高强度汽车齿轮表面强化技术的研究现状和发展趋势

陈勇,臧立彬,巨东英,贾森

中国表面工程 ›› 2017, Vol. 30 ›› Issue (1) : 1-15.

PDF(9140 KB)
PDF(9140 KB)
中国表面工程 ›› 2017, Vol. 30 ›› Issue (1) : 1-15. DOI: 10.11933/j.issn.1007-9289.20161013003
表面光整加工技术

高强度汽车齿轮表面强化技术的研究现状和发展趋势

  • 陈勇,臧立彬,巨东英,贾森
作者信息 +

Research Status and Development Trend on Strengthening Technology of High Strength Automobile Gear Surface

  • CHEN Yong, ZANG Li-bin, JU Dong-ying and JIA Sen
Author information +
文章历史 +

摘要

齿轮的强度和使用寿命是制约我国汽车及其他高端机电装备国产化的重要因素。根据近年来国际上高强度汽车齿轮研究与应用成果表明,表面强化技术已经成为实现高强度齿轮的疲劳极限、疲劳耐久寿命和最佳摩擦因数等高性能要求的核心技术。尤其是对齿轮主要材料中合金成分影响和齿轮弯曲疲劳和接触疲劳破损机理的研究、开发齿轮的汽车齿轮渗碳和碳氮共渗等热处理新技术、以及强力喷丸、微粒喷丸、复合喷丸、磷酸锰转化涂层、二硫化钼与微粒子复合喷涂等表面强化等新技术都越来越受到到国内外的重视。文中根据表面强化技术的最新研究现状,重点论述了齿轮在应用中经常出现的主要损伤形式以及最新的防止损伤的一些表面强化新技术,阐述了这些新技术的表面强化机理和应用效果;同时分析了高强度齿轮表面强化技术面临的问题和发展趋势。

Abstract

Strength and lifetime of gears are an important factor which restricts the localization of China's automobile and other high-tech electromechanical equipment. According to the recent research and application of high strength gear in the world manufacturing field, the surface strengthening technology has become the core technology to realize the fatigue life, fatigue endurance lifetime and optimum friction coefficient and other high performance requirements. In particular, the research of the impacts technologies have been paid more and more attention at home and abroad, such as alloy component on gear materials, mechanisms of gear bending fatigue and contact fatigue damage, development of new heat treatment methods include with automobile gear carburization, carbonitriding, power shot peening, micro shot peening, composite shot peening, surface chemical manganese phosphate coating, MoS2 and micro particle composite coating technologies and so on. Therefore, according to the latest research status of surface strengthening technology, this paper focuses on the main forms of damage which often occurred during gear application and latest anti-damage surface strength technology, the reinforcement mechanism and the application of the new-type strengthening technology to prevent the damage of the surface. In addition, the problems and development trend of surface strengthening technology for high strength gear are also analyzed in this paper.

关键词

高强度齿轮;疲劳强度;疲劳寿命;表面强化技术;强化机理

Key words

high strength gear;fatigue strength;fatigue life;surface strengthening technology;strengthening mechanism

引用本文

导出引用
陈勇,臧立彬,巨东英,贾森. 高强度汽车齿轮表面强化技术的研究现状和发展趋势[J]. 中国表面工程, 2017, 30(1): 1-15 https://doi.org/10.11933/j.issn.1007-9289.20161013003
CHEN Yong, ZANG Li-bin, JU Dong-ying and JIA Sen. Research Status and Development Trend on Strengthening Technology of High Strength Automobile Gear Surface[J]. China Surface Engineering, 2017, 30(1): 1-15 https://doi.org/10.11933/j.issn.1007-9289.20161013003

