引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1243次   下载 641 本文二维码信息
码上扫一扫!
分享到: 微信 更多
表面织构下钛合金不同周次的微动磨损行为*
王剑飞1,2, 薛伟海1,2, 高禩洋1,2, 段德莉1,2, 李曙1,2
1.中国科学院金属研究所辽宁省航发材料摩擦学重点实验室 沈阳 110016;2.中国科学技术大学材料科学与工程学院 沈阳 110016
摘要:
在航空发动机中,钛合金零部件的微动磨损不可避免。表面织构能在一定程度上减缓微动磨损,然而目前对表面织构下钛合金不同周次微动磨损行为的认识尚有不足。在 TC4 钛合金表面通过激光加工制备不同方向的沟槽状表面织构,随后进行不同周次的微动磨损试验。试验结果表明,在磨损的初期,有垂直方向表面织构的样品微动循环图更“瘦长”;随着磨损的进行,磨屑的分布状态发生了改变,其微动循环图变的和平行织构的样品以及无织构的样品相同。整个磨损过程随微动周次增加,分为黏着阶段和稳定阶段,垂直织构的样品上,黏着阶段又可被细分为黏着区域分散的阶段和黏着区域成片的阶段。 随周次增加,磨屑的演变是由大块的磨屑层经不断被碾碎、氧化,转换成小块的磨屑,并且最终转换成细小的颗粒磨屑,被排出到磨损区域之外。研究结果对认识微动磨损行为中不同周次下表面织构的作用及磨屑的演化具有一定理论意义。
关键词:  钛合金  微动磨损  表面织构  磨损过程  激光加工  磨屑
DOI:10.11933/j.issn.1007-9289.20211029001
分类号:TH117
基金项目:中国科学院战略性先导科技专项资助项目(C 类)(XDC04040400)
Fretting Wear Behavior of Ti Alloy under Different Cycles with Surface Texture
WANG Jianfei1,2, XUE Weihai1,2, GAO Siyang1,2, DUAN Deli1,2, LI Shu1,2
1.Liaoning Key Laboratory of Aero-engine Materials Tribology, Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110016 , China;2.School of Materials Science and Engineering, University of Science and Technology of China,Shenyang 110016 , China
Abstract:
In aero engines, fretting wear of titanium alloy parts is inevitable. Studies have shown that surface texture can slow down fretting wear to a certain extent. However, the understanding of fretting wear behavior under different cycles is insufficient. The groove surface textures in different orientations are prepared on the surface of Ti-6Al-4V alloy by laser processing and different cycles of fretting wear tests are carried out. The results show that in the initial stage of wear, the fretting loops of samples with perpendicular grooves are “slimmer” than the others. As wear progresses, the distribution of wear debris changes, and the fretting loops of the 3 samples are similar. As the fretting cycle increases, the entire wear process can be divided into an adhesion stage and a stable stage. However, on samples with perpendicular grooves, the adhesion stage can be further subdivided into two stages according to whether the adhesion area is connected into one part. According to the distribution of wear debris and the results of EDS under different cycles, it can be found that the evolution of wear debris is the continuous grinding and oxidation of the large wear debris layer, which is converted into small pieces of wear debris, and finally into fine particle grinding. The research results have important theoretical significance for understanding the role of surface texture and the evolution of debris under different cycles in fretting wear behavior.
Key words:  titanium alloy  fretting wear  surface texture  wear process  laser processing  debris