柔性硬质纳米复合涂层

金德里奇·缪塞尔(捷克)

中国表面工程 ›› 2016, Vol. 29 ›› Issue (3) : 1-13.

PDF(20780 KB)
PDF(20780 KB)
中国表面工程 ›› 2016, Vol. 29 ›› Issue (3) : 1-13. DOI: 10.11933/j.issn.1007-9289.2016.03.001
高离化磁控溅射技术与应用专辑

柔性硬质纳米复合涂层

  • 金德里奇·缪塞尔(捷克)
作者信息 +

Flexible Hard Nanocomposite Coatings

  • MUSIL Jindrich
Author information +
文章历史 +

摘要

研究了利用磁控溅射方法制备的柔性硬质纳米复合涂层。结果表明柔性硬质纳米复合涂层具有以下优异性能:是一类具有高硬度、高韧性以及抗裂纹性能的新型涂层;具有较高的硬度模量比(H/E*≥0.1, E*=E/(1-ν2))、弹性恢复系数(We≥60%)、压应力(σ<0)L,且少缺陷的微观结构;生长处于Thornton结构区域相图的T区。磁控溅射非常适合制备纳米复合涂层,文中将对其制备柔性纳米复合薄膜的机理做深入阐述。涂层生长主要受以下3个参数影响:涂层生长过程中吸收的能量Ep,其包含沉积原子携带的能量Eca和轰击离子携带等能量Ebi(Ep=Eca+Ebi),基体温度Ts和涂层材料的熔点Tm。柔性硬质涂层具有广泛的应用前景,如柔性保护涂层、柔性功能涂层、防脆性涂层开裂的柔性保护涂层以及柔性多层涂层。文中还将详细阐述低温磁控溅射制备柔性纳米复合涂层的原理,并阐述纳米复合涂层及其性能的发展趋势。

Abstract

The article reports on flexible hard nanocomposite coatings prepared by magnetron sputtering. It is shown that the flexible hard nanocomposite coatings represent a new class of coatings which are simultaneously hard, tough and resistant to cracking, exhibit high values of the hardness H and effective Young's modulus E* ratio H/E*≥0.1, elastic recovery We≥60%, compressive macrostress σ<0 and dense, void-free microstructures, and are formed in the zone T of the Thornton's Structural zone model (SZM); here E*=E/(1-ν2), E is the Young's modulus and ν is the Poisson's ratio. The magnetron sputtering, which is a very powerful process used in the preparation of nanocomposite coatings, is described in detail. The basic principles of the formation of the flexible hard coatings are also described in detail. It is shown that the key parameters which determine the formation of these coatings are the energy Ep=Eca+Ebi delivered to the growing coating by condensing atoms (Eca) and bombarding ions (Ebi) (the non-equilibrium heating), the substrate heating controlled by the substrate temperature Ts (the equilibrium heating) and the melting temperature Tm of the coating material. The flexible hard coatings have a huge application potential. Four examples of flexible coatings are given: flexible protective coatings, flexible functional coatings, flexible over-layer preventing cracking of brittle coating and flexible multilayer coating. Also, the principle of low-temperature sputtering of flexible nanocomposite coatings is described in detail. Finally, trends for future development of these nanocomposite coatings with unique properties are given.

关键词

硬质纳米复合涂层;微观结构;宏观应力;力学性能;能量;柔性;裂纹抑制;磁控溅射

Key words

hard nanocomposite coatings;microstructure;macrostress;mechanical properties;energy;flexibility;resistance to cracking;magnetron sputtering

引用本文

导出引用
金德里奇·缪塞尔(捷克). 柔性硬质纳米复合涂层[J]. 中国表面工程, 2016, 29(3): 1-13 https://doi.org/10.11933/j.issn.1007-9289.2016.03.001
MUSIL Jindrich. Flexible Hard Nanocomposite Coatings[J]. China Surface Engineering, 2016, 29(3): 1-13 https://doi.org/10.11933/j.issn.1007-9289.2016.03.001