参考文献

[1] 邹家生, 许峰, 卢龙. 齿轮表面改性技术研究现状[J]. 江苏科技大学学报(自然科学版), 2009, 23(2):113-116. ZOU J S, XU F, LU L. The status quo of gear surface modification technology[J]. Journal of Jiangsu University of Science & Technology, 2009, 23(2):113-116(in Chinese).
[2] 赵韩, 吴其林, 黄康, 等. 国内齿轮研究现状及问题研究[J]. 机械工程学报, 2013, 49(19):11-20. ZHAO H, WU Q L, HUANG K, et al. Status and problem research on gear study[J]. Journal of Mechanical Engineering, 2013, 49(19):11-20. (in Chinese)
[3] 高玉魁, 赵振业. 齿轮的表面完整性与抗疲劳制造技术的发展趋势[J]. 金属热处理, 2014, 39(4):1-6. GAO Y K, ZHAO Z Z. Development trend of surface integrity and anti-fatigue manufacture of gears[J]. Heat Treatment of Metals, 2014, 39(4):1-6.
[4] GOROKOVSKY V I, BOWMAN C, GANNON P E.Deposition and characterization of hybrid filtered arc/magnetron multilayer nanocomposite cermet coatings for advanced tribological applications[J]. Wear, 2008, 265(5/6):741-755.
[5] 田亚媛, 瞿皎, 秦亮, 等. 齿轮表面强化技术研究现状[J]. 热加工工艺, 2011, 40(24):211-215. TIAN Y Y, QU J, QIN L, et al. Research status on gear surface strengthening technology[J]. Hot Working Technology, 2011, 40(24):211-215(in Chinese).
[6] 陈勇. 高强度汽车齿轮材料技术的现状及发展[J]. 材料科学与工程学报, 2000, 18(s1):95-98. CHEN Y. Present situation and development of high strength automobile gear materials technology[J]. Journal of Materials Science and Engineering, 2000, 18(s1):95-98(in Chinese).
[7] 谭毅, 李敬锋. 新材料概论[M].北京:冶金工业出版社, 2004. TAN Y, LI J F. Introduction to new material[M]. Beijing:Metallurgical Industry Press, 2004(in Chinese).
[8] NAUNHEIMER H, BERTSCHE B, RYBORZ J, et al. Automotive transmissions[M]. Springer Berlin Heidelberg, 2011.
[9] 常晓东, 刘道新, 崔腾飞,等. 渗碳与喷丸复合处理对18Cr2Ni4WA钢表面完整性及疲劳性能的影响[J]. 机械科学与技术, 2013, 32(11):1584-1590. CHANG X D, LIU D X, CUI T F, et al. Influence of Carburizing Combined with Shot Peening on Surface Integrity and Fatigue Behavior of 18Cr2Ni4WA Steel[J]. Mechanical Science & Technology for Aerospace Engineering, 2013, 32(11):1584-1590.
[10] 吉田誠, 永濱睦久, 田中敏行. 歯面強度に優れた浸炭窒化歯車用鋼の開発[J]. Jatco Technical Review, 2005(6):48-57. YOSHIDA M, NAGAHAMA M, TANKA T, et al. Development of carboinitrided gear steel for excellent tooth surface strength[J]. Jatco Technical Review, 2005(6):48-57(in Japanese).
[11] MOROMASA M, JU D Y. Study on transformation plasticity behavior of material SUS420J2[C]. Materials Science Forum, 2015:145-149.
[12] JU D Y, INOUE T. On the Material process simulation code COSMAP-simulated examples and its experimental verification for heat treatment process, Key Engineering Materials, 2007, 345-346:955-958.
[13] 吴文健. 我国齿轮热处理技术发展现状[J]. 热加工工艺, 2013, 42(10):35-37. WU W J. Development situation of technology and equipment of gear heat treatment in China[J]. Hot Working Technology, 2013. 42(10):35-37(in Chinese).
[14] 己之上潤二, 中井靖文, 花木昭宏. 新しい高周波焼入れと疲労強化方法について[J]. 熱処理, 2013, 53(3):106-111. MINOUE J, NAKAI Y, HANAKI A. New induction hardening processes and fatigue strength improvement methods[J]. Heat Treatment, 2013, 53(3):106-111(in Japanese).
[15] 陈晖, 周细应. 汽车齿轮热处理工艺的研究进展[J]. 材料导报, 2010, 24(13):93-96. CHEN H, ZHOU X Y. Review and progress of heat treatment process for automobile gear[J]. Materials Review, 2010. 24(13):93-96(in Chinese).
[16] PALANIRADJA K, ALAGUMURTHI N, SOUNDARARAJAN V. Evaluation of Process capability in gas carburizing process to achieve quality through limit design concept[J]. 材料热处理学报, 2004, 25(5):395-397.
