引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 753次   下载 341 本文二维码信息
码上扫一扫!
分享到: 微信 更多
高韧性过渡层对大气等离子喷涂热障涂层性能的影响
梁立康, 黄文, 王世兴, 何箐
中国农业机械化科学研究院表面工程技术研究所 北京 100083
摘要:
高温服役环境下,大气等离子喷涂(APS)制备的纳米结构热障涂层受热应力作用,黏结层 / 陶瓷层界面附近的陶瓷层内部易形成横向裂纹而导致热障涂层失效。利用常规大气等离子喷涂和超音速等离子喷涂(SAPS)制备 8YSZ 高韧性过渡层。结果表明,采用 APS 和 SAPS 制备的高韧性过渡层提高了扁平化粒子间结合状态和涂层致密度,相比常规结构 8YSZ 涂层的断裂韧性分别提高约 46%和 84%,高韧性过渡层均提高了复合结构热障涂层结合强度、抗热震性能和燃气热冲击寿命, SAPS 制备的高韧性过渡层厚度为 30~50 μm 时复合结构热障涂层抗热震性能最优,当高韧性过渡层厚度为 10~30 μm 时, 相比常规结构热障涂层燃气热冲击寿命提高 120%。在温度梯度作用下,热障涂层最终失效由陶瓷层逐层剥落转变为靠近陶瓷层 / 黏结层界面处剥落。通过高韧性过渡层设计,兼顾热障涂层的隔热性能的同时,提高了热障涂层的结合强度和寿命。
关键词:  热障涂层  复合结构  高韧性过渡层  燃气热冲击
DOI:10.11933/j.issn.1007?9289.20220324001
分类号:TG174
基金项目:国家科技重大专项资助项目(2017-Ⅶ-0007-0100)
Effect of High Toughness Transition Layer on the Performance of Atmospheric Plasma Sprayed Thermal Barrier Coatings
LIANG Likang, HUANG Wen, WANG Shixing, HE Qing
Surface Engineering Research Institute, Chinese Academy of Agricultural Mechanization Sciences,Beijing 100083 , China
Abstract:
Ceramic coatings near the bond coating / top coating interface in nano-structured thermal barrier coatings deposited by atmospheric plasma spray (APS) tend to initiate horizontal cracks under high temperature environment, and thus lead to the failure of thermal barrier coatings. High toughness transition layers of 8YSZ are deposited by atmospheric plasma spray and supersonic atmospheric plasma spray (SAPS). The results show that high toughness transition layers prepared by APS and SAPS improve the adhesion of flattened splats and increase density of transition layer. Compared with conventional nano-structured 8YSZ coatings, the toughness increases by 46% and 84%, respectively. High toughness transition layers increase the adhesive strength, thermal shock resistance and gas thermal shock resistance of composite structured thermal barrier coatings. The coatings show the best thermal shock resistance when the thickness of high toughness transition layer is 30~50 μm and deposited by SAPS. Moreover, compared with conventional nano-structured coatings, the gas thermal shock resistance increases by 120% when the thickness of high toughness transition layer is 10~30 μm. Testing under temperature gradient, the final failure of thermal barrier coatings changes from peeling off layer by layer in top coatings to spalling at the interface between top coating / bond coating. Through the design of high toughness transition layers, the adhesive strength and service life of thermal barrier coatings is improved and its thermal insulation performance is also considered.
Key words:  thermal barrier coatings  composite structure  high toughness transition layer  gas thermal shock