en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

胡静(1966—),女(汉),教授,博士;研究方向:金属材料表面改性;E-mail:jinghoo@126.com

中图分类号:TG174.445

文献标识码:A

文章编号:1007-9289(2020)01-0034-05

DOI:10.11933/j.issn.1007-9289.20190729003

参考文献 1
MIAO B,SONG L,CHAI Y,et al.The effect of sand blasting pretreatment on plasma nitriding[J].Vacuum,2017,136:46-50.
参考文献 2
陈尧,纪庆新,魏坤霞,等.不同渗氮温度下38CrMoAl钢低氮氢比无白亮层离子渗氮 [J].中国表面工程,2018,31(2):29-34.CHEN Y,JI Q X,WEI K X,et al.Plasma nitriding without white layer for 38crmoal steel with lower ratio of n2 to h2 under different temperature [J].China Surface Engineering,2018,31(2):29-34(in Chinese).
参考文献 3
TANG L,SUN F,MIAO X,et al.Evolution of pre-oxide layer during subsequent plasma nitriding [J].Vacuum,2018,152:337-339.
参考文献 4
WANG B,LIU B,ZHANG X,et al.Enhancing heavy load wear resistance of AISI 4140 steel through the formation of a severely deformed compound-free nitrided surface layer[J].Surface and Coatings Technology,2018,356:89-95.
参考文献 5
TANG L,JIA W J,HU J.An enhanced rapid plasma nitriding by laser shock peening [J].Materials Letters,2018,231:91-93.
参考文献 6
GATEY A M,HOSMANI S S,FIGUEROA C A,et al.Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel[J].Surface and Coatings Technology,2016,304:413-424.
参考文献 7
CHEN Y,SONG L,ZHANG C K,et al.Plasma nitriding without formation of compound layer for 38CrMoAl hydraulic plunger[J].Vacuum,2017,143:98-101.
参考文献 8
WANG B,ZHAO X,LI W,et al.Effect of nitrided-layer microstructure control on wear behavior of AISI H13 hot work die steel[J].Applied Surface Science,2017,431:39-43.
参考文献 9
LIU L,SHEN H H,LIU X Z,et al.Wear resistance of TiN(Ti2N)/Ti composite layer formed on C17200 alloy by plasma surface Ti-alloying and nitriding [J].Applied Surface Science,2016,388(1):103-108.
参考文献 10
TANG L,JIA W J,Hu J,et al.An enhanced rapid plasma nitriding by laser shock peening[J].Materials Letters 2018,231(11):91-93.
参考文献 11
ZHANG F,YAN M,HE J,et al.Microstructure evolution and wear resistance of nitride/aluminide coatings on the surface of Ti-coated 2024 Al alloy during plasma nitriding[J].Ceramics International,2017,43(14):10832-10839.
参考文献 12
LI Y,WANG L,SHEN L.Plasma nitriding of 42CrMo low alloy steels at anodic or cathodic potentials[J].Surface and Coatings Technology,2010,204(15):2337-2342.
参考文献 13
WANG E,YANG H,WANG L.The thicker compound layer formed by different NH3-N2 mixtures for plasma nitriding AISI 5140 steel[J].Journal of Alloys and Compounds 2017,725:1320-1323.
参考文献 14
YAO J M,YAN F Y,YAN M F,et al.The mechanism of surface nanocrystallization during plasma nitriding[J].Applied Surface Science,2019,488(15):462-467.
参考文献 15
MIAO B,LI J C,LIU H,et al.Kinetics comparison between plasma oxynitriding and plasma nitriding and the application for AISI 1045 steel[J].Surface Engineering,2016,34(2):1-5.
参考文献 16
LI J,YANG X,WANG S,et al.A rapid D.C.plasma nitriding technology catalyzed by pre-oxidation for AISI4140 steel [J].Materials Letters,2014,116:199-202.
参考文献 17
ZHENG J,HAO J,LIU X,et al.The plasma nitriding treatment of TiN/TiCN multilayer films[J].Applied Surface Science,2013,268:195-203.
参考文献 18
齐宝森,王忠诚,李玉婕.化学热处理技术及应用实例 [M].北京:化学工业出版社,2015.QI B S.WANG Z C,LI Y J.Chemical heat treatment technology and application example[M].Beijing:Chemical Industry Press,2015(in Chinese).
参考文献 19
MAO C J,WEI K X,LIU X L,et al.A novel titanium enhanced plasma nitriding for 42CrMo steel[J].Materials Letters,2020,262:127052-1~ 3.
参考文献 20
SUN J,TONG W P,ZUO L,et al.Low-temperature plasma nitriding of titanium layer on Ti/Al clad sheet[J].Materials & Design,2013,47:408-415.
参考文献 21
DAOUSH W M,PARK H S,HONG S H.Fabrication of TiN/cBN and TiC/diamond coated particles by titanium deposition process[J].Transactions of Nonferrous Metals Society of China,2014,24(11):3562-3570.
目录contents

