引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2712次   下载 1168 本文二维码信息
码上扫一扫!
分享到: 微信 更多
激光熔化沉积AlSi10Mg及气孔对力学性能的影响
李俐群, 王宪, 曲劲宇, 陶汪
哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001
摘要:
采用激光熔化沉积的方法对AlSi10Mg增材制造,制备出致密度大于99%、抗拉强度350 MPa左右、延伸率8%的薄壁墙体试件,利用光学显微镜与扫描电镜分析了沉积态的组织。发现即使增材制造过程水氧含量(体积分数,下同)均控制在1×10-5以下,试件内部仍存在一定的气孔缺陷,气孔均为直径100 μm以下的氢气孔。进一步试验表明,环境中的氧体积分数与气孔率呈正相关关系。在保持环境湿度和温度不变的情况下,环境氧含量由1×10-5增加到1×10-3,气孔直径略微增大,气孔率由0.45%增大到2.71%,气孔率增加近5倍,同时抗拉强度降低100 MPa左右,降幅超过30%,延伸率降幅超过20%。最后探讨了氢气孔在激光熔化沉积制造的试件中产生的机理,给出了利用激光熔化沉积工艺制备稳定的AlSi10Mg合金的策略。
关键词:  AlSi10Mg  激光熔化沉积  增材制造  气孔  力学性能
DOI:10.11933/j.issn.1007-9289.20181106002
分类号:TG174.44
基金项目:
Effects of Porosity on Mechanical Properties of Laser Metal Deposited AlSi10Mg Alloy
LI Liqun, WANG Xian, QU Jinyu, TAO Wang
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
Abstract:
A series of AlSi10Mg alloy walls were additive manufactured by laser metal deposition (LMD) process. The density was above 99%, the tensile strength was more than 350 MPa and the elongation was about 8%. OM and SEM were utilized to observe and analyze the microstructure of as-deposited walls. Results show that even if both of water and oxygen concentration is controlled under 1×10-5, there are some pores in the microstructure, which means the pores in LMD process are nearly impossible to eliminated. The pores are hydrogen micro pores, with diameter less than 100 μm. Further experiments show that the porosity is closely related to the oxygen concentration. Keeping the temperature and humidity constant, when the oxygen concentration rises from 1×10-5 to 1×10-3, the porosity quadruples from 0.45% to 2.71%. Meanwhile the tensile strength decreases more than 100 MPa, falling over 30%, and the elongation reducing by over 20%. Finally, the mechanism of porosity formation was discussed. Methods to fabricate AlSi10Mg alloy with steady mechanical property by LMD process were given.
Key words:  AlSi10Mg  laser metal deposition (LMD)  additive manufacturing  porosity  mechanical property