关键词 搜索    
Cr基过渡层对钛合金表面类金刚石薄膜摩擦学性能的影响
王军军1,2, 何浩然1, 黄伟九1,2,3, 王林青4, 陈环谷1, 王汝强1, 王佳1     
1. 重庆理工大学 材料科学与工程学院,重庆 400054;
2. 重庆市制动摩擦材料协同创新中心,重庆 400054;
3. 重庆理工大学 重庆市高校模具技术重点实验室,重庆 400054;
4. 重庆理工大学 理学院,重庆 400054
摘要: 采用磁控溅射技术在钛合金(Ti6Al4V)表面制备Cr、Cr/CrN和Cr/CrN/CrNC过渡层结构的类金刚石(DLC)薄膜。采用扫描电子显微镜、拉曼光谱仪与原子力显微镜分析薄膜的结构和表面形貌,利用纳米压痕仪、薄膜内应力测试仪、划痕测试仪、摩擦试验机和二维轮廓仪研究薄膜的硬度、内应力、结合力和摩擦磨损性能。结果表明:随着Cr基梯度过渡层的引入,DLC薄膜的内应力逐渐下降,结合力逐渐上升。Cr/CrN/CrNC/DLC薄膜具有优异减摩抗磨性能,摩擦因数和磨损率低至0.09±0.02和(1.89±0.15)×10−7 mm3/N·m。试验结果对钛合金表面高性能DLC薄膜制备及应用具有一定的参考价值和指导意义。
关键词: 类金刚石薄膜     梯度过渡层     结合力     摩擦性能    
Effects of Cr-based Interlayers on Tribological Property of Diamond-like Carbon Films on Titanium Alloy
WANG Jun-jun1,2, HE Hao-ran1, HUANG Wei-jiu1,2,3, WANG Lin-qing4, CHEN Huan-gu1, WANG Ru-qiang1, WANG Jia1     
1. College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054;
2. Chongqing Collaborative Innovation Center for Brake Tribological Matrials, Chongqing 400054;
3. Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054;
4. School of Science, Chongqing University of Technology, Chongqing 400054
Fund: Supported by Natural Science Foundation of China (51505050), Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1500942) and Natural Science Foundation of Chongqing (cstc2017jcyjAX0075)
Abstract: DLC films with three different interlayers (Cr/DLC, Cr/CrN/DLC and Cr/CrN/CrNC/DLC) were deposited on titanium alloys (Ti6Al4V) using magnetron sputtering. The structure and surface morphology of the film were analyzed by using scanning electron microscopy(SEM), Raman spectroscopy and atomic force microscopy. The hardness, residual stress, adhesive force, tribological and wear properties were evaluated by using the nano-indenter, film stress tester, scratch tester, frictional machine and 2D profilometer, respectively. The results show that the residual stress decreases and adhesive force increases gradually when the Cr gradient transitional layer is introduced. The Cr/CrN/CrNC/DLC film exhibits excellent anti-wear and anti-friction properties with lowest friction coefficient (0.09±0.02) and wear rate (1.89±0.15)×10−7 mm3/N·m. The results have certain reference value and significance for the preparation and application of high-performance DLC film on titanium alloy.
Key words: diamond-like carbon films (DLC)     gradient transitional layer     adhesive force     tribological performance    
0 引 言

钛合金是一种新型结构材料,具有相对密度小、比强度高、抗蚀性好、热强度高、化学活性高、导热系数小以及生物相容好等特点,被誉为“全能金属”,已在航空航天、汽车制造、医疗器械等领域获得广泛应用[1-3]。近年来,随着钛合金的应用逐渐由结构件向运动件拓展,如人工骨关节、钛合金齿轮、活塞等,对其摩擦学特性提出了更高的要求,但由于钛合金易与其接触物表面产生粘着,摩擦学性能不尽人意,已成为制约钛合金广泛应用的瓶颈[4-5]。改善钛合金摩擦学性能,是目前钛合金工业应用中需迫切解决的关键性问题。实践表明:摩擦与磨损大多数发生在材料的表面和亚表面,提高材料的表面性能是改善其摩擦性能的关键,而通过不同的沉积技术在材料表面形成润滑薄膜,能够在不改变基体特性的同时又有效地提升材料的摩擦学特性[6-9],因此,钛合金表面构筑具有减摩抗磨功效的润滑薄膜成为改善其摩擦学特性并提高钛合金部件运行可靠性最有效的技术突破口。