    摘要

    为调控离子渗氮渗层特性,获得少脆性化合物层、厚韧性扩散层的渗氮层,提高离子渗氮渗层抗冲击性和重载下的耐磨性,对 42CrMo 钢进行了添加微量钛的创新离子渗氮处理。 利用光学显微镜、SEM、XRD 和显微硬度计对渗层的截面显微组织、表面形貌和成分、物相和截面硬度进行了测试和分析。 结果表明:添加微量钛离子渗氮可显著改善渗层特性,获得少化合物层的高硬高韧渗氮层,同时显著提高离子渗氮效率。 在 540 ℃ ×4 h 工艺条件下,添加微量钛可使离子渗氮有效硬化层厚度显著增加,由常规离子渗氮的 225 μm 增加到 380 μm,即渗氮效率提高近 70%;有效硬化层厚度提高的情况下,化合物层厚度反而减薄,由常规离子渗氮的 19 μm 降低到 10 μm,即化合物层厚度降低了约 50%;渗层中化合物层与有效硬化层之比值由常规离子渗氮的 8. 5%降低到 2. 6%。 同时添加微量钛离子渗氮渗层中形成了高硬度强化相 TiN,使渗层表面硬度由 703 HV0. 05 提高至 895 HV0. 05 。 添加微量钛离子渗氮获得了薄化合物层、高硬高韧、厚有效硬化层的优良渗氮层特性,该渗层特性对改善离子渗氮零部件抗冲击性和重载下的耐磨性具有重要研究和应用价值。

    Abstract

    In order to improve the impact resistance and wear resistance under heavy load, novel titanium enhanced plasma nitriding was conducted for 42CrMo steel, and the goal is to control the characteristics of plasma nitriding layer and obtain thinner brittle compound layer and thicker ductile diffusion layer. Cross-sectional microstructure, phase composition and cross-sectional hardness were tested and analyzed by optical microscopy, XRD and microhardness tester. Results show that adding trace titanium can significantly modify the characteristics of plasma nitriding layer, with thicker effective hardening layer along with thinner compound layer and higher hardness, thus significantly improve the plasma nitriding efficiency and enhance the properties of nitriding layer. Under the same treating condition of 540 ℃ ×4 h, the thickness of compound layer is reduced from 19 to 10 μm, about 50% reduction; while the thickness of effective hardening layer is increased from 225 to 380 μm, i. e. the nitriding efficiency is increased by nearly 70% and the ratio of compound layer to effective hardening layer is decreased from 8. 5% to 2. 6%.Meanwhile, hard TiN is formed in the nitriding layer by adding trace titanium, thus leading to an increase of surface hardness from 703 HV0. 05 to 895 HV0. 05 and a significant increase of effective hardening layer from 225 μm to 380 μm. In summary, the modified characteristics of nitriding layer with thinner brittle compound layer and thicker ductile diffusion layer together with high surface hardness can be obtained by titanium enhanced plasma nitriding, which have important research and application values for improving the impact resistance and wear resistance under heavy load.