参考文献

[1] H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci., 1989, 33, 223-315.
[2] R. Birringer, Nanocrystalline materials, Mater. Sci. Eng., A, 1989, 117, 33-43.
[3] R.W. Siegel, Cluster-assembled nanophase materials, Annu.Rev. Mater. Sci., 1991, 21, 559-579.
[4] R.W. Siegel, What do we really know about the atomic-scale structures of nanophase materials?, J. Phys. Chem. Solids,1994, 55(10), 1097-1106.
[5] R. W. Siegel and G. E. Fougere, Grain size dependent mechanical properties in nanophase materials, in Proc.Mater. Res. Soc. Symp, ed. H. J. Grant, R. W. Armstrong,M. A. Otooni and K. Ishizaki, Warrendale, PA, 1995, vol.362, pp. 219-229.
[6] S. Vepřek and S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films, 1995, 265, 64-71.
[7] H. Gleiter, Nanostructured materials:state of the art and perspectives, Nanostruct. Mater., 1996, 6, 3-14.
[8] S. Yip, The strongest size, Nature, 1998, 391, 532.
[9] A. A. Voevodin and J. S. Zabinski, Superhard, functionally gradient, nanolayered and nanocomposite diamond-like carbon coatings for wear protection, Diamond Relat. Mater., 1998, 7, 463-467.
[10] J. Musil, Hard and superhard nanocomposite coatings, Surf. Coat. Technol., 2000, 125, 322-330.
[11] H. Gleiter, Nanostructured materials:basic concepts and microstructure, Acta Mater., 2000, 48, 1-29.
[12] A. Leyland and A. Matthews, On the significance of the H/E ratio in wear control:a nanocomposite coating approach to optimised tribological behaviour, Wear, 2000, 246, 1-11.
[13] L. Hultman, Thermal stability of nitride thin films, Vacuum, 2000, 57(1), 1-30.
[14] R. Hauert and J. Patscheider, From alloying to nanocomposites-Improved performance of hard coatings, Adv. Mater., 2000, 2(5), 247-259.
[15] S. Vepřek, Nanostructured superhard materials, in Handbook of Ceramic Hard Materials, ed. R. Riedel, WILEY-VCH, Weinheim, 2000, ch. 4, pp. 104-139.
[16] S.Vepřek and A.S.Argon, Mechanical properties of superhardnanocomposites, Surf. Coat. Technol., 2001, 146-147, 175-182.
[17] H. Gleiter, Tuning the electronic structure of solids by means of nanometer-sized microstructures, Scr. Mater., 2001, 44, 1161-1168.
[18] R. A. Andrievskii, Thermal stability of nanomaterials, Russ. Chem. Rev., 2002, 71(10), 853-866.
[19] G. M. Demyashev, A. L. Taube and E. E. Siores, Superhard nanocomposite coatings, in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposite, ed. H. S. Nalwa, American Scientifuc Publishers, 2003, vol. 1, pp. 1-61.
[20] J. Patscheider, Nanocomposite hard coatings for wear protection, MRS Bull., 2003, 28(3), 180-183.
[21] S. Zhang, D. Sun, Y. Fu and H. Du, Recent advances of superhard nanocomposite coatings:a review, Surf. Coat. Technol., 2003, 167, 113-119.
[22] R. A. Andrievski, Nanomaterials based on high-melting carbides, nitrides and borides, Russ. Chem. Rev., 2005, 74(12), 1061-1072.
[23] S. Zhang, D. Sun, Y. Fu and H. Du, Toughening of hard nanostructured thin films:a critical review, Surf. Coat. Technol., 2005, 198, 2-8.
[24] J. Musil, Physical and mechanical properties of hard nanocomposite films prepared by reactive magnetron sputtering, in Nanostructured Coatings, ed. J. T. M. DeHosson and A. Cavaleiro, Springer Science+Business Media, LCC, New York, 2006, ch. 10, pp. 407-463.
[25] L. Hultman and C. Mitterer, Thermal stability of advanced nanostructured wear-resistnt coatings, in Nanostructured Coatings, ed. J. T. M. DeHosson and A. Cavaleiro, Springer Science+Business Media, New York, 2006, ch. 11, pp.464-510.
[26] P. H. Mayrhofer, C. Mitterer and L. Hultman, Microstructural design of hard coatings, Prog. Mater. Sci., 2006, 51, 1032-1114.
