Effects of Na5P3O10 Concentration on Microstructure and Corrosion Resistance of Micro-arc Oxidation Coating on 5083 Aluminum Alloy

WANG Hong-mei, YIN Yan-li, DU Jun, QIU Ji and MA Shi-ning

China Surface Engineering ›› 2016, Vol. 29 ›› Issue (5) : 109-115.

PDF(4867 KB)
PDF(4867 KB)
China Surface Engineering ›› 2016, Vol. 29 ›› Issue (5) : 109-115. DOI: 10.11933/j.issn.1007-9289.2016.05.014

Effects of Na5P3O10 Concentration on Microstructure and Corrosion Resistance of Micro-arc Oxidation Coating on 5083 Aluminum Alloy

  • WANG Hong-mei, YIN Yan-li, DU Jun, QIU Ji and MA Shi-ning
Author information +
History +

Abstract

In order to study the effects of electrolyte on micro-arc oxidation (MAO), 5083 alloy was treated by MAO in a solution containing phosphate at a constant applied voltage. The effects of phosphate concentration on thickness, microstructure and element content, bonding strength between matrix and MAO coatings, as well as corrosion resistance were investigated by field emission scan electron microscope (FESEM), scratch tester and electrochemical workshop. The results show that : the coating thickness increases linearly with increasing phosphate concentration, while "volcano deposit" characteristic is gradually significant. However, excess piles and unclosed pores are observed in the coating at phosphate concentration of beyond 20 g/L, and the element content has rather obvious difference. Additionally the bonding strength between the matrix and the MAO coatings first increases and then decreases with increasing phosphate concentration. The corrosion current density of the ceramic coating is 2.96×10-8 A/cm2, lower one order of magnitude compared with the matrix, when the phosphate concentration is 10 g/L.

Key words

micro-arc oxidation(MAO);5083 aluminum alloy;ceramic coating;phosphate concentration

Cite this article

Download Citations
WANG Hong-mei, YIN Yan-li, DU Jun, QIU Ji and MA Shi-ning. Effects of Na5P3O10 Concentration on Microstructure and Corrosion Resistance of Micro-arc Oxidation Coating on 5083 Aluminum Alloy[J]. China Surface Engineering, 2016, 29(5): 109-115 https://doi.org/10.11933/j.issn.1007-9289.2016.05.014