  • 0 引言

  • 离子渗氮是一种应用广泛的化学热处理技术,该技术通过阴极溅射产生活性氮原子,在试样表面富集且不断向基体内部扩散,最终形成高性能渗氮层。 相比于其他表面改性技术,离子渗氮技术具有渗氮层综合性能良好、工件变形小以及无污染等优势[1-3]

  • 然而,对于承受冲击和重载磨损的零部件,如热冲压模、热锻模即重载齿轮等,在激光冲击以及SMAT等技术与离子渗氮相结合的渗氮处理中常常存在渗层特性与服役要求冲突的难题,即化合物层厚度随渗氮层增厚而增厚,虽然有利于提高表层硬度及耐蚀性等,但化合物层增厚容易使渗层脆性增大,使服役过程中易出现局部开裂和脱落现象[4-6],导致承受冲击载荷的零部件早期失效;而通过改变渗氮温度和氮氢比,形成少或无化合物层的渗氮层又存在渗层较薄,表层耐磨层耐久性难以满足长服役寿命的要求[7-9]

  • 因此,研发能在降低化合物层厚度的前提下,显著提高有效硬化层厚度及表层硬度具有显著的科学研究和应用价值。 根据文献发现,钛作为一种强氮化物形成元素,在充足的反应气氛下易与氮反应并形成TiN,该钛氮化物具有高硬度和低摩擦系数等特性[9-10];则离子渗氮时添加微量钛,是否能够使N优先形成TiN、并由此减缓N与铁反应形成铁氮化合物呢? 即带来降低化合物层厚度的效果呢? 进一步地,是否可以通过添加微量钛实现在降低化合物层厚度的前提下,提高有效硬化层厚度及表层硬度呢?

  • 基于此,文中在离子渗氮的过程中添加微量钛,探索微量钛对离子渗氮渗层特性及性能的影响,旨在获得降低化合物层厚度的前提下,显著提高有效硬化层厚度及表层硬度的创新离子渗氮渗层特性,以期解决常规离子渗氮技术存在的渗层特性与服役性能要求相冲突的难题。

  • 1 试验

  • 试验材料为调质态42CrMo钢,其化学成分(质量分数,%) 为:0.38~0.45 C;0.2~0.40 Si;0.16~0.25 Mo;0.75~1.0 Mn;0.8~1.01 Cr;其余为Fe。 基体硬度为320 HV0.05。 采用线切割加工成尺寸为10 mm×10 mm×5 mm的试样,并采用180~2000 号的砂纸逐步进行打磨,然后将样品放在无水乙醇中并用超声波清洗10 min去除油污和杂质,取出吹干并放入密封袋待用。

  • 将42CrMo钢样品分成两组,第一组样品在工艺参数为540℃ ×4 h的渗氮条件下,进行常规离子渗氮。 第二组样品是在常规离子渗氮的基础上进行加钛处理,将海绵钛摆放在样品周围,海绵钛的具体添加量如下:每单位面积试样添加8 mg海绵钛,即8 mg/mm2 试样。

  • 对处理后的试样,采用JSM-IT100 型扫描电镜和DMI-3000 M型光学光学显微镜观察表面形貌和截面显微组织;采用D/max-2500 型X射线衍射仪测试的物相组成,使用射线为Cu-Kα 射线,波长为 λ=0.154 nm,扫描速度设为0.2°/min,步宽设定为0.02°,2θ 范围选定为20°~100°。 采用HXD-1000TMC型维氏显微硬度计测量试样的截面显微硬度,载荷为50 g,保荷时间为15 s。

  • 2 结果与讨论

  • 2.1 渗层的截面显微组织

  • 图1 为42CrMo钢经不同方法离子渗氮处理后的截面显微组织。 从图1 中可以看出,在相同渗氮工艺条件下,常规离子渗氮得到的化合物层厚度为19 μm,而加钛离子渗氮试样化合物层厚度降到10 μm左右,即化合物层厚度降低了约50%。 同时可见,渗层组织更加致密。 由此表明,添加微量钛离子渗氮处理可显著减薄化合物层厚度,即微量钛有助于减缓氮与铁反应形成铁氮化合物、减缓化合物层的形成速度。

  • 图1 42CrMo钢540℃ +4 h离子渗氮显微组织

  • Fig.1 Cross-sectional microstructure of samples treated by different processes for 42CrMo steel

