重载变速冲击工况下MoDDP/CaB复合润滑油添加剂的润滑性能

王小勇, 张慧峰, 郭佳毫, 姜宇, 姜雨辰

中国表面工程 ›› 2024, Vol. 37 ›› Issue (2) : 248-259.

PDF(13958 KB)
PDF(13958 KB)
中国表面工程 ›› 2024, Vol. 37 ›› Issue (2) : 248-259. DOI: 10.11933/j.issn.1007-9289.20230320001
工程应用

重载变速冲击工况下MoDDP/CaB复合润滑油添加剂的润滑性能

  • 王小勇, 张慧峰, 郭佳毫, 姜宇, 姜雨辰
作者信息 +

Lubrication Mechanism of MoDDP / CaB Lubricant Additive under Heavy Load, Variable Speed, and Impact Conditions

  • WANG Xiaoyong, ZHANG Huifeng, GUO Jiahao, JIANG Yu, JIANG Yuchen
Author information +
文章历史 +

摘要

为解决机械设备在恶劣工况下由润滑失效而导致的设备故障甚至安全生产事故问题,进一步提升机械设备的运行稳定性和安全性,研究纳米硼酸钙(CaB)和二烷基二硫代磷酸钼(MoDDP)单一润滑油添加剂和复合润滑油添加剂的减摩抗磨效果,并探究其润滑作用机制。研究结果表明,重载、变速、冲击工况条件下 1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油添加剂具有良好的减摩抗磨效果,与基础油相比,在不同转速下可最大降低 65.1%的摩擦因数和 80%的磨痕深度,施加 50 N 冲击载荷时,可分别降低66.7%的摩擦因数和76.5%的磨痕深度。MoDDP / CaB复合润滑油添加剂在润滑过程中能生成包含C-C、 Fe2O3、FeB 和 MoS2的金属化合物层,添加剂中的 CaB 和 MoDDP 能够相互促进彼此反应,增加 FeB / MoS2润滑膜的生成量, 对比单一的添加剂和基础油,复合添加剂具有更好的自修复性能和协同功效,形成具有高承载力的润滑油膜,提高了复合润滑油的抗磨减摩性能。MoDDP / CaB 复合润滑油添加剂的制备可以充分综合利用抗氧化剂与极压耐磨剂的稳定、优异润滑特性,研究结果可为复合添加剂的广泛应用提供数据支持和理论支撑。

Abstract

To solve the problem of equipment failure and even safety production accidents caused by lubrication failure under adverse working conditions, and to further enhance the stability and safety of mechanical equipment operation, the anti-wear and friction reduction effect of single and composite lubricant additives of calcium borate (CaB) and molybdenum dialkyl dithiophosphate (MoDDP) under heavy load, variable speed, and impact conditions were investigated. The results show that the organic molybdenum additives can effectively reduce the friction factor and wear spot diameter compared with the base oil. The 1.5 wt.% MoDDP additive exhibited the best friction reduction and anti-wear performance, reducing the friction factor by 41.0% and the wear spot diameter by 48.9% compared to the base oil. Among the four oil samples, the 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant additive showed the best friction and anti-wear effects, reducing the friction factor by 55.0%, 62.7%, and 65.1% and the wear spot depth by 75.8%, 78.8%, and 80.0%, respectively, compared with the base oil at different rotation speeds. With the increase of rotation speed, the friction factor curves of base oil, 2.0 wt.% CaB, and 1.5 wt.% MoDDP fluctuated and the maximum wear spot depth of base oil, 2.0 wt.% CaB, and 1.5 wt.% MoDDP also tended to increase with the rotation speed, while the friction factor curves of 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant were always the most stable. The surface wear spots of the specimens lubricated by 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant at different rotation speeds were uniform, and no significant changes in the wear spot depth were observed, indicating that the rotation speed under heavy load has a slight effect on the friction reduction performance of 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant. The composite lubricant additives exhibited stable and excellent friction reduction and anti-wear performance under heavy loads and variable-speed operating conditions. Under a 50 N impact load, the 1.5 wt.% MoDDP / 3.0 wt.% CaB additive showed the best friction reduction effect, reducing the friction factor by 66.7%. The typical friction factor curves of 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant exhibited the least fluctuation. The 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant additive exhibited the smallest wear spot depth and the smallest increase in depth of wear spot under a 50 N impact load, which can reduce the wear spot depth by 76.5% compared to the base oil. The comparisons of wear spot depth and morphology show that the 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant can play an excellent anti-wear effect under low speed, heavy load, and impact conditions. The MoDDP / CaB composite lubricant additives can generate a metal composite layer containing C-C, Fe2O3, FeB, and MoS2 during the lubrication process. The CaB and MoDDP in the composite lubricant additive can promote each other's reactions and increase the generation of FeB / MoS2 lubricating films. Compared to a single additive and base oil, the composite lubricant additives showed better self-healing performance and synergistic efficacy, forming a lubricating film with a high load-bearing capacity and improving the anti-wear and friction reduction performance of the composite lubricant. The preparation of MoDDP / CaB composite lubricant additives can fully synthesize the stable and excellent lubricating properties of antioxidants, extreme pressure, and wear agents, and the results can provide data and theoretical support for the wide application of composite lubricant additives.