[27] C. Lu, Y. W. Mai and Y. G. Shen, Recent advances on understanding the origin of superhardness in nanocomposite coatings:a critical review, J. Mater. Sci., 2006, 41, 937-950.
[28] C. S. Sandu, F. Medjani, R. Sanjines, A. Karimi and F. Levy, Structure, morphology and electrical properties of sputtered Zr-Si-N thin films:from solid solution to nanocomposite, Surf. Coat. Technol., 2006, 201, 4219-4229.
[29] Y. H. Lu and Y. G. Shen, Nanostructure transition:from solid solution Ti(N,C) to nanocomposite nc-Ti(N,C)/a-(C,CNx), Appl. Phys. Lett., 2007, 90, 221913.
[30] C. S. Sandu, F. Medjani and R. Sanjines, Optical and electrical properties of Zr-Si-N thin films:from solid solution to nanocomposite, Rev. Adv. Mater. Sci., 2007, 15, 173-178.
[31] J. Musil and M. Jirout, Toughness of hard nanostructured ceramic thin films, Surf. Coat. Technol., 2007, 201, 5148-5152.
[32] A. Raveh, I. Zukerman, R. Shneck, R. Avni and I. Fried, Thermal stability of nanostructured superhard coatings:a review, Surf. Coat. Technol., 2007, 201, 6136-6142.
[33] J. Musil, Properties of hard nanocomposite thin films, in Nanocomposite films and coatings, ed. S. Zhang and N. Ali, Imperial College Press, London, 2007, ch. 5, pp. 281-328.
[34] J. Musil, J. Vlček and P. Zeman, Advanced amorphous non-oxide coatings with oxidation resistance above 1000℃, Special Issue on Nanoceramics, Adv. Appl. Ceram., 2008, 107(3), 148-154.
[35] J. Musil, P. Baroch and P. Zeman, Hard nanocomposite coatings. Present status and trends, in Plasma Surface Engineering Research and its Practical Applications, ed. R. Wei, Research Signpost, Kerala, 2008, ch. 1, pp. 1-34.
[36] R. Wei, Plasma enhanced magnetron sputtering deposition of superhard, nanocomposite coatings, in Plasma Surface Engineering Research and its Practical Applications, ed. R. Wei, Research Signpost Publisher, Kerala, 2008, ch. 3, pp. 87-115.
[37] A. D. Pogrebjank, A. P. Shpak, N. A. Azarenkov and V. M. Beresnev, Structure and properties of hard and superhard nanocomposite coatings, Phys.-Usp., 2009, 52, 29-54.
[38] A. Matthews and A. Leyland, Materials related aspects of nanostructured tribological coatings, SVC Bull., 2009, 40-44.
[39] A. D. Korotaev, B. D. Borisov, Yu. V. Moshkov, S. V. Ovchinnikov, Yu. P. Pinzhin and A. N. Tyumentsev, Elastic stress state in superhard multielement coatings, Phys. Mesomech., 2009, 12(5-6), 269-279, in Russian.
[40] J. Musil, Recent progress in hard nanocomposite coatings, part 1, Galvanotechnik, 2010, 8, 1856-1867; J. Musil, Recent progress in hard nanocomposite coatings, part 2, Galvanotechnik, 2010, 9, 2116-2121.
[41] J. Musil, Hard nanocomposite coatings:thermal stability, oxidation resistance and toughness, Surf. Coat. Technol., 2012, 207, 50-65.
[42] J. Musil, P. Zeman and P. Baroch, Hard Nanocomposite Coatings, in Comprehensive Materials Processing, Coatings and Films, ed. D. Cameron, Elsevier, 2014, vol. 4, ch. 4.13, pp. 325-353.
[43] S. Veprek, Recent search for new superhard materials:go nano!, J. Vac. Sci. Technol., A, 2013, 31(5), 050822.
[44] J. Musil, Advanced hard nanocomposite coatings with enhanced toughness and resistance to cracking, in Thin Films and Coatings:Toughening and Toughening Characterization, ed. S. Zhang, CRC Press, USA, 2015, ch.7, pp. 377-463.
[45] J. Blažek, J. Musil, P. Stupka, R. Čerstvý and J. Houška, Properties of nanocrystalline Al-Cu-O flms reactively sputtered by dc pulse dual magnetron, Appl. Surf. Sci., 2011, 258, 1762-1767.