  • 2.2 渗层物相分析

  • 图2 为42CrMo钢经不同方法离子渗氮处理后的X射线衍射谱。 从图2 中可见,虽然两种方法离子渗氮处理后, 渗层中都含有 ε-Fe2-3N、γ'.-Fe4N相,但钛增强离子渗氮处理的渗层中新增了高硬度强化相TiN。 同时,对比可发现,添加微量钛离子渗氮处理后试样渗层

  • 图2 42CrMo钢540℃ +4 h离子渗氮的物相分析

  • Fig.2 X-ray diffraction patterns of samples treated by different processes for 42CrMo steel

  • ε-Fe2-3N、γ'.-Fe4N对应衍射峰强度降低;特别是 ε/γ'.比值降低,即富氮的 ε-Fe2-3N相减少。 由此可以判断,微量钛有助于减缓氮与铁反应形成铁氮化合物, 特别是减缓富氮 ε-Fe2-3N相的形成。

  • 2.3 渗层截面硬度

  • 图3 为42CrMo钢经不同方法离子渗氮处理后的截面显微硬度曲线。 从图3 中可以看出,添加微量钛离子渗氮处理后试样截面显微硬度明显高于常规离子渗氮,有效硬化层明显增厚,由常规离子渗氮处理的225 μm增加到380 μm。 同时,表面硬度由常规离子渗氮处理的703 HV0.05 提高到895 HV0.05,比常规离子渗氮处理表面显微硬度提高了近30%。 由此表明,添加微量钛离子渗氮处理显著提高渗层表面及截面硬度,结合物相分析,导致渗层硬度提高的主要原因可能是渗层新增了高硬度强化相TiN。

  • 图3 42CrMo钢不同工艺参数下离子渗氮的截面硬度

  • Fig.3 Microhardness curves of samples treated by different processes for 42CrMo steel

  • 2.4 表面形貌与成分

  • 图4 和表1 分别为42CrMo钢钛增强离子渗氮处理后的表面形貌和成分分析。 钛增强离子渗氮处理试样表面形成了大量氮化物颗粒,同时试样表面EDS成分分析发现钛增强离子渗氮处理后,表面Ti含量约为1%,结合前面XRD结果分析,可以推断试样表面形成的颗粒含有一定量氮化钛。

  • 图4 42CrMo钢钛增强离子渗氮处理后的表面形貌

  • Fig.4 SEM images of the surface of 42CrMo steel treated by adding titanium

  • 表1 42CrMo钢钛增强离子渗氮处理后的成分分析

  • Table1 EDS analysis of the surface of 42CrMo steel treated by adding titanium

  • 3 分析讨论

  • 综合所述,可获得表2 所示渗层特性对比。可见,在540℃ ×4 h相同工艺条件下,添加微量钛可显著改善渗层特性。

  • 表2 42CrMo钢经不同方法离子渗氮处理后渗层特性对比分析

  • Table2 Characteristics comparison of plasma nitrided layer by different methods for 42CrMo steel

  • Note: PNc—conventional plasma nitriding, PNTi—plasma nitriding with Ti addition, Tc—compound layer thickness, Te—effective hardened layer thickness, Tc/Te: the ratio of compound layer to effective hardened layer; PN parameters: 540℃ ×4 h.

  • 首先,化合物层厚度明显减薄,由常规离子渗氮的19 μm降低到10 μm,即化合物层厚度降低了约50%;渗氮层中化合物层与有效硬化层比值由常规离子渗氮的8.5%降低到2.6%。 添加微量钛离子渗氮使化合物层厚度减薄的可能原因如下:在较强离子轰击下,会形成一定量活性氮、铁和钛离子,并溅射在试样表面,因钛与氮离子亲和力远大于铁与氮亲和力,优先形成弥散分布的氮钛化合物,从而抑制或减缓FexN的形成, 使化合物层厚度明显减薄[11-13]。 图5 为添加微量钛离子渗氮过程及化合物层减薄原理示意图

