引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 789次   下载 471 本文二维码信息
码上扫一扫!
分享到: 微信 更多
高功率脉冲磁控溅射制备纳米复合高熵碳化物(CuNiTiNbCr)Cx薄膜
李延涛, 经佩佩, 曾小康, 刘茂, 姜欣, 冷永祥
西南交通大学材料科学与工程学院 成都 610031
摘要:
高熵碳化物薄膜的脆性限制了其在高承载、长周期服役条件下的应用。精细设计的纳米复合结构可以在不损失薄膜强度前提下显著提高薄膜的韧性。采用高功率脉冲磁控溅射技术制备以非晶为基体连续相,以碳化物陶瓷相为分散相的非晶-晶体的高熵碳化物(CuNiTiNbCr)Cx 薄膜,研究不同 C2H2 气体流量(FC)对薄膜成分、结构、力学性能和摩擦学性能的影响。采用能谱仪、扫描电子显微镜、X 射线衍射仪、透射电子显微镜、X 射线光电子能谱分析薄膜的成分、形貌、结构及各元素的化学状态,进一步采用纳米压痕以及球-盘式摩擦磨损试验机对薄膜的硬度、模量和摩擦磨损性能进行表征。结果表明,随着乙炔气体流量的增加,薄膜中碳含量逐渐增加,结构从非晶转变为非晶-晶体的纳米复合结构。纳米复合结构薄膜的硬度随着乙炔流量的增加逐渐增加,这是因为薄膜中生成大量碳化物陶瓷相,薄膜硬度最高为 20 GPa。纳米复合薄膜呈现优异的摩擦学性能,在 FC = 3 mL / min 时,薄膜的摩擦性能达到最优,其磨损量为 2.9×10?6 mm3 / Nm。 综上,采用高功率脉冲磁控溅射技术可以精细调控薄膜结构,制备出强韧一体化、耐磨减摩的纳米复合结构 (CuNiTiNbCr)Cx 薄膜。
关键词:  高功率脉冲磁控溅射  (CuNiTiNbCr)Cx 纳米复合薄膜  硬度与韧性  摩擦学性能
DOI:10.11933/j.issn.1007-9289.20211216001
分类号:TG174
基金项目:国家自然科学基金(51975564)、四川省科技计划(2021YFSY0050)、中央高校基本科研专项基金(2682021CX103)和声场声信息国家重点实验室开放课题研究基金(SKLA202214)资助项目
(CuNiTiNbCr)Cx Nanocomposite High Entropy Carbide Film Prepared by High Power Pulsed Magnetron Sputtering
LI Yantao, JING Peipei, ZENG Xiaokang, LIU Mao, JIANG Xin, LENG Yongxiang
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 , China
Abstract:
The brittleness of high-entropy carbide films limits its application under high-load, long-period service conditions. The film toughness can be significantly improved by the finely designed nanocomposite structure without losing the film strength. Amorphous-crystalline nanocomposite high-entropy carbide (CuNiTiNbCr)Cx films with amorphous as the matrix and the carbide ceramic phase as the dispersed phase are prepared by high power pulsed magnetron sputtering (HiPIMS) at different C?H? flow rate, and the effects of C?H? gas flow (FC) on the film composition, structure, mechanical properties and tribological properties are studied. The composition, morphology, microstructure and chemical state of elements of the films are analyzed using energy spectrometer, scanning electron microscope, X-ray diffractometer, transmission electron microscope, and X-ray photoelectron spectroscopy. The hardness, modulus and wear properties of the films are further characterized by nanoindentation and ball-disc friction and wear tester. As the flow rate of acetylene gas increases, the carbon content in the film gradually increases, and the film structure changes from an amorphous structure to an amorphous-crystalline nanocomposite structure. The hardness of the nanocomposite film gradually increases with the increase of the acetylene flow rate, due to a large amount of carbide ceramic phase formed in the film, and the hardness reaches the maximum of 20 GPa. The nanocomposite film exhibits excellent tribological properties. The nanocomposite film exhibits excellent tribological properties. At FC = 3 mL / min, the friction performance of the film reaches the best, and the wear rate is 2.9×10?6 mm3 / Nm. The HiPIMS can finely control film structure, and fabricate the nanocomposite (CuNiTiNbCr)Cx film, which achieves the combination of high strength and toughness, and significantly improved tribological properties.
Key words:  high power pulsed magnetron sputtering  (CuNiTiNbCr)Cx nanocomposite film  hardness and toughness  tribological properties