[46] J. Musil, J. Sklenka and R. Čerstvý, Transparent Zr-Al-O nanocomposite coatings with enhanced resistance to cracking, Surf. Coat. Technol., 2012, 206, 2105-2109.
[47] J. Musil, M. Meissner, R. Jílek, T. Tolg and R. Čerstvý, Two-phase single layer Al-O-N nanocomposite films with enhanced resistance to cracking, Surf. Coat. Technol., 2012, 206, 4230-4234.
[48] J. Musil, J. Sklenka, R. Čerstvý, T. Suzuki, M. Takahashi and T. Mori, The effect of addition of Al in ZrO2 thin film on its resistance to cracking, Surf. Coat. Technol., 2012, 207, 355-360.
[49] J. Musil, J. Sklenka and J. Procházka, Protective over-layer coating preventing cracking of thin films deposited on flexible substrates, Surf. Coat. Technol., 2014, 240, 275-280.
[50] J. Musil, R. Jílek and R. Čerstvý, Flexible Ti-Ni-N thin films prepared by magnetron sputtering, J. Mater. Sci. Eng. A, 2014, 4(2), 27-33.
[51] J. Musil, J. Blažek, K. Fajfrlík and R. Čerstvý, Flexible antibacterial Al-Cu-N films, Surf. Coat. Technol., 2015, 264, 114-120.
[52] J. Procházka, R. Čerstvý and J. Musil, Interrelationship between mechanical properties and resistance to cracking of magnetron sputtered (Ti,Al,V)Nx nitride films, Paper B5-1-4, 42nd International Conference on Metallurgical Coatings and Thin Films (ICMCTF 2015), April 20-24, 2015, San Diego, CA, USA, Book of Abstracts, p. 80.
[53] Thin Films Processes, ed. J. L. Vossen and W. Kern, Academic Press, Inc., New York, 1978.
[54] B. Window and N. Savvides, Unbalanced magnetrons as sources of high ion fluxes, J. Vac. Sci. Technol., A, 1986, 4, 504.
[55] S. Kadlec, J. Musil and J. Vyskočil, Hysteresis effect in reactive sputtering:a problem of system stability, J. Phys. D:Appl. Phys., 1986, 19, L187-L190.
[56] S. Schiller, U. Heisig, C. Korndorfer, G. Beister, J. Reske, K. Steinfelder and J. Strumpfel, Reactive DC high-rate sputtering as production technology, Surf. Coat. Technol. 1987, 33, 405-423.
[57] J. Musil, S. Kadlec, J. Vyskočil and V. Valvoda, New results in dc reactive magnetron deposition of TiNx films, Thin Solid Films, 1988, 167, 107-119.
[58] Handbook of Plasma Processing Technology, ed. S. M.Rossnagel, J. J. Cuomo and W. D. Westwood, Noyes Publications, Park Ridge, New Jersey, USA, 1990.
[59] B. Window and N. Savvides, Ion-assisting magnetron sources:principles and uses, J. Vac. Sci. Technol., A, 1990, 8, 1277.
[60] J. Musil, S. Kadlec, V. Valvoda, R. Kužel Jr. and R. Černý, Ion-assisted sputtering of TiN films, Surf. Coat. Technol.,1990, 43/44, 259-269.
[61] J. Musil, S. Kadlec and W.-D. Munz, Unbalanced magnetrons and new sputtering systems with enhanced plasma ionization, J. Vac. Sci. Technol., A, 1991, 9(3), 1171-1177.
[62] E. Kusano, An investigation of hysteresis effects as a function of pumping speed, sputtering current, and O2/Ar ratio, in Ti-O2 reactive sputtering processes, J. Appl. Phys.,1991, 70(11), 7089.
[63] S. L. Rohde, L. Hultman, M. S. Wong and W. D. Sproul, Dual-unbalanced magnetron deposition of TiN films, Surf. Coat. Technol., 1992, 50, 255-262.
[64] J. Musil, S. Kadlec and J. Vyskočil, Hard coatings prepared by sputtering and arc evaporation, in Physics of Thin Films, Mechanic and dielectric properties, ed. M. H. Fracombe and J. L. Vossen, Academic Press, Inc., San Diego, CA, 1993, vol. 17, pp. 80-139.
[65] S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider and F. Milde, Pulsed magnetron sputter technology, Surf. Coat. Technol., 1993, 61(1-3), 331-337.
[66] W. D. Sproul, Ion-assisted deposition in unbalanced magnetron sputtering systems, Mater. Sci. Eng., A, 1993, 163, 187-192.