[17] MORAIS R, REGULY A, ALMEIDA L. Transmission electron microscopy characterization of a Nb microalloyed steel for carburizing at high temperatures[J]. Journal of Materials Engineering & Performance, 2006, 15(4):494-498.
[18] 巨东英. 日本金属热处理未来发展路线概述[J]. 金属热处理, 2012, 37(1):14-20. JU D Y. Future development roadmap of metal heat treatment in Japan[J]. Heat Treatment of Metals, 2012, 37(1):14-20(in Chinese).
[19] FUJⅡ M, MIZUNO Y, YOSIDA A. Influence of artificial defect on rolling contact fatigue strength of steel roller[C]//MPT. Fukuoka:the JSME international conference on motion and power transmissions. The Japan Society of Mechanical Engineers, 2007:43-46.
[20] SHERAFATNIA K, FARRAHI G H, MAHMOUDI A H, et al. Experimental measurement and analytical determination of shot peening residual stresses considering friction and real unloading behavior[J]. Materials Science & Engineering A, 2016, 657:309-321.
[21] FARGAS G, ROA J J, MATEO A. Effect of shot peening on metastable austenitic stainless steels[J]. Materials Science & Engineering A, 2015, 641:290-296.
[22] ZHANG J W, LU L T, SHIOZAWA K, et al. Analysis on fatigue property of microshot peened railway axle steel[J]. Materials Science & Engineering A, 2011, 528(3):1615-1622.
[23] YOSHITA M, IKEDA A, KURODA S. Improve-ment of CVT pulley wear resistance by micro-shot peening[J]. JATCO Technical Review, 2004(5):51-59.
[24] LV Y, LEI L, SUN L. Effect of shot peening on the fatigue resistance of laser surface melted 20CrMnTi steel gear[J]. Materials Science & Engineering A, 2015, 629:8-15.
[25] HAN B, JU D Y. A method for improving compressive residual stress of small holes surface by water-jet cavitation peening[C]//Materials Science Forum, 2009:137-142.
[26] FENG X, ZHOU J Z, MEI Y F, et al. Improving tribological performance of gray cast iron by laser pee ning in dynamic strain aging temperature regime[J]. Chinese Journal of Mechanical Engineering, 2015, 28(5):904-910.
[27] RAKITA M, WANG M, HAN Q, et al. Ultrasonic shot peening[J]. International Journal of Computational Materials Science & Surface Engineering, 2013, 5(3):189-209.
[28] NIEMANN G, RETTIG H, LECHNER G. Scuffing tests on gear oils in the FZG apparatus[J]. Tribology Transactions, 1961, 4(1):71-86.
[29] 刘维民, 夏延秋, 付兴国. 齿轮传动润滑材料[M]. 化学工业出版社, 2005. LIU W M, XIA Y Q, FU X G. Gear lubrication materials[M]. Chemical Industry Press, 2005(in Chinese).
[30] HIVART P, HAUW B, CRAMPON J, et al. Annealing improvement of tribological properties of manganese phosphate coatings[J]. Wear, 1998, 219(2):195-204.
[31] NURAN AY, OSMAN NURI ÇELIK, YAPINCAK Göncü. Wear characteristics of traditional manganese phosphate and composite hBN coatings[J]. Tribology Transactions, 2013, 56(6):1109-1118.
[32] TOTIK Y. The corrosion arrelin of manganese phosphate coatings applied to AISI 4140 steel subjected to different heat treatments[J]. Surface and Coatings Technology, 2006, 200(8):2711-2717.
[33] CHEN Y, YAMAMOTO A, OMORI K. Improvement of contact fatigue strength of gears by tooth surface modification processing[C]//12th IFToMM World Congress, 2007:6.
[34] 石万凯, 姜宏伟, 秦大同, 等. 超微细磷酸锰转化涂层摩擦磨损性能研究[J]. 摩擦学学报, 2009, 29(3):267-271. SHI W K, JIANG H W, QIN D T, et al. Friction and wear performance of superfine manganous phosphate conversion coating[J]. Tribology, 2009, 29(3):267-271(in Chinese).
[35] WANG C M, LIAU H C, TSAI W T. Effects of temperature and applied potential on the microstructure and electrochemical behavior of manganese phosphate coating[J]. Surface & Coatings Technology, 2007, 102(2/3):207-213.