关键词

MoDDP / CaB 复合润滑油添加剂 / 减摩抗磨 / 变速 / 重载 / 冲击

Key words

MoDDP / CaB composite lubricant additives / friction reduction and anti-wear performance / variable speed / heavy load / and impact

引用本文

导出引用
王小勇, 张慧峰, 郭佳毫, 姜宇, 姜雨辰. 重载变速冲击工况下MoDDP/CaB复合润滑油添加剂的润滑性能[J]. 中国表面工程, 2024, 37(2): 248-259 https://doi.org/10.11933/j.issn.1007-9289.20230320001
WANG Xiaoyong, ZHANG Huifeng, GUO Jiahao, JIANG Yu, JIANG Yuchen. Lubrication Mechanism of MoDDP / CaB Lubricant Additive under Heavy Load, Variable Speed, and Impact Conditions[J]. China Surface Engineering, 2024, 37(2): 248-259 https://doi.org/10.11933/j.issn.1007-9289.20230320001

参考文献

[1] 付建林.浅谈机械设备的润滑技术应用与管理[J].内燃机与配件,2022(4):203-205.FU Jianlin.A tentative analysis on the application and management of lubrication technology of mechanical equipment[J].Internal Combustion Engine & Parts,2022(4):203-205.(in Chinese)
[2] LIU L,YANG C,ZHOU J Z,et al.Study on wear model and adhesive wear mechanism of brass under boundary lubrication[J].Protection of Metals and Physical Chemistry of Surfaces,2021,57(2):367-373.
[3] COLAS G,SAULOT A,MICHEL Y,et al.Experimental analysis of friction and wear of self-lubricating composites used for dry lubrication of ball bearing for space applications[J].Lubricants,2021,9(4):38.
[4] 叶芸星.国内常用润滑油抗氧剂性能对比评测[J].石油商技,2021,39(3):76-79.YE Yunxing.Domestic common lubricant antioxidant performance comparison review[J].Petroleum Products Application Research,2021,39(3):76-79.(in Chinese)
[5] HU C L,YOU G,LIU J Y,et al.Study on the mechanisms of the lubricating oil antioxidants:Experimental and molecular simulation[J].Journal of Molecular Liquids,2021,324:1-6.
[6] TOM T,GERTRUDE J.设计酚类抗氧剂保护润滑油的技术[J].润滑油,2020,35(4):33-39.TOM T,GERTRUDE J.The art of lubricant protection by designed phenolic antioxidants[J].Lubricating Oil,2020,35(4):33-39.
[7] YUAN G Z,SUN J L,SHU J Z,et al.Tribochemical behavior of ashless dialkyl dithiophosphate ester as an EP/AW additive in mineral oil for steel-aluminum contact[J].Tribology Transactions,2018,61(4):604-611.
[8] DU S,YUE W,WANG Y Y,et al.Synergistic effects between sulfurized-nanocrystallized 316L steel and MoDTC lubricating oil additive for improvement of tribological performances[J].Tribology International,2016,94:530-540.
[9] 曾厚旭,陈晓伟,魏克成.新型绿色极压抗磨剂的合成与性能评定[J].石油炼制与化工,2021,52(5):76-79.ZENG Houxu,CHEN Xiaowei,WEI Kecheng.Synthesis and performance evaluation of a new green extreme pressure antiwear additive[J].Petroleum Processing and Petrochemicals,2021,52(5):76-79.(in Chinese)
[10] 李双明,顾彩香.复合纳米润滑油添加剂的研究现状与展望[J].中国水运,2012,12(1):120-121.LI Shuangming,GU Caixiang.Research status andprospects of composite nanolube additives[J].China Water Transport,2012,12(1):120-121.(in Chinese)