[67] S. M. Rossnagel, Directional and preferential sputtering-based physical vapour deposition, Thin Solid Films, 1995, 263, 1-12.
[68] W. D. Sproul, Advances in reactive sputtering, 39th Annual Technical Conference Proceedings, Philadelphia, USA, 1996, pp. 3-6.
[69] W. D. Sproul, New routes in the preparation of mechanically hard films, Science, 1996, 273, 889-892.
[70] B. Window, Issues in magnetron sputtering of hard coatings, Surf. Coat. Technol., 1996, 81, 92-98.
[71] S. Kadlec and J. Musil, Low pressure magnetron sputtering and selfsputtering discharges, Vacuum, 1996, 47(3), 307-311.
[72] J. Musil, Basic properties of low-pressure plasma, in Proceedings of the International School of Physics Enrico Fermi, Course CXXXV, ed. A. Paoleti and A. Tucciarone, IOS Press, Amsterdam, 1997, pp. 145-177.
[73] W. D. Sproul, High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings, Vacuum, 1998, 51(4), 641-649.
[74] J. Musil, Low-pressure magnetron sputtering, Vacuum, 1998, 50(3-4), 363-372.
[75] R. D. Arnell and P. J. Kelly, Recent advances in magnetron sputtering, Surf. Coat. Technol., 1999, 112, 170-176.
[76] I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films:a review, Surf. Coat. Technol., 2000, 127, 203-218.
[77] P. J. Kelly and R. D. Arnell, Magnetron sputtering:a review of recent developments and applications, Vacuum, 2000, 56, 159-172.
[78] J. Musil, Hard nanocomposite films prepared by reactive magnetron sputtering, in Nanostructured Thin Films and Nanodispersion Strengthened Coatings, ed. A. A. Voevodin, D. V. Shtansky, E. A. Levashov and J. J. Moore, NATO Science Series, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003, vol. 155, ch. 5, pp. 43-57.
[79] W. D. Sproul, D. J. Christie and D. C. Carter, Control of reactive sputtering processes:review, Thin Solid Films, 2005, 491, 1-17.
[80] J. Musil, J. Vlček and P. Baroch, Magnetron discharges for thin films plasma processing, in Materials Surface Processing by Directed Energy Techniques, ed. Y. Pauleau, 2006, Elsevier Science Publisher B.V., Oxford, UK, ch. 3, pp. 67-106.
[81] J. Musil and P. Baroch, High-rate pulse reactive magnetron sputtering of oxide nanocomposite coatings, Vacuum, 2013, 87, 96-102.
[82] J. Musil and P. Baroch, Discharge in dual magnetron sputtering system, IEEE Trans. Plasma Sci., 2005, 33(2), 338-339.
[83] H. Poláková, J. Musil, J. Vlček, J. Alaart and C. Mitterer, Structure-hardness relations in sputtered Ti-Al-V-N films, Thin Solid Films, 2003, 444, 189-198.
[84] J. Musil, Sputtering systems with enhanced ionization for ion plating of hard wear resistant coatings, Proc. of the 1st Meeting on the Ion Engineering Society of Japan (IESJ-92), Tokyo, Japan, 1992, pp. 295-304.
[85] J. Musil, J. Vlček, Magnetron sputtering of alloy and alloy-based films, Czechoslovak Journal of Physics 48(10) (1998), 1209-1224.
[86] J. Musil, H. Poláková, J. Šůna and J. Vlček, Effect of ion bombardment on properties of hard reactively sputtered single-phase films, Surf. Coat. Technol., 2004, 177-178, 289-298.
[87] J. Musil and J. Šůna, The role of energy in formation of sputtered nanocomposite films, Mater. Sci. Forum, 2005, 502, 291-296.
[88] J. Musil, J. Šícha, D. Heřrman and R. Čerstvý, Role of energy in low-temperature high-rate formation of hydrophilic TiO2 thin films using pulsed magnetron sputtering, J. Vac. Sci.Technol., A, 2007, 25(4), 666-674.
[89] J. Musil, J. Leština, J. Vlček and T. Tolg, Pulsed dc magnetron discharge for high-rate sputtering of thin films, J. Vac. Sci. Technol., A, 2001, 19, 420-424.
