引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 739次   下载 390 本文二维码信息
码上扫一扫!
分享到: 微信 更多
超声滚压强化对CoCrFeMnNiM(M=Ti,Mo)高熵合金激光熔覆层耐磨性的影响
刘昊1,2,3, 高强1,2,3, 戴剑博1, 李晓佳1, 杨海峰1, 韩静1, 郝敬宾1,2,3
1.中国矿业大学机电工程学院 徐州 221116;2.江苏省矿山智能采掘装备协同创新中心(省部共建) 徐州 221116;3.江苏省矿山机电装备重点实验室 徐州 221116
摘要:
CoCrFeMnNi 高熵合金较低的硬度和较差的耐磨损性能限制了其在表面工程领域的应用。利用激光熔覆技术制备强化的 CoCrFeMnNiM(M=Ti,Mo)高熵合金熔覆层,并通过超声表面滚压(USRE)技术强化熔覆层表面。采用 XRD、FSEM、 EDS、AFM、显微硬度计和摩擦磨损试验机等研究 USRE 处理对高熵合金激光熔覆层的微观组织、表面形貌、力学性能和摩擦学性能的影响。结果表明:CoCrFeMnNiTi 高熵合金激光熔覆层由面心立方(FCC)结构的固溶体相和 TiC 原位析出相组成,CoCrFeMnNiMo 高熵合金激光熔覆层仍由单一的 FCC 固溶体相组成。USRE 处理后涂层的相构成均未发生变化,但 CoCrFeMnNiMo 涂层的晶粒尺寸得到更明显的细化。USRE 处理降低了高熵合金激光熔覆层的表面粗糙度,提高了残余压应力和显微硬度,并且 USRE 处理对 CoCrFeMnNiMo 涂层的效果提升更加显著。经过相同工艺参数的 USRE 处理后, CoCrFeMnNiTi 高熵合金激光熔覆层的体积磨损率由 1.90×10?4 mm3 / (N·m)降低到 0.71×10?4 mm3 / (N·m);但由于磨损机制的转变和表面脆性的增大,CoCrFeMnNiMo 高熵合金激光熔覆层的磨损率反而上升。探讨了超声表面滚压处理对高熵合金涂层的适用性,可为高熵合金涂层耐磨性的强化提供参考。
关键词:  超声表面滚压  激光熔覆  高熵合金  显微组织  耐磨性
DOI:10.11933/j.issn.1007?9289.20220303002
分类号:TH117
基金项目:国家自然科学基金(51905534)、江苏省自然科学基金(BK20210495)和江苏高校优势学科建设工程(PAPD)资助项目
Effect of Ultrasonic Surface Rolling Extrusion on the Wear Resistance of CoCrFeMnNiM (M=Ti, Mo) High-entropy Alloy Coatings
LIU Hao1,2,3, GAO Qiang1,2,3, DAI Jianbo1, LI Xiaojia1, YANG Haifeng1, HAN Jing1, HAO Jingbin1,2,3
1.School of Mechanical and Electrical Engineering, China University of Mining and Technology,Xuzhou 221116 , China;2.Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center ofIntelligent Mining Equipment, Xuzhou 221116 , China;3.Jiangsu Key Laboratory of Mine Electromechanical Equipment, Xuzhou 221116 , China
Abstract:
The poor hardness and wear properties of CoCrFeMnNi high-entropy alloy (HEA) greatly limit its application in surface engineering, so the enhanced CoCrFeMnNiM (M=Ti, Mo) high-entropy alloy coatings are prepared by laser cladding, and the surface is then processed using ultrasonic surface rolling extrusion (USRE). The microstructure and mechanical properties (residual stress, microhardness, wear resistance) of the coatings are investigated. The results show that Ti-doping leads to the TiC precipitation in the CoCrFeMnNi coating, while the CoCrFeMnNiMo coating is still comprised of a single FCC solid solution phase. USRE treatment reduces the surface roughness, and increases the residual compressive stress and microhardness of the HEA coatings. Besides, USRE treatment has a more significant effect on the CoCrFeMnNiMo coating. After USRE treatment with the same processing parameters, the volume wear rate of the CoCrFeMnNiTi HEA coating declines from 1.90×10?4 mm3 / (N·m) to 0.71×10?4 mm3 / (N· m). However, the wear rate of CoCrFeMnNiMo HEA coating increases due to the change in wear mechanism and the increase of surface brittleness. The applicability of USRE treatment to HEA coatings is discussed, which provides a reference for wear resistance enhancement of HEA coatings.
Key words:  ultrasonic surface rolling extrusion  laser cladding  high-entropy alloy  microstructure  wear resistance