[11] 杨简彰,王成勇,袁尧辉,等.微量润滑复合增效技术及其应用研究进展[J].中国机械工程,2022,33(5):506-528.YANG Jianzhang,WANG Chengyong,YUAN Yaohui,et al.State-of-the-art on MQL synergistic technologies and their applications[J].China Mechanical Engineering,2022,33(5):506-528.(in Chinese)
[12] 李剑锋,朱真才,彭玉兴,等.NbSe2/Ag 纳米复合材料的制备及其作为煤矿机械机用润滑油添加剂摩擦学行为的研究[J].摩擦学学报,2021,41(2):230-242.LI Jianfeng,ZHU Zhencai,PENG Yuxing,et al.Preparation of NbSe2/Ag nanocomposite and its tribological behavior as lubricant oil additives for mining machinery[J].Tribology,2021,41(2):230-242.(in Chinese)
[13] 阮亭纲,周桂源,谢先东,等.钛基纳米润滑添加剂的减摩抗磨及自修复特性对比[J].中国表面工程,2015,28(4):47-53.RUAN Tinggang,ZHOU Guiyuan,XIE Xiandong,et al.Comparison of friction reducing anti-wear and self-repairing properties of different Ti-base nanometer lubricating oil additives[J].China Surface Engineering,2015,28(4):47-53.(in Chinese)
[14] GUAN Z,ZHANG P,FLORIAN V,et al.Preparation and tribological behaviors of magnesium silicate hydroxide-MoS2 nanoparticles as lubricant additive[J].Wear,2022,15(3):492-493.
[15] WU L,XUE L,ZHANG Y,et al.The tribological mechanism of cerium oxide nanoparticles as lubricant additive of poly-alpha olefin[J].Tribology Letters,2020,68(4):492-493.
[16] 李久盛,许健.纳米硼酸盐作为润滑油添加剂的现状及趋势[J].润滑油,2015,30(1):37-41.LI Jiusheng,XU Jian.Research situation and development trends of nanosized borates used as lubricating additives[J].Lubricating Oil,2015,30(1):37-41.(in Chinese)
[17] TALUKDAR S,GHOSH P.Biodegradable vegetable oil polymer as a multifunctional lubricating oil additive[J].Journal of Macromolecular Science,2020,57(4):244-249.
[18] HUANG Y,HAN S,LIU S Z,et al.Preparation and tribological properties of surface-modified calcium borate nanoparticles as additive in lubricating oil[J].Industrial Lubrication and Tribology,2014,66(1):143-150.
[19] 张汪阳,王正奇,黄晨,等.硼酸钙/氧化石墨烯复合微粒的制备及摩擦学性能研究[J].聊城大学学报,2015,28(1):37-39.ZHANG Wangyang,WANG Zhengqi,HUANG Chen,et al.The preparation and tribological properties of calcium borate/graphene oxide composites[J].Journal of Liaocheng University(Natural Science Edition),2015,28(1):37-39.(in Chinese)
[20] YANG Y F,WANG X B,MEI S,et al.Preparation and tribological properties of BN/calcium borate nanocomposites as additive in lubricating oil[J].Industrial Lubrication and Tribology,2018,70(1):1-4.
[21] NEIL C.The origins of ZDDP[J].Tribology & Lubrication Technology,2019,75(12):1-8.
[22] 付小静,李瑞川,李阳,等.有机钼添加剂作用下CrN和 CrAlN 涂层的摩擦学性能[J].中国表面工程,2021,34(6):181-187.FU Xiaojing,LI Ruichuan,LI Yang,et al.Tribological properties of CrN and CrAlN coatings in the presence of organic molybdenum additives[J].China Surface Engineering,2021,34(6):181-187.(in Chinese)
[23] BAI L,MENG Y,ZULFIQAR A K,et al.The synergetic effects of surface texturing and MoDDP additive applied to ball-on-disk friction subject to both flooded and starved lubrication conditions[J].Tribology Letters,2017,65(4):163.
