引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4104次   下载 2097 本文二维码信息
码上扫一扫!
分享到: 微信 更多
强流脉冲电子束2Cr13钢的表面改性
谭畅, 郝胜智, 王慧慧, 韩丹1,2
1. 大连理工大学 三束材料改性教育部重点实验室, 辽宁 大连116024;2. 西安航天动力研究所, 西安710100
摘要:
利用HOPEI型强流脉冲电子束(HCPEB)装置处理2Cr13马氏体不锈钢。通过金相显微镜、X射线衍射仪、显微硬度检测和摩擦磨损测试方法对表面显微组织和力学性能进行分析。结果表明:处理样品表面产生熔坑,主要由样品表层的(FeCr)23C6型碳化物选择喷发造成。原始样品主要为马氏体Fe-Cr(α)相,处理后样品表层中碳化物经喷发和液相溶解后减少,相反奥氏体相含量增加。由于表面碳化物的去除和高奥氏体含量的形成,处理样品表面显微硬度降低,截面显微硬度呈波动分布。使用加速电压27 kV和15次脉冲处理后,磨痕深度由原始样品的7.3 μm降低到5.1 μm,耐磨性能提高了约30%。
关键词:  强流脉冲电子束  2Cr13钢  表面改性  显微组织  耐磨性
DOI:
分类号:
基金项目:国家自然科学基金(10905044, 11075028); 三束材料改性教育部重点实验室开放课题(DP1051003)
Surface Modification of 2Cr13 Steel by High Current Pulsed Electron Beam
TAN Chang, HAO Sheng-zhi, WANG Hui-hui, HAN Dan1,2
1. Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Dalian 116024, Liaoning;2. Xi’an Aerospace Propulsion Institute, Xi’an 710100
Abstract:
The surface modification of 2Cr13 steel was carried out by HOPEI type high current pulsed electron beam (HCPEB) system. The surface microstructure and mechanical properties were detected by optical metalloscopy, X-ray diffraction (XRD), microhardness and wear testers. The results show that the craters formed on the HCPEB modified surface due to the selective eruption around the (FeCr)23C6 carbide. The initial 2Cr13 steel was mainly composed of Fe-Cr(α)phase. After HCPEB treatment, the content of carbides is reduced by eruptions and liquid dissolution during surface melting, and a rather more austenite phase content appears in the modified surface layer. As a result, the surface microhardness decreases and the distribution of microhardness measured on the crosssection is fluctuant. After the HCPEB treatment with accelerating voltage of 27 kV and 15 pulses, the depth of wear trace is reduced from 7.3 μm of the initial state to 5.1 μm, and the wear resistance is improved by 30%.
Key words:  high current pulsed electron beam(HCPEB)  2Cr13 steel  surface modification  microstructure  wear resistance