by Electrodeposition[J]. China Surface Engineering, 2017, 30(6): 84-94 https://doi.org/10.11933/j.issn.1007-9289.20170615001

References

[1] 王秀民, 王培, 孙阳超, 等. Q235钢在模拟海洋大气环境中的耐蚀性研究[J]. 表面技术, 2015, 44(11): 104-111.
WANG X M, WANG P, SUN Y C, et al. Corrosion resistance of Q235 steel in simulated marine atmospheric environment[J]. Surface Technology, 2015, 44(11): 104-111 (in Chinese).
[2] 王树涛, 高克玮, 杨善武, 等. 结构钢在模拟海洋大气环境中的腐蚀行为研究[J]. 材料热处理学报, 2009, 30(3): 61-66.
WANG S T, GAO K W, YANG S W, et al. Investigation on corrosion behavior of structural steel in simulative ocean-atmosphere environment[J]. Transactions of Materials and Heat Treatment, 2009, 30(3): 61-66 (in Chinese).
[3] GAN Y, LI Y, LI H C. Experimental study on the local corrosion of low alloy steels in 3.5% NaCl[J]. Corrosion Science, 2001, 43(3): 397-411.
[4] CHANDRASEKAR M S, MALATHY P. Pulse and pulse reverse plating—Conceptual, advantages and applications[J]. Electrochimica Acta, 2008, 53(8): 3313-3322.
[5] MEHMET U, TUGRUL C, AHMET A, et al. Fabrication of Sn-Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: Effects of duty cycle[J]. Applied Surface Science, 2015, 334: 80-86.
[6] 周丽, 于锦, 马安远. 脉冲电镀镍及其性能的研究[J]. 电镀与涂饰, 2009, 28(11): 5-8.
ZHOU L, YU J, MA A Y. Study on pulse nickel plating and its property[J]. Electroplating and Finishing, 2009, 28(11): 5-8 (in Chinese).
[7] WANG S H, GUO X W, YANG H Y, et al. Electrodeposition mechanism and characterization of Ni-Cu alloy coatings from a eutectic-based ionic liquid[J]. Applied Surface Science, 2014, 288: 530-536.
[8] AGHDAM S, ALLAHKARAM S R, MAHDAVI S. Corrosion and tribological behavior of Ni-Cr alloy coatings electrodeposited on low carbon steel in Cr(Ⅲ)-Ni(Ⅱ) bath[J]. Surface and Coatings Technology, 2015, 281: 144-149.
[9] INDYKA P, BELTOWSKA L E, TARKOWSKI L, et al. Structure characterization of nanocrystalline Ni-W alloys obtained by electrodeposition[J].Journal of Alloys and Compounds, 2014, 590: 75-79.
[10] CHEN J, ZOU Y, MATSUDA K, et al. Effect of Cu addition on the microstructure, thermal stability, and corrosion resistance of Ni-P amorphous coating[J]. Materials Letters, 2017, 191: 214-217.
[11] ANICAIA L, PETICAB A, COSTOVICIC S, et al. Electrodeposition of Sn and NiSn alloys coatings using cholinechloride based ionic liquids—Evaluation of corrosion behavior[J]. Electrochimica Acta, 2013, 114: 868-877.
[12] REFAEY S A M, TAHA F A, HASANIN T H. Passivation and pitting corrosion of nanostructured Sn-Ni alloy in NaCl solutions[J]. Electrochimica Acta, 2006, 51: 2942-2948.
[13] LIU J, YANG S, XIA W, et al. Microstructure and wear resistance performance of Cu-Ni-Mn alloy based hardfacing coatings reinforced by WC particles[J]. Journal of Alloys and Compounds, 2016, 654: 63-70.
[14] 章志铖, 郭嘉成, 徐文彬, 等. 室温离子液体中电沉积高耐蚀性Ni-Mn薄膜[J]. 表面技术, 2017, 46(3): 66-71.
ZHANG Z C, GUO J C, XU W B, et al, Electrodeposition of Ni-Mn films of high corrosion resistance at room temperature in ionic liquids[J]. Surface Technology, 2017, 46(3): 66-71 (in Chinese).
[15] 张杰, 王清, 王英敏, 等. 含Fe和Mn的Ni30Cu70固溶体团簇模型与耐蚀性研究[J]. 金属学报, 2009, 45(11): 1390-1395.
ZHANG J, WANG Q, WANG Y M, et al. Study on the cluster-based model of Ni30Cu70 solid solution with Fe and Mn and its corrosion resistance[J]. Acta Metallurgica Sinica, 2009, 45(11): 1390-1395 (in Chinese).
[16] 张利衡. 添加Mn和Cr对Cu-9Ni-6Sn合金组织与性能的影响[J]. 上海有色金属, 2003, 24(3): 112-119.