  • 图5 添加微量钛离子渗氮过程及原理示意图

  • Fig.5 Process and mechanism of adding trace titanium plasma nitriding

  • 其次,添加微量钛离子渗氮使有效硬化层厚度显著增加,由常规离子渗氮的225 μm增加到380 μm,增加近70%,即渗氮效率提高70%。 添加微量钛离子渗氮使有效硬化层厚度显著增加的可能原因如下:有效硬化层厚度和氮的扩散深度未必一致,类似于相同工艺条件下对碳含量相近的合金钢和碳素钢进行离子渗氮,虽然碳素钢中N扩散距离可能更深,但合金钢中有效硬化层深度明显厚于碳素钢,其原因是合金钢中形成的合金氮化物,所产生的弥散强化效果使扩散层硬度显著提高。 由此可推测,添加微量钛离子渗氮过程中形成的细小TiN弥散分布在扩散层,所产生的强化效果是钛增强离子渗氮有效硬化层深度显著增加的重要原因[14-16]

  • 再次,添加微量钛离子渗氮使表面硬度由常规离子渗氮的703 HV0.05 提高至895 HV0.05,且对应的截面硬度明显提高(图3)。 添加微量钛离子渗氮使渗层硬度明显提高的原因是钛作为一种强氮化物形成元素,在渗层优先形成高硬度强化相TiN。 虽然42CrMo钢传统离子渗氮后也可形成其他金属氮化物相Cr2N和MoN,但这些氮化物与 ε 相晶格相同,可溶于 ε 相中,但TiN却不溶于 ε 相中,因此TiN对硬度提高的贡献显著大于传统离子渗氮形成的Cr2N和MoN[17-19]。高硬度强化相TiN弥散分布于整个渗氮层,使试样表面及截面硬度提高[20-21]

  • 综上,添加微量钛离子渗氮可显著改善渗层特性,使化合层厚度明显减薄,有效硬化层和表层及截面硬度显著提高,即获得了少化合物层、厚有效硬化层、高硬度的渗层特性。 该渗层特性对改善离子渗氮零部件抗冲击和重载耐磨性具有重要的应用价值。

  • 4 结论

  • 在相同工艺条件(540℃ ×4 h)下,对42CrMo钢进行了添加微量钛的创新离子渗氮处理,与常规离子渗氮进行对比,得出如下结论。

  • (1)添加微量钛离子渗氮处理能有效抑制化合物层形成。 化合物层厚度由常规离子渗氮的19 μm降低到10 μm,比常规离子渗氮降低了约50%。

  • (2)添加微量钛离子渗氮处理显著提高渗氮效率, 有效扩散层厚度由常规离子渗氮的225 μm提高到380 μm,比常规离子渗氮提高了约70%,即渗氮效率提高近70%。

  • (3) 添加微量钛离子渗氮处理有利于获得少化合物层、厚有效硬化层的渗氮层,化合物层与有效硬化层比值由常规离子渗氮的8.5%降低到2.6%。

  • (4)添加微量钛离子渗氮的渗氮层中新增了高硬度强化相TiN,使表面硬度由常规离子渗氮的703 HV0.05 提高至895 HV0.05;同时,相同层深处对应的截面硬度都显著提高。

  • 参考文献

    • [1] MIAO B,SONG L,CHAI Y,et al.The effect of sand blasting pretreatment on plasma nitriding[J].Vacuum,2017,136:46-50.

    • [2] 陈尧,纪庆新,魏坤霞,等.不同渗氮温度下38CrMoAl钢低氮氢比无白亮层离子渗氮 [J].中国表面工程,2018,31(2):29-34.CHEN Y,JI Q X,WEI K X,et al.Plasma nitriding without white layer for 38crmoal steel with lower ratio of n2 to h2 under different temperature [J].China Surface Engineering,2018,31(2):29-34(in Chinese).

    • [3] TANG L,SUN F,MIAO X,et al.Evolution of pre-oxide layer during subsequent plasma nitriding [J].Vacuum,2018,152:337-339.

    • [4] WANG B,LIU B,ZHANG X,et al.Enhancing heavy load wear resistance of AISI 4140 steel through the formation of a severely deformed compound-free nitrided surface layer[J].Surface and Coatings Technology,2018,356:89-95.

