引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3497次   下载 2569 本文二维码信息
码上扫一扫!
分享到: 微信 更多
中频-直流磁控溅射铝涂层微米压入特性及低温循环性能
陈亚军1, 黄彦1, 胡隆伟2, 郁佳琪1
1.中国民航大学 中欧航空工程师学院, 天津 300300;2.贵州航天精工股份有限公司, 贵州 遵义 563006
摘要:
为预防TC4钛合金紧固件与机身铝合金之间产生电偶腐蚀,采用中频-直流磁控溅射技术在钛合金表面制备铝涂层,利用SEM、EDS进行微观形貌和成分分析,采用拉伸和划痕法评价涂层结合性能,使用微米压痕法研究涂层硬度、压痕蠕变和循环力学行为,并对涂层进行低温循环性能测试。结果表明:涂层的拉伸结合强度为61.75 MPa,划痕结合力为(2.46±0.37) N,70 mN下硬度为(0.348±0.015) GPa。压痕蠕变加载时间由5 s增加到30 s,蠕变位移从87.0 nm减小至49.3 nm,保载时间由5 s增加到30 s,位移从27.8 nm增大到92.9 nm,硬度随加载及保载时间增加均下降,随循环保载时间和循环次数增加均降低。当保温时间从1 h增加到6 h,划痕形貌由耕犁状向切削状转变,边缘剥离程度加大,末端堆积增加;涂层结合力下降,硬度先升高后降低。
关键词:  中频-直流磁控溅射  铝涂层  微米压痕  低温循环  失效机理
DOI:10.11933/j.issn.1007-9289.20161008001
分类号:
基金项目:国家自然科学基金(11502285);中央高校基本科研业务费专项资金(ZXH2011C011)
Micro-indentation and Low-temperature Cyclic Properties of Aluminum Coating Prepared by MF-DC Magnetron Sputtering
CHEN Ya-jun1, HUANG Yan1, HU Long-wei2, YU Jia-qi1
1.Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300;2.Guizhou Aerospace Precision Co., Ltd., Zunyi 563006, Guizhou
Abstract:
To prevent the galvanic corrosion between TC4 titanium fasteners and aluminum alloy of the fuselage, aluminum coating was prepared on the titanium alloy by MF-DC magnetron sputtering technology. The microstructure and composition of the as-produced coating were characterized by SEM and EDS. Adherence of the coating to the titanium alloy was evaluated by tensile and scratch methods. The hardness, indentation creep and cyclic mechanical behaviors of the coating were studied by micro-indentation, and the low temperature cyclic properties of the coating were tested. The results show that the tensile adhesive strength and scratch adhesive force are 61.75 MPa and (2.46±0.37) N, respectively. The hardness of the coating is (0.348±0.015) GPa under the testing force of 70 mN. When the indentation creep loading time increases from 5 s to 30 s, the creep displacement decreases from 87.0 nm to 49.3 nm. When the holding time increases from 5 s to 30 s, the displacement increases from 27.8 nm to 92.9 nm. The hardness of the coating decreases with the increases of loading time and holding time. When the soaking time increases from 1 h to 6 h, the scratch morphologies change from the plough mode to cutting mode, and groove edge stripping degree increases as well as the scratch end accumulates. Adhesive strength of the coating reduces while the hardness firstly increases and then decreases.
Key words:  MF-DC magnetron sputtering  aluminum coating  micro-identation  low-temperature cycle  damage mechanism