引用本文:毛长军,魏坤霞,刘细良,周正华,胡静.微量钛对离子渗氮渗层特性及性能的影响[J].中国表面工程,2020,33(1):34~38
MAO Changjun,WEI Kunxia,LIU Xiliang,ZHOU Zhenghua,HU Jing.Effects of Trace Titanium on Characteristics and Properties of Plasma Nitriding Layer[J].China Surface Engineering,2020,33(1):34~38
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1674次   下载 14 本文二维码信息
码上扫一扫!
分享到: 微信 更多
微量钛对离子渗氮渗层特性及性能的影响
毛长军1,2, 魏坤霞1,2, 刘细良1,3, 周正华1,3, 胡静1,2
1.常州大学 江苏省材料表面科学与技术重点实验室, 常州 213164;2.常州大学 江苏省光伏科学与工程协同创新中心, 常州 213164;3.常州大学 材料科学与工程国家级实验教学示范中心, 常州 213164
摘要:
为调控离子渗氮渗层特性,获得少脆性化合物层、厚韧性扩散层的渗氮层,提高离子渗氮渗层抗冲击性和重载下的耐磨性,对 42CrMo 钢进行了添加微量钛的创新离子渗氮处理。 利用光学显微镜、SEM、XRD 和显微硬度计对渗层的截面显微组织、表面形貌和成分、物相和截面硬度进行了测试和分析。 结果表明:添加微量钛离子渗氮可显著改善渗层特性,获得少化合物层的高硬高韧渗氮层,同时显著提高离子渗氮效率。 在 540 ℃ ×4 h 工艺条件下,添加微量钛可使离子渗氮有效硬化层厚度显著增加,由常规离子渗氮的 225 μm 增加到 380 μm,即渗氮效率提高近 70%;有效硬化层厚度提高的情况下,化合物层厚度反而减薄,由常规离子渗氮的 19 μm 降低到 10 μm,即化合物层厚度降低了约 50%;渗层中化合物层与有效硬化层之比值由常规离子渗氮的 8. 5%降低到 2. 6%。 同时添加微量钛离子渗氮渗层中形成了高硬度强化相 TiN,使渗层表面硬度由 703 HV0. 05 提高至 895 HV0. 05 。 添加微量钛离子渗氮获得了薄化合物层、高硬高韧、厚有效硬化层的优良渗氮层特性,该渗层特性对改善离子渗氮零部件抗冲击性和重载下的耐磨性具有重要研究和应用价值。
关键词:  42CrMo 钢  离子渗氮    有效硬化层  化合物层
DOI:10.11933/j.issn.1007-9289.20190729003
分类号:TG174.445
文章编号:1007-9289(2020)01-0034-05
文献标识码:A
基金项目:国家自然科学基金(51774052, 21978025);江苏省第三期优势学科建设项目(PAPD-3);江苏高校品牌专业建设工程资助项目(TAPP);江苏省研究生科研与实践创新计划(SJCX18_0955& KYCX19_1754)
Effects of Trace Titanium on Characteristics and Properties of Plasma Nitriding Layer
MAO Changjun1,2, WEI Kunxia1,2, LIU Xiliang1,3, ZHOU Zhenghua1,3, HU Jing1,2
1.Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 , China;2.Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 ,China;3.National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164 , China
Abstract:
In order to improve the impact resistance and wear resistance under heavy load, novel titanium enhanced plasma nitriding was conducted for 42CrMo steel, and the goal is to control the characteristics of plasma nitriding layer and obtain thinner brittle compound layer and thicker ductile diffusion layer. Cross-sectional microstructure, phase composition and cross-sectional hardness were tested and analyzed by optical microscopy, XRD and microhardness tester. Results show that adding trace titanium can significantly modify the characteristics of plasma nitriding layer, with thicker effective hardening layer along with thinner compound layer and higher hardness, thus significantly improve the plasma nitriding efficiency and enhance the properties of nitriding layer. Under the same treating condition of 540 ℃ ×4 h, the thickness of compound layer is reduced from 19 to 10 μm, about 50% reduction; while the thickness of effective hardening layer is increased from 225 to 380 μm, i. e. the nitriding efficiency is increased by nearly 70% and the ratio of compound layer to effective hardening layer is decreased from 8. 5% to 2. 6%.Meanwhile, hard TiN is formed in the nitriding layer by adding trace titanium, thus leading to an increase of surface hardness from 703 HV0. 05 to 895 HV0. 05 and a significant increase of effective hardening layer from 225 μm to 380 μm. In summary, the modified characteristics of nitriding layer with thinner brittle compound layer and thicker ductile diffusion layer together with high surface hardness can be obtained by titanium enhanced plasma nitriding, which have important research and application values for improving the impact resistance and wear resistance under heavy load.
Key words:  42CrMo steel  plasma nitriding  titanium  effective hardening layer  compound layer
手机扫一扫看