近年来,利用各种物理气相沉积和化学气相沉积技术制备的类金刚石(DLC)薄膜引起了摩擦学研究者的极大兴趣,它是一类主要由sp2和sp3杂化碳原子共同组成的非晶网络结构薄膜,具有高硬度、耐腐蚀、超低摩擦因数、长磨损寿命以及高化学稳定性等优异的综合性能,在汽车制造、航空航天、电子通讯以及医疗器械等相关领域都显示了巨大的应用前景[10-13]。然而,在钛合金表面构筑DLC薄膜时由于薄膜与基体性能差异较大,薄膜结合强度较差。目前,在钛基体和DLC薄膜之间引入多元梯度过渡层,实现成分和性能上的逐渐过渡,是提高钛合金/DLC体系附着力最有效的方法之一[14-16]。文中利用磁控溅射技术在Ti6Al4V合金表面制备了3种梯度过渡层DLC薄膜,Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC,对比讨论了过渡层对DLC薄膜结构、硬度、内应力、结合力及摩擦学性能的影响,期望对钛合金表面高性能DLC薄膜制备及应用具有参考价值和指导意义。

1 材料与方法 1.1 薄膜制备

采用磁控溅射技术在Ti6Al4V合金表面制备具有3种不同过渡层结构的DLC薄膜。基体选用30 mm×25 mm×3 mm的钛合金抛光至粗糙度为Ra=10 nm,以及30 mm×10 mm×0.7 mm的硅片P(100),粗糙度为Ra=0.2 nm。首先将基体分别用丙酮和酒精超声波清洗20 min,吹干后放置于腔体内样品台上。靶基距离为15 cm,真空预抽至1.5×10−3 Pa。沉积前,先在−1 000 V脉冲偏压下利用氩气离子刻蚀清洗基体,去除表面的氧化物及水分等污染物,之后开始沉积不同过渡层,过渡层总沉积时间为30 min使过渡层厚度保持基本一致。具体沉积参数见表1

表 1 Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的沉积参数 Table 1 Deposition parameters of Cr/DLC, Cr/CrN/DLC and Cr/CrN/CrNC/DLC films
Layer Bias voltage /
V
Ar /
(mL·min−1)
N2 /
(mL·min−1)
CH4 /
(mL·min−1)
Power / W Deposition time / min
Cr C Cr/DLC Cr/CN/DLC Cr/CrN/CrNC/DLC
Cr −600 100 150 30 20 10
CrN −600 50 100 150 10 10
CrNC −600 50 100 150 100 10
DLC −600 100 35 180 90 90 90
1.2 薄膜表征与分析

采用场发射扫描电镜(FESEM; zeiss Sigma HD)表征截面微观形貌和测量薄膜厚度。采用CSPM 4000型原子力显微镜(AFM)表征薄膜表面形貌,扫描面积10 μm×10 μm,扫描频率5 Hz。采用波长为532 nm的Findervista型共聚焦显微拉曼光谱仪分析薄膜的键结构。采用MTS-Nano G200 纳米压痕仪测定薄膜的硬度与弹性模量,为避免基体对薄膜硬度测量的影响,压入深度不能超过薄膜厚度的10%(50 nm),每个样品取5个点进行测量,取平均值。采用FST-1000型薄膜应力测试仪测量样品镀制薄膜前后的表面曲率,结合Stoney公式计算薄膜的内应力。利用薄膜划痕仪(CSM)测试基体与薄膜的结合力,具体参数如下:金刚石压头半径200 μm,加载速率30 N/min,试验载荷30 N,划痕速度10 mm/min,划痕长度10 mm,往复次数1次。采用球-盘旋转摩擦试验机评价薄膜的摩擦学性能,对偶球为Φ 6的GCr15钢球,具体试验参数:旋转速率为200 r/min,旋转半径为3 mm,法向负荷2 N,环境温度(20±3) ℃,湿度(20±5)%。采用二维轮廓仪(D-100, KLΛ, Tencor)测量磨痕的体积计算磨损率,磨损率计算公式为:

