感应熔覆原位TiC/Ti复合涂层的结构特征与纳米力学性能

于鹤龙,魏敏,张梦清,王红美,宋占永,张伟

中国表面工程 ›› 2018, Vol. 31 ›› Issue (5) : 150-158.

PDF(6894 KB)
PDF(6894 KB)
中国表面工程 ›› 2018, Vol. 31 ›› Issue (5) : 150-158. DOI: 10.11933/j.issn.1007-9289.20180329002
表面工程

感应熔覆原位TiC/Ti复合涂层的结构特征与纳米力学性能

  • 于鹤龙,魏敏,张梦清,王红美,宋占永,张伟
作者信息 +

Microstructure Characteristics and Nano Mechanical Properties of In-situ TiC/Ti Composite Coating by Induction Cladding

  • YU Helong, WEI Min, ZHANG Mengqing, WANG Hongmei, SONG Zhanyong and ZHANG Wei
Author information +
文章历史 +

摘要

以钛和石墨为原料,采用预置粉末结合高频感应加热熔化的方法在Ti6Al4V基体表面制备了原位自生TiC增强Ti基复合涂层,研究了涂层微观结构、物相构成、纳米力学性能及显微硬度。结果表明,感应熔覆钛基复合涂层表面平整,内部无裂纹和孔隙,与基体形成了冶金结合;熔覆过程中Ti与石墨充分反应生成TiC增强相,涂层基质相由α-Ti和少量β-Ti构成;TiC在涂层内分布均匀,其纳米压痕硬度和弹性模量高达22和280 GPa,较Ti6Al4V基体分别提高18和130 GPa,因此使复合涂层具有较高的硬度。

Abstract

Induction cladding TiC/Ti composite coating was in-situ synthesized by induction heating the preplaced powder mixture of Ti and graphite on a Ti6Al4V substrate. The microstructure, phase composition, nano mechanical properties and microhardness of the coating were studied. Results show that the composite coating exhibits a smooth surface and a dense microstructure without cracks and pores. A metallurgical adherence is formed between the coating and the substrate. The graphite fully reacts with Ti to produce TiC reinforcement particles during the induction cladding process. The coating matrix is formed by the β-Ti and the equiaxed α-Ti phase. Fine titanium carbides are uniformly distributed in the coating. The nanoindentation hardness and modulus of the TiC particles are about 22 and 280 GPa, respectively, which increase the microhardness of the composite coating.

关键词

TiC;原位合成;钛基复合涂层;感应熔覆

Key words

TiC;in-situ synthesis;Ti matrix composite coating;induction cladding

引用本文

导出引用
于鹤龙,魏敏,张梦清,王红美,宋占永,张伟. 感应熔覆原位TiC/Ti复合涂层的结构特征与纳米力学性能[J]. 中国表面工程, 2018, 31(5): 150-158 https://doi.org/10.11933/j.issn.1007-9289.20180329002
YU Helong, WEI Min, ZHANG Mengqing, WANG Hongmei, SONG Zhanyong and ZHANG Wei. Microstructure Characteristics and Nano Mechanical Properties of In-situ TiC/Ti Composite Coating by Induction Cladding[J]. China Surface Engineering, 2018, 31(5): 150-158 https://doi.org/10.11933/j.issn.1007-9289.20180329002

参考文献

[1] GUO C, ZHOU J S, ZHAO J R, et al. Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate[J]. Applied Surface Science, 2011, 257:4398-4405.
[2] LI X X, ZHOU Y, JI X L, et al. Effects of sliding velocity on tribo-oxides and wear behavior of Ti-6Al-4V alloy[J]. Tribology International, 2015, 91:228-234.
[3] LI J, LUO X, LI G J. Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding[J]. Wear, 2014, 310:72-82.
[4] PU Y P, GUO B G, ZHOU J S, et al. Microstructure and tribological properties of in situ synthesized TiC, TiN, and SiC reinforced Ti3Al intermetallic matrix composite coatings on pure Ti by laser cladding[J]. Applied Surface Science, 2008, 255:2697-2703.
[5] LI M, HUANG J, ZHU Y Y, et al. Effect of heat input on the microstructure of in-situ synthesized TiN-TiB/Ti based composite coating by laser cladding[J]. Surface & Coatings Technology, 2012, 206:4021-4026.
[6] WU Y, WANG A H, ZHANG Z, et al. Wear resistance of in situ synthesized titanium compound coatings produced by laser alloying technique[J]. Surface & Coatings Technology, 2014, 258:711-715.
[7] TIAN Y S. Growth mechanism of the tubular TiB crystals in situ formed in the coatings laser-borided on Ti-6Al-4V alloy[J]. Materials Letters, 2010, 64:2483-2486.
[8] YANG Y L, YAO W M, ZHANG H Z. Phase constituents and mechanical properties of laser in-situ synthesized TiCN/TiN composite coating on Ti-6Al-4V[J]. Surface & Coatings Technology, 2010, 205:620-624.
[9] LI J, YU Z S, WANG H P. Wear behaviors of an (TiB+TiC)/Ti composite coating fabricated on Ti6Al4V by laser cladding[J]. Thin Solid Films, 2011, 519:4804-4808.
[10] ZHOU S F, DAI X Q. Microstructure evolution of Fe-based WC composite coating prepared by laser induction hybrid rapid cladding[J]. Applied Surface Science, 2010, 256:7395-7399.
[11] CHANG J H, CHOU J M, HSIEH R I, et al. Influence of fusing temperature on microstructure, wear and corrosion resistance of induction melted bimetal of Co-based alloy and AISI 4140 steel[J]. Materials Chemistry and Physics, 2009, 118:314-321.
[12] GAFO Y N, SOSNOVSKⅡ I A. Thermal parameters for centrifugal induction sintering of powder coatings[J] Thermal parameters for centrifugal induction sintering of powder coatings[J]. Powder Metallurgy and Metal Ceramics, 2009, 48:105-111.
[13] WANG Z T, WANG Y D. Microstructure and properties of in-situ synthesis of TiC particle reinforced composite coating by induction cladding[J]. Key Engineering Materials, 2007, 336-338:1725-1727.
[14] YU H L, ZHANG W, WANG H M, et al. In-situ synthesis of TiC/Ti composite coating by high frequency induction cladding[J]. Journal of Alloys and Compounds, 2017, 701:244-255.
[15] JEITSCHKO W, POTTGEN R, HOFFMAN R D. Structural chemistry of hard materials, in:R. Riedel (Ed.), Handbook of Ceramic Hard Materials[M]. Wiley-VCH, New York, 2003.
[16] 李超. 金属学原理[M]. 哈尔滨:哈尔滨工业大学出版社, 1990. LI C. Principles of Metallography[M]. Harbin:Harbin Institute of Technology Press, 1990.
[17] NIX W D, GAO H. Indentation on size effects in crystalline materials:a law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46:411-425.
[18] JIANG C C, GOTO T, HIRAI T. Microhardness of non-stoichiometric TiCx, plates prepared by chemical vapour deposition[J]. Journal of the Less Common Metals, 1990, 163:339-346.

基金

国家重点研发计划(2017YFB0310703,2017YFF0207905)
PDF(6894 KB)

9

Accesses

0

Citation

Detail

段落导航
相关文章

/