    • [5] TANG L,JIA W J,HU J.An enhanced rapid plasma nitriding by laser shock peening [J].Materials Letters,2018,231:91-93.

    • [6] GATEY A M,HOSMANI S S,FIGUEROA C A,et al.Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel[J].Surface and Coatings Technology,2016,304:413-424.

    • [7] CHEN Y,SONG L,ZHANG C K,et al.Plasma nitriding without formation of compound layer for 38CrMoAl hydraulic plunger[J].Vacuum,2017,143:98-101.

    • [8] WANG B,ZHAO X,LI W,et al.Effect of nitrided-layer microstructure control on wear behavior of AISI H13 hot work die steel[J].Applied Surface Science,2017,431:39-43.

    • [9] LIU L,SHEN H H,LIU X Z,et al.Wear resistance of TiN(Ti2N)/Ti composite layer formed on C17200 alloy by plasma surface Ti-alloying and nitriding [J].Applied Surface Science,2016,388(1):103-108.

    • [10] TANG L,JIA W J,Hu J,et al.An enhanced rapid plasma nitriding by laser shock peening[J].Materials Letters 2018,231(11):91-93.

    • [11] ZHANG F,YAN M,HE J,et al.Microstructure evolution and wear resistance of nitride/aluminide coatings on the surface of Ti-coated 2024 Al alloy during plasma nitriding[J].Ceramics International,2017,43(14):10832-10839.

    • [12] LI Y,WANG L,SHEN L.Plasma nitriding of 42CrMo low alloy steels at anodic or cathodic potentials[J].Surface and Coatings Technology,2010,204(15):2337-2342.

    • [13] WANG E,YANG H,WANG L.The thicker compound layer formed by different NH3-N2 mixtures for plasma nitriding AISI 5140 steel[J].Journal of Alloys and Compounds 2017,725:1320-1323.

    • [14] YAO J M,YAN F Y,YAN M F,et al.The mechanism of surface nanocrystallization during plasma nitriding[J].Applied Surface Science,2019,488(15):462-467.

    • [15] MIAO B,LI J C,LIU H,et al.Kinetics comparison between plasma oxynitriding and plasma nitriding and the application for AISI 1045 steel[J].Surface Engineering,2016,34(2):1-5.

    • [16] LI J,YANG X,WANG S,et al.A rapid D.C.plasma nitriding technology catalyzed by pre-oxidation for AISI4140 steel [J].Materials Letters,2014,116:199-202.

    • [17] ZHENG J,HAO J,LIU X,et al.The plasma nitriding treatment of TiN/TiCN multilayer films[J].Applied Surface Science,2013,268:195-203.

    • [18] 齐宝森,王忠诚,李玉婕.化学热处理技术及应用实例 [M].北京:化学工业出版社,2015.QI B S.WANG Z C,LI Y J.Chemical heat treatment technology and application example[M].Beijing:Chemical Industry Press,2015(in Chinese).

    • [19] MAO C J,WEI K X,LIU X L,et al.A novel titanium enhanced plasma nitriding for 42CrMo steel[J].Materials Letters,2020,262:127052-1~ 3.

    • [20] SUN J,TONG W P,ZUO L,et al.Low-temperature plasma nitriding of titanium layer on Ti/Al clad sheet[J].Materials & Design,2013,47:408-415.

    • [21] DAOUSH W M,PARK H S,HONG S H.Fabrication of TiN/cBN and TiC/diamond coated particles by titanium deposition process[J].Transactions of Nonferrous Metals Society of China,2014,24(11):3562-3570.

  • 参考文献

    • [1] MIAO B,SONG L,CHAI Y,et al.The effect of sand blasting pretreatment on plasma nitriding[J].Vacuum,2017,136:46-50.

    • [2] 陈尧,纪庆新,魏坤霞,等.不同渗氮温度下38CrMoAl钢低氮氢比无白亮层离子渗氮 [J].中国表面工程,2018,31(2):29-34.CHEN Y,JI Q X,WEI K X,et al.Plasma nitriding without white layer for 38crmoal steel with lower ratio of n2 to h2 under different temperature [J].China Surface Engineering,2018,31(2):29-34(in Chinese).