$W = \frac{V}{{FS}}$    (1)

其中VFS分别是磨损率体积、摩擦载荷和摩擦总路程。

2 结果与讨论

图1为不同过渡层DLC薄膜截面的SEM形貌。图中薄膜断面光滑,无明显缺陷,总厚度约为(550±50) nm,同时可以看出Cr过渡层呈柱状结构(图1(a)),但在Cr过渡层基础上引入CrN形成梯度层后,过渡层柱状生长结构得到抑制(图1(b)),而Cr/CrN/CrNC梯度过渡层柱状生长结构不明显,生长结构较致密(图1(c))。图2显示了Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的表面形貌。图中所有薄膜表面均无大颗粒存在,薄膜生长较为致密,Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的表面粗糙度Ra分别为14.8、15.3和15.9 nm。在制备参数一致的条件下,3种薄膜的表面粗糙度差异不大,粗糙度对摩擦性能的影响可以忽略不计。

图 1 Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的截面形貌 Figure 1 Cross section morphologies of Cr/DLC, Cr/CrN/DLC and Cr/CrN/CrNC/DLC films
图 2 Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的表面形貌 Figure 2 Surface morphologies of Cr/DLC, Cr/CrN/DLC and Cr/CrN/CrNC/DLC films

图3为Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC的Raman光谱与ID/IG和G峰位置。图3(a)中,制备的薄膜在1 000和1 800 cm−1之间有一个宽化峰,通过高斯拟合可以的到两个峰:1 580 cm−1左右的非对称峰(G峰)和1 350 cm−1附近的肩峰(D峰),这是典型的非对称倾斜散射无定型碳结构[17-18]。通常拉曼高斯拟合后利用ID/IG的变化可定性表征DLC中sp3和sp2含量的变化,图3(b)显示了Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的ID/IG和G峰位置。其中,Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的ID/IG分别为0.62±0.04、0.69±0.03和0.73±0.04,G峰的位置分别为(1 554.99±1.31)、(1 555.79±1.65)和(1 557.38±0.89) cm−1。可以看出,随梯度过渡层的引入,薄膜中ID/IG逐渐增加,G峰位置向高波数移动,这意味着梯度过渡层DLC薄膜具有更高含量的sp2以及更高程度的石墨化程度。

图 3 Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的拉曼光谱与ID/IG和G峰位置 Figure 3 Raman spectra, ID/IG and G peak position of Cr/DLC, Cr/CrN/DLC and Cr/CrN/CrNC/DLC films

硬度是体现薄膜局部抵抗外来硬物压入其表面的能力。图4(a)为Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的硬度与弹性模量。其中,Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的硬度分别为(13.71±1.02)、(14.38±0.96)和(14.59±1.32) GPa,弹性模量分别为(105.40±3.35)、(108.28±7.89)和(109.04±9.31) GPa。薄膜沉积过程中高能离子的轰击以及膜基界面的不匹配会导致薄膜内部产生应力进而发生基体弯曲,可通过Si基体表面DLC薄膜镀膜前后曲率半径的变化,利用Stoney公式计算:

$\sigma = \frac{{{E_{\rm{s}}}}}{{1 - {v_{\rm{s}}}}}\frac{{t_{\rm{s}}^2}}{{6R{t_{\rm{f}}}}}$    (2)

