引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 628次   下载 410 本文二维码信息
码上扫一扫!
分享到: 微信 更多
筒内高功率脉冲磁控溅射放电等离子体的空间分布及输运行为
崔岁寒, 李体军, 李蕊, 吴忠灿, 马正永, 吴忠振
北京大学深圳研究生院新材料学院 深圳 518055
摘要:
增强对高功率脉冲磁控溅射(HiPIMS)过程中等离子体分布及输运行为的理解是控制涂层沉积过程并优化涂层性能的关键,尤其是对于筒内放电,等离子体分布与输运过程更加复杂,影响粒子运动行为的因素更加多样。针对筒内 HiPIMS 放电,并耦合电磁约束离子输出系统,以 Ar / N2 / Cr 磁控溅射体系中的主要组分及其相关反应和运动规律为研究对象,利用检验粒子蒙特卡罗(MC)方法对 Ar、N2 和 Cr 三类主要演化粒子的空间演变过程进行仿真,发现离子输出束流中的各粒子呈现出不同的空间分布。其中,质量大、离子能量高的金属离子 Cr+ 的输出束流最窄,而质量小、离子能量低的气体离子 N+ 的输出束流范围最宽。利用高精度光谱仪测出 Ar+ 、N+ 和 Cr+ 的特征光谱强度随空间的变化,与仿真得到的离子空间分布吻合。 同时,利用该体系可在不同的沉积位置制备出不同 Cr / N 比的 CrxN 涂层,实现多种成分的一次性制备或同一成分的可控制备。
关键词:  筒内放电  等离子体仿真  等离子体输运特性  离子空间分布
DOI:10.11933/j.issn.1007?9289.20220123001
分类号:O539
基金项目:深圳市科技计划(SGDX20201103095406024 和 JSGG20191129112631389)和北京大学深圳研究生院引进人才科研启动经费(1270110273)资助项目
Plasma Spatial Distribution and Transport Behavior of High Power Impulse Magnetron Sputtering in Cylindrical Cathode
CUI Suihan, LI Tijun, LI Rui, WU Zhongcan, MA Zhengyong, WU Zhongzhen
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055 , China
Abstract:
Understanding of plasma spatial distribution and transport behavior in high power pulsed magnetron sputtering (HiPIMS) is the key to control the deposition process and optimize the properties of coatings. Especially for HiPIMS in cylindrical cathode, the plasma distribution and the transport process are more complex, and the particle motion behavior is determined by various factors. Aiming at the HiPIMS discharge in cylindrical coupled with the electromagnetic system, the reaction and the movement of the main particles in Ar / N2 / Cr system are studied. The evolution processes of Ar, N2 and Cr particles are simulated with the test particle Monte Carlo (MC) model. The simulation results reveal that different particles present different spatial distribution. In particular, the metal ion Cr+ with large mass and high ionic energy shows the narrowest output beam, while the gas ion N+ with low mass and ionic energy shows the widest output beam range. The characteristic spectrums of Ar+ , N+ and Cr+ are detected by the optical emission spectrometer (OES), and the spatial evolutions are in consistent with the simulation. Finally, a serious of CrxN coatings with different Cr / N ratios are prepared by at different deposition positions. In this way, coatings with multiple components can be prepared at one time, and coatings with certain component can be prepared under control.
Key words:  discharge in cylindrical cathode  plasma simulation  plasma transport behavior  plasma spatial distribution