    • [3] TANG L,SUN F,MIAO X,et al.Evolution of pre-oxide layer during subsequent plasma nitriding [J].Vacuum,2018,152:337-339.

    • [4] WANG B,LIU B,ZHANG X,et al.Enhancing heavy load wear resistance of AISI 4140 steel through the formation of a severely deformed compound-free nitrided surface layer[J].Surface and Coatings Technology,2018,356:89-95.

    • [5] TANG L,JIA W J,HU J.An enhanced rapid plasma nitriding by laser shock peening [J].Materials Letters,2018,231:91-93.

    • [6] GATEY A M,HOSMANI S S,FIGUEROA C A,et al.Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel[J].Surface and Coatings Technology,2016,304:413-424.

    • [7] CHEN Y,SONG L,ZHANG C K,et al.Plasma nitriding without formation of compound layer for 38CrMoAl hydraulic plunger[J].Vacuum,2017,143:98-101.

    • [8] WANG B,ZHAO X,LI W,et al.Effect of nitrided-layer microstructure control on wear behavior of AISI H13 hot work die steel[J].Applied Surface Science,2017,431:39-43.

    • [9] LIU L,SHEN H H,LIU X Z,et al.Wear resistance of TiN(Ti2N)/Ti composite layer formed on C17200 alloy by plasma surface Ti-alloying and nitriding [J].Applied Surface Science,2016,388(1):103-108.

    • [10] TANG L,JIA W J,Hu J,et al.An enhanced rapid plasma nitriding by laser shock peening[J].Materials Letters 2018,231(11):91-93.

    • [11] ZHANG F,YAN M,HE J,et al.Microstructure evolution and wear resistance of nitride/aluminide coatings on the surface of Ti-coated 2024 Al alloy during plasma nitriding[J].Ceramics International,2017,43(14):10832-10839.

    • [12] LI Y,WANG L,SHEN L.Plasma nitriding of 42CrMo low alloy steels at anodic or cathodic potentials[J].Surface and Coatings Technology,2010,204(15):2337-2342.

    • [13] WANG E,YANG H,WANG L.The thicker compound layer formed by different NH3-N2 mixtures for plasma nitriding AISI 5140 steel[J].Journal of Alloys and Compounds 2017,725:1320-1323.

    • [14] YAO J M,YAN F Y,YAN M F,et al.The mechanism of surface nanocrystallization during plasma nitriding[J].Applied Surface Science,2019,488(15):462-467.

    • [15] MIAO B,LI J C,LIU H,et al.Kinetics comparison between plasma oxynitriding and plasma nitriding and the application for AISI 1045 steel[J].Surface Engineering,2016,34(2):1-5.

    • [16] LI J,YANG X,WANG S,et al.A rapid D.C.plasma nitriding technology catalyzed by pre-oxidation for AISI4140 steel [J].Materials Letters,2014,116:199-202.

    • [17] ZHENG J,HAO J,LIU X,et al.The plasma nitriding treatment of TiN/TiCN multilayer films[J].Applied Surface Science,2013,268:195-203.

    • [18] 齐宝森,王忠诚,李玉婕.化学热处理技术及应用实例 [M].北京:化学工业出版社,2015.QI B S.WANG Z C,LI Y J.Chemical heat treatment technology and application example[M].Beijing:Chemical Industry Press,2015(in Chinese).

    • [19] MAO C J,WEI K X,LIU X L,et al.A novel titanium enhanced plasma nitriding for 42CrMo steel[J].Materials Letters,2020,262:127052-1~ 3.

    • [20] SUN J,TONG W P,ZUO L,et al.Low-temperature plasma nitriding of titanium layer on Ti/Al clad sheet[J].Materials & Design,2013,47:408-415.

    • [21] DAOUSH W M,PARK H S,HONG S H.Fabrication of TiN/cBN and TiC/diamond coated particles by titanium deposition process[J].Transactions of Nonferrous Metals Society of China,2014,24(11):3562-3570.

  • 手机扫一扫看