[36] 陳勇. 浸炭歯車のピッチング強度に及ぼす潤滑油の影響[J]. Jatco technical review, 2003(4):83-91. CHEN Y. The influence of ATF on the piting fatigue strength of carburized gears[J]. Jatco technical review, 2003(4):83-91(in Japanese).
[37] 陆世立, 周兰英, 李晋珩. 旋转密封环表面二硫化钼膜制备工艺研究[J]. 润滑与密封, 2009, 34(9):72-75. LU S L, ZHOU L Y, LI J H. Preparation technology of molybdenum disulfide coating for rotating seal ring[J]. Lubrication Engineer, 2009, 34(9):72-75(in Chinese).
[38] CHEN Z, LIU X, LIU Y, et al. Ultrathin MoS2 nanosheets with superior extreme pressure property as boundary lubricants.[J]. Scientific Reports, 2014, 5.
[39] AMARO R I, MARTINS R C, SEABRA J O, et al. Molybdenum disulphide/titanium low friction coating for gears application[J]. Tribology International, 2005, 38:423-434.
[40] HOLMBERG K, MATHEWS A, RONKAINEM H. Coatings tribology-contact mechanisms and surface design[J]. Tribology International, 1998, (12/33):107-120.
[41] MARTINS R C, PAULO S M, SEABRA J O. MoS/Ti low-friction coating for gears[J]. Tribology International, 2006, 39:1686-1697.
[42] 沈玉忠. 金属表面自润滑处理方法, 201310441042.4[P]. 2013-12-25. SHEN Y Z. Metal surface lubrication treatment method:201310441042.4[P]. 2013-12-25(in Chinese).
[43] 罗勇, 谢明强. QPQ技术在汽车零部件上的应用[J]. 现代零部件, 2013(7):58-60. LOU Y, XIE M Q. QPQ technology in auto parts[J]. Auto Manufacturing Engineer, 2013(7):58-60(in Chinese).
[44] LI G J, PENG Q, LI C, et al. Microstructure analysis of 304L austenitic stainless steel by QPQ complex salt bath treatment[J]. Materials Characterization, 2008, 59(9):1359-1363.
[45] 姚玲珍, 邓益中. 复合盐浴渗氮QPQ处理新技术的发展与应用[J]. 内燃机与配件, 2012(5):36-40. YAO L Z, DENG Y Z. Composite aitrided QPQ treatment new technology development and application[J]. Internal Combustion Engine & Parts, 2012(5):36-40(in Chinese).
[46] 王刚, 焦孟旺, 李贺, 等. 热喷涂新技术在发动机减摩性能方面的应用和研究[J]. 表面技术, 2014, 43(1):103-108. WANG G, JIAO M W, LI H, et al. Application and Research of new thermal spraying technology in engine friction-reduction performance[J]. Surface Technology, 2014, 43(1):103-108(in Chinese).
[47] HOYASHITA S, HASHIMOTO M. Surface improvement and durability of case-carburized gear tooth (2nd Report):effects of shot peening and arreling processes[J]. International Journal of the Japan Society for Precision Engineering, 1998, 32(2):104-109.
[48] XU Y C, ZHANG K H, LU S, et al. Experimental investigations into abrasive flow machining of helical gear[J]. Key Engineering Materials, 2013, 546:65-69.
[49] 陈勇. P-SC300日本高精度高效率齿轮性能研究分科会研究成果报告书[C]日本机械学会, 2001, 1:141-145. CHEN Y. P-SC300 Report on the research results of the research on the performance of high precision and high efficiency gears in Japan[C] The Japan Society of Mechanical Engineers, 2001(1):141-145(in Japanese).
[50] CHEN Y. The influence of ATF on the pitting fatigue strength of carburized gears[J]. JATCO Technical Review, 2003(4):84-91.
[51] XIE L, WANG C, WANG L, et al. Numerical analysis and experimental validation on residual stress distribution of titanium matrix composite after shot peening treatment[J]. Mechanics of Materials, 2016, 99:2-8.
[52] LI S. A thermal tribo-dynamic mechanical power loss model for spur gear Pairs[J]. Tribology International, 2015, 88:170-178.
[53] 韩旭. 基于数值模拟的设计理论与方法[M]. 科学出版社, 2015. HAN X.Numerical simulation-based design:theory and methods[M]. Science Press, 2015(in Chinese).
PDF(9140 KB)

9

Accesses

0

Citation

Detail

段落导航
相关文章

/