[24] DU D,KIM S,SUN C,et al.Effect of MoDDP on the antioxidative properties of ZnDDP in mineral oil[J].Lubrication Science,2004,16(2):183-193.
[25] 谢凤.有机钼化合物在润滑脂中的抗磨性能研究[J].润滑油与燃料,2009,19(1):28-30.XIE Feng.Study on antiwear properties of compounds containing molybdenum in lubricating grease[J].Lubes & Fuels,2009,19(1):28-30.(in Chinese)
[26] 姜雨辰,唐玮,彭玉兴.纳米 CaB/MoDDP 复合润滑油添加剂的摩擦学性能[J].哈尔滨工业大学学报,2022,54(7):111-119.JIANG Yuchen,TANG Wei,PENG Yuxing.Tribological performance of nano CaB/MoDDP compound lubricant additive[J].Journal of Harbin Institute of Technology,2022,54(7):111-119.(in Chinese)
[27] 栾俊吉,高建国,曹磊,等.油溶性有机钼添加剂作用下微弧氧化改性TC4钛合金的摩擦学性能[J].摩擦学学报,2021,17(3):1-17.LUAN Junji,GAO Jianguo,CAO Lei,et al.Tribologicalproperties of micro-arc oxidized TC4 titanium alloy under the action of oil-soluble organic molybdenum additives[J].Tribology,2021,17(3):1-17.(in Chinese)
[28] 巴召文,黄国威,乔旦,等.石墨烯/二硫化钼复合纳米添加剂的制备及摩擦学性能研究[J].摩擦学学报,2019,39(2):140-149.BA Zhaowen,HUANG Guowei,QIAO Dan,et al.Preparation and tribological performance of RGO/MoS2 as composite nano-Additives[J].Tribology,2019,39(2):140-149.(in Chinese)
[29] 杨浩鹏.H13 热作模具钢低温固体渗硼层形成机理的研究[D].上海:上海大学,2015.YANG Haopeng.The study on formation mechanism of borided layer of H13Hot work die steel with pack boriding treatment at low temperature[D].Shanghai:Shanghai University,2015.
[30] 姜信昌,曹晓明,韩文祥,等.渗硼层形成机理的探讨 [J].金属科学与工艺,1991,10(2):79-83.JIANG Xinchang,CAO Xiaoming,HAN Wenxiang,et al.An investigation of the mechanism of the boronized layer formation[J].Metal Science and Technology,1991,10(2):79-83.(in Chinese)
[31] 丁士文,李岩.水热法制备纳米 CaB6O10 润滑油添加剂[J].河北大学学报,2014,34(2):154-159.DING Shiwen,LI Yan.Hydrothermal synthesis of nano-CaB6O10 used as lubricant additives[J].Journal of Hebei University(Natural Science Edition),2014,34(2):154-159.(in Chinese)
[32] 丁士文,徐向伟,丁宇,等.超声辅助制备表面修饰纳米 Ca2B6O11 及表征[J].无机化学学报,2012,28(8):1575-1579.DING Shiwen,XU Xiangwei,DING Yu,et al.Ultrasound-assisted preparation and characterization surface modified nano-Ca2B6O11[J].Chinese Journal of Inorganic Chemistry,2012,28(8):1575-1579.(in Chinese)
[33] 纪献兵,陈银霞.纳米硼酸钙的水热法制备及摩擦学性能研究[J].润滑7与密封,2015,40(7):75-77.JI Xianbing,CHEN Yinxia.Hydrothermal synthesis and tribological properties study of nano-Calcium borate[J].Lubrication Engineering,2015,40(7):75-77.(in Chinese)
[34] 纪献兵,陈银霞,杜庆丽.核壳型硼酸钙/SiO2复合微球的制备及摩擦学性能研究[J].润滑与密封,2015,40(4):58-60.JI Xianbing,CHEN Yinxia,DU Qinli.Synthesis and tribological properties of core-shell calcium borate/SiO2 composites[J].Lubrication Engineering,2015,40(4):58-60.(in Chinese)

基金

江苏省高校优势学科建设工程项目
PDF(13958 KB)

10

Accesses

0

Citation

Detail

段落导航
相关文章

/