ZHANG L H. Effects of Mn and Cr on microstructure and property of Cu-9Ni-6Sn alloy[J]. Shanghai Nonferrous Metal, 2003, 24(3): 112-119 (in Chinese).
[17] 范洪远, 鲜广, 归艳华, 等. 镀液组分对高Sn含量Ni-Sn-P镀层组织和镀速的影响[J]. 中国表面工程, 2014, 27(4): 50-56.
FAN H Y, XIAN G, GUI Y H, et al. Effects of compositions in plating solution on the structure and deposition rate of Ni-Sn-P coatings with high Sn content[J]. China Surface Engineering, 2014, 27(4): 50-56 (in Chinese).
[18] 李茂东, 张永君, 吴丹, 等.基于三元复合络合剂的高磷Ni-P化学镀[J].中国表面工程, 2015, 18(6): 70-80.
LI M D, ZHANG Y J, WU D, et al. Electroless plating of Ni-P alloys with high P content based on ternary compound complexing agents[J]. China Surface Engineering, 2015, 18(6): 70-80 (in Chinese).
[19] 柯知勤, 吴浩杰, 宋振纶. 柠檬酸钠含量和pH对锌合金表面镀镍的影响[J]. 电镀与涂饰, 2010, 29(10): 9-12.
KE Z Q, WU H J, SONG Z L. Effect of sodium citrate content and pH on nickel plating on zinc alloy surface[J]. Electroplating and Finishing, 2010, 29(10): 9-12 (in Chinese).
[20] 侯婷, 周海红, 郭志猛, 等. 电流密度对电镀铁-钨非晶合金镀层的影响[J]. 表面技术, 2010, 39(5): 15-18.
HOU T, ZHOU H H, GUO Z M, et al. Effects of current density on electroplating Fe-W amorphous alloy coatings[J]. Surface Technology, 2010, 39(5): 15-18 (in Chinese).
[21] AMBAT R, ZHOU W. Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters[J]. Surface Coating Technology, 2004, 179: 124-128.
[22] 奚小波, 缪宏, 金亦富,等. Ni-Co-Mn合金的电镀工艺优化及与金刚石复合镀的摩擦磨损性能[J]. 中国有色金属学报, 2015, 25(9): 2524-2530.
XI X B, MIAO H, JIN Y F, et al. Electroplating process optimization of Ni-Co-Mn alloy and tribological wear performance of composition plating with diamond[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(9): 2524-2530 (in Chinese).
[23] 卢忠铭, 高岩, 郑志军. 镀液pH值和钼酸根浓度对化学镀Ni-Mo-P沉积速度及镀层结构的影响[J]. 中国表面工程, 2005, (2): 44-49.
LU Z M, GAO Y, ZHENGg Z J. The Effect of pH value and MoO42- concentration on the plating rate and structure of electroless Ni-Mo-P alloys[J]. China Surface Engineering, 2005, 2: 44-49 (in Chinese).
[24] 宋振兴, 马树元, 姚素薇, 等. 电镀镍-锡合金耐腐蚀性能研究[J]. 电镀与精饰, 2013, 35(10): 1-4.
SONG Z X, MA S Y, YAO S W, et al. Corrosion of resistance of electroplating Ni-Sn alloy[J]. Plating and Finishing, 2013, 35(10): 1-4 (in Chinese).
[25] 林绿波, 戴品强, 林兰芳, 等. 纳米晶Co-Ni-Fe合金镀层在3.5%NaCl溶液中的腐蚀特性[J]. 稀有金属材料与工程, 2012, 41(5): 851-856.
LIN L B, DAI P Q, LIN L F, et al. Corrosion characteristics of nanocrystalline Co-Ni-Fe deposits in 3.5% NaCl solution[J]. Rare Metal Materials and Engineering, 2012, 41(5): 851-856 (in Chinese).
[26] WEN Z H, BAI Y, YANG J F, et al. Corrosion resistance of vacuum re-melted Ni60-NiCrMoY alloy Coatings[J]. Journal of Alloys and Compounds, 2017, 711: 659-669.
[27] 徐扬, 邹勇, 栾涛. 化学镀镀层孔隙率对电化学行为的影响及其量化评价[J]. 功能材料, 2013, 44(6): 902-910.
XU Y, ZHOU Y, LUAN T. Electrochemical characterization and evaluation of electroless coating porosity[J]. Journal of Functional Materials, 2013, 44(6): 902-910 (in Chinese).
[28] LUO Q, WU Z, QIN Z, et al. Surface modification of nickel-aluminum bronze alloy with gradient Ni-Cu solid solution coating via thermal diffusion[J]. Surface & Coatings Technology, 2017, 309: 106-113.
[29] 张含卓, 李晶, 欧雪梅, 等. 化学镀Ni-Co-Cu-P非晶镀层及其耐蚀性能[J]. 稀有金属材料与工程, 2016, 45(11): 2965-2969.
ZHANG H Z, LI J, OU X M, et al. Electroless deposition and corrosion resistance of Ni-Co-Cu-P amorphous coatings[J]. Rare Metal Materials and Engineering, 2016, 45(11): 2965-2969 (in Chinese).
PDF(8290 KB)

5

Accesses

0

Citation

Detail

Sections
Recommended

/