References

[1] 沈长斌, 李朝辉, 葛继平. 水溶液中钼酸钠和5083铝合金搅拌摩擦焊缝的交互作用[J]. 稀有金属材料与工程, 2012, 41(S2):254-257.SHEN C B, LI Z H, GE J P. Interaction between sodium molybdate and friction stir welding weld of 5083 aluminum alloy in the corrosive aqueous solution[J]. Rare Metal Materials and Engineering, 2012, 41(S2):254-257(in Chinese).
[2] 杨铁军, 李国明, 陈珊, 等. 船用铝合金点蚀及阴极保护研究[J]. 装备环境工程, 2010, 7(2):88-91.YANG T J, LI G M, CHEN S, et al. Study of hull aluminum alloy pitting and its protection potential[J]. Equipment Environmental Engineering, 2010, 7(2):88-91(in Chinese).
[3] 张晋, 张涛, 邵亚薇, 等. 5083和6061铝合金缝隙腐蚀行为的研究[J]. 腐蚀科学与防护技术, 2014, 26(2):125-131.ZHANG J, ZHANG T, SHAO Y W, et al. Crevice corrosion behavior of 5083 and 6061 aluminum alloys[J]. Corrosion Science and Protection Technology, 2014, 26(2):125-131(in Chinese).
[4] 刘宇, 石勇, 李宁, 等. 5083铝合金与2205不锈钢在天然海水中的电偶腐蚀行为[J]. 腐蚀与防护, 2012, 33(6):532-534.LIU Y, SHI Y, LI N, et al. Galvanic corrosion behavior between 5083 aluminum alloy and 2205 stainless steel[J]. Corrosion & Protection, 2012, 33(6):532-534(in Chinese).
[5] 任桂华, 张滨. 5083铝合金表面化学镀Ni-P镀层的力学性能[J]. 东北大学学报(自然科学版), 2015, 36(3):383-387.REN G H, ZHANG B. Mechanical properties of Ni-P coatings prepared by electroless plating on surface of 5083aluminum alloy[J]. Journal of Northeastern University (Natural Science), 2015, 36(3):383-387(in Chinese).
[6] HAMED RAHIMI, REZA MOZAFFARINIA, AKBAR HOJJATI NAJAFABADI. Corrosion and wear resistance characterization of environmentally friendly sol-gel hybrid nanocomposite coating on AA5083[J]. Journal of Science and Technology, 2013, 29(7):603-608.
[7] BRUNELLI K, MAGRINI M, DABALA M. Method to improve corrosion resistance of AA5083 by cerium based conversion coating and anodic polarization in molybdate solution[J]. Corrosion Engineering, Science and Technology, 2012, 47(3):223-232.
[8] 韩国峰, 朱胜, 王晓明, 等. 5083铝合金表面钛铝基耐蚀涂层与TA2钛合金接触腐蚀[J]. 中国表面工程, 2014, 27(6):44-49.HAN G F, ZHU S, WANG X M, et al. Galvanic corrosion between TiAl-based corrosion-resistance coating on 5083 aluminum alloy and TA2 Titannium alloy[J]. China Surface Engineering, 2014, 27(6):44-49(in Chinese).
[9] 连峰, 王增勇, 张会臣. 超疏水船用铝合金表面微结构对耐海水腐蚀性能的影响[J].材料热处理学报, 2014, 35(12):179-183.LIAN F, WANG Z Y, ZHANG H C. Effect of micro-structure of super-hydrophobic warship aluminum alloy surface on its corrosion resistance in seawater[J]. Transactions of Materials and Heat Treatment, 2014, 35(12):179-183(in Chinese).
[10] WANG J Y, LI C, ZHANG S L, et al. Growth and corrosion behaviors of thin anodic alumina membrane on AA5083 Al-Mg alloy in incalescent medium[J]. Transactions of Nonferrous Metals Society of China, 2014, 24:3023-3030.
[11] 鲁亮, 薛文斌,金小越, 等. 5083铝合金搅拌摩擦焊接头微弧氧化膜电化学腐蚀行为[J]. 稀有金属材料与工程, 2012, 41(9):1597-1602.LU L, XUE W B, JIN X Y, et al. Electrochemical corrosion behavior of microarc oxidation coatings on friction stir weld joints of 5083 aluminum alloy[J]. Rare Metal Materials and Engineering, 2012, 41(9):1597-1602(in Chinese).
[12] 邱骥, 帅刚, 马世宁, 等. 5083铝合金喷洒式微弧氧化局部膜层的制备及性能[J]. 中国表面工程, 2015, 28(5):105-110.QIU J, SHUAI G, MA S N, et al. Preparation and properties of local coatings on 5083 aluminum alloy by spraying micro-arc oxidation[J]. China Surface Engineering, 2015, 28(5):105-110(in Chinese).
[13] GORDIENKO P S, SKOROBOGATOVA T M, KHRISANFOVA O A, et al. Protection from bimetal corrosion in a steel titanium pair by microarc oxidation[J]. Protection Metals, 1992, 28:92-96.
[14] LI J M, CAI H, XUE X N, et al. The outward-inward growth behavior of microarc oxidation coating in phosphate and silicate solution[J]. Materials Letters, 2010, 64:2102-2104.
[15] MELHEM A, HENRION G, CZERWIEC T, et al. Changes induced by process parameters in oxide layers grown by the PEO process on Al alloys[J]. Surface & Coatings Technology, 2011, 205(S2):S133-S136.
[16] LI H X, RUDNEV V S, ZHENG X H, et al. Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation[J]. Journal of Alloys and Compounds, 2008, 462:99-102.
[17] 索相波, 邱骥, 刘吉延. 电解液中添加纳米SiO2对7A52铝合表面微弧氧化陶瓷层生长过程及性能的影响[J]. 中国表面工程, 2010, 23(3):42-45.SUO X B, QIU J, LIU J Y. Effects of SiO2 nanoparticles in electrolytes on growth process and surface properties of alumina coatings formed on 7A52 aluminium alloy by micro-arc oxidation[J]. China Surface Engineering, 2010, 23(3):42-45(in Chinese).
[18] GUO Q Q, JIANG B L, LI J P, et al. Corrosion resistance of micro-arc oxidized ceramic coating on cast hypereutectic alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20:2204-2207.
[19] TSENG C C, LEE J L, KUO T H, et al. The influence of sodium tungstate concentration and anodizing conditions on microarc oxidation (MAO) coatings for aluminum alloy[J]. Surface & Coatings Technology, 2012, 206:3437-3443.
[20] 冯爱新, 张永康, 谢华琨, 等. 划痕试验法表征薄膜涂层界面结合强度[J]. 江苏大学学报(自然科学版), 2003, 24(2):15-19.FENG A X, ZHANG Y K, XIE H K, et al. Characterization of interfacial adhesion and bond strength between thin film coating and substrate by scratch testing[J]. Journal of Jiangsu University (Natural Science Edition), 2003, 24(2):15-19.
[21] 郭洪飞, 安茂忠, 徐莘, 等. 镁合金微弧氧化工艺条件对陶瓷膜耐蚀性的影响[J]. 材料工程, 2006(3):29-32.GUO H F, AN M Z, XU S, et al. Effect of operating condition on corrosion resistance of ceramic coatings formed on magnesium alloys by micro-arc oxidation[J]. Material Engineering, 2006(3):29-32(in Chinese).
PDF(4867 KB)

7

Accesses

0

Citation

Detail

Sections
Recommended

/