[90] J. Vlček, A. D. Pajdarová and J. Musil, Pulsed dc magnetron discharges and their utilization in plasma surface engineering, Contrib. Plasma Phys., 2004, 44(5-6), 426-436.
[91] R. D. Arnell, P. J. Kelly and J. W. Bradley, Recent developments in pulsed magnetron sputtering, Surf. Coat. Technol., 2004, 188-189, 158-163.
[92] A. P. Ehiasarian, Fundamentals and applications of HIPIMS, in Plasma Surface Engineering Research and its Practical Applications, ed. R. Wei, Research Signpost Publisher, Kerala, 2008, ch. 2, pp. 35-86.
[93] A. Anders, J. Andersson and A. Ehiasarian, High power impulse magnetron sputtering:current-voltage-time characteristics indicate the onset of self-sputtering, J. Appl. Phys., 2007, 102, 113303.
[94] U. Helmersson, M. Lattemann, J. Bohlmark and A. P. Ehiasiaran, Ionized physical vapor deposition (IPVD):A review of technology and applications, Thin Solid Films, 2006, 513(1-2), 1-24.
[95] J. Vlček, P. Kudláček, K. Burcalová and J. Musil, High-power pulsed sputtering using a magnetron with enhanced plasma confinement, J. Vac. Sci. Technol., A, 2007, 25, 42-47.
[96] J. Vlček, P. Kudláček, K. Burcalová and J. Musil, Ion flux characteristics in high-power pulsed magnetron sputtering discharges, EPL, 2007, 77, 45002.
[97] D. Horwat and A. Anders, Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper, J. Phys. D:Appl. Phys., 2008, 41, 135210.
[98] J. W. Bradley and T. Welzel, Physics and phenomena in pulsed magnetrons:an overview, J. Phys. D:Appl. Phys., 2009, 42, 093001.
[99] A. Anders, Deposition rates of high power impulse magnetron sputtering:physics and economics, J. Vac. Sci. Technol., A, 2010, 28(4), 783-790.
[100] P. Poolcharuansin and J. Bradley, Short- and long-term plasma phenomena in a HIPIMS discharge, Plasma Sources Sci. Technol., 2010, 19, 025010.
[101] A. Anders, M. Panjan, R. Franz, J. Andersson and P. Ni, Drifting potential humps in ionization zones:the "propeller blades" of high power impulse magnetron sputtering, Appl. Phys. Lett., 2013, 103, 144103.
[102] P. M. Barker, E. Lewin and J. Patscheider, Modified high power impulse magnetron sputtering process for increased deposition rate of titanium, J. Vac. Sci. Technol. A, 2013, 31(6), 060604.
[103] J. Musil, J. Blažek, K. Fajfrlík, R. Čerstvý and Š. Prokšová, Antibacterial Cr-Cu-O films prepared by reactive magnetron sputtering, Appl. Surf. Sci., 2013, 276, 660-666.
[104] (a) J. A. Thornton, Recent developments in sputtering-magnetron sputtering, Met. Finish., 1979, 77(5), 83-87; (b) J. A. Thornton, High rate thick films growth, Annu. Rev.Mater. Sci., 1977, 7, 239-260.
[105] B. A. Movchan and A. V. Demchishin, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide, Phys. Met. Metallogr., 1969, 28, 83-90.
[106] J. Musil, V. Poulek, V. Valvoda, R. Kužel Jr., H. A. Jehn and M. E. Baumgartner, Relation of deposition conditions of Ti-N films prepared by dc magnetron sputtering to their microstructure and macrostress, Surf. Coat. Technol.,1993, 60, 484-488.
[107] P. Pokorný, J. Musil, P. Fitl, M. Novotný, J. Lančok and J. Bulíř, Contamination of magnetron sputtered metallic films by oxygen from residual atmosphere in deposition chamber, Plasma Processes Polym., 2015, 12, 416-421.
[108] R. Messier, A. P. Giri and R. A. Roy, Revised structure zone model for thin film physical structure, J. Vac. Sci. Technol., A, 1984, 2(2), 500-503.
[109] A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, 2009, 518, 4087-4090.

基金

捷克资助局项目(P108/12/0393)
PDF(20780 KB)

12

Accesses

0

Citation

Detail

段落导航
相关文章

/