其中Es, νs, tstf分别是杨氏模量、泊松比、基体厚度和薄膜厚度[19]图4(b)显示了Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的内应力与附着力。可以看出,梯度过层的引入,由于结构和成分的连续变化,减缓DLC与基体在机械性能(硬度、弹性模量和热膨胀系数等)上的失配,降低了薄膜的整体内应力,Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的内应力分别为:(−3.11±0.11)、(−2.23±0.09)和(−1.92±0.1) GPa,负值表示薄膜内部应力为压应力,这里应指出,3种薄膜的内应力均是从Si基体获得,虽然在具体数值上与钛合金基体有所差异,但过渡层和DLC层的沉积参数与钛合金基体一致,过渡层也对膜基起着相同的减缓失配的作用,所以获得的内应力变化规律对钛合金表面制备的相同薄膜仍具有重要的参考价值;Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的临界载荷依次为:(15.3±1.0)、(25±1.3)和(28.1±0.9) N(图4(b))。图5显示了Cr/DLC,Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的划痕形貌。相对与单层Cr过渡层DLC薄膜,Cr/CrN和Cr/CrN/CrNC梯度过渡层薄膜表现出更高的结合强度,这可能是因为在外界载荷作用下,梯度过渡层成分和结构连续性的变化使得DLC薄膜结合更牢固,同时CrN和CrNC具有更高的硬度,能够有效防止基体发生塑性变形,对DLC起到很好的支撑作用,因此能够抑制裂纹的产生和防止界面分层[20-21]

图 4 Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的硬度和弹性模量与内应力和临界载荷 Figure 4 Hardness, elastic modulus, residual stress and critical load of Cr/DLC, Cr/CrN/DLC and Cr/CrN/CrNC/DLC films
图 5 Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的划痕形貌 Figure 5 Scratch morphologies of Cr/DLC, Cr/CrN/DLC and Cr/CrN/CrNC/DLC films

图6为Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC涂层的摩擦因数及磨损率。从图6(a)可以看出Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜摩擦初始阶段的摩擦因数随着滑动时间的增加而增加,经过短暂的跑和期之后摩擦因数降低并达到相对稳定的值,Cr/DLC薄膜在跑和期之后摩擦因数逐渐上升。这是因为摩擦初始阶段薄膜表面的微突体较为尖锐,微突体之间存在互锁作用,相应的摩擦因数较高;随着滑动次数的增加,微突体表面被逐渐磨平,摩擦因数则逐渐趋于稳定;但Cr/DLC附着力较弱,在此阶段薄膜已经发生失效,基体与对偶的粘着加剧,薄膜摩擦因数持续上升。另外Cr/CrN/DLC薄膜的稳定摩擦(0.10±0.01)系数高于Cr/CrN/CrNC/DLC薄膜稳定摩擦因数(0.08±0.02)。通常认为摩擦过程中DLC薄膜的摩擦因数与其界面处的石墨化有关[22-23]

图7为Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜磨痕的拉曼光谱与ID/IG和G峰的位置。其中,Cr/DLC, Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜磨痕的ID/IG分别为0.68±0.04、0.73±0.04和0.78±0.03,G峰的位置分别为(1 556.58±2.21)、(1 556.77±1.13)和(1 558.54±1.48) cm−1。可以看出,3种薄膜的ID/IG均有所增加,同时G峰位置均向高波数移动,这也意味着磨痕里的DLC薄膜具有更高含量的sp2以及更高的石墨化程度,有利于降低摩擦因数。从图6(b)可以看出,随梯度过渡层的引入,薄膜的磨损率逐渐下降,Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的磨损率依次为:(4.02±0.32)×10−7、(2.23±0.23)×10−7和(1.89±0.15)×10−7 mm3/N·m。CrN和CrNC硬层的引入,增强了DLC薄膜的附着力,高的附着力延缓了薄膜的失效,同时硬层的引入可对DLC起到支撑的作用,防止基体发生塑形变形,薄膜抗磨性能增加[24]

图 6 Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的摩擦因数与磨损率 Figure 6 Friction coefficient and wear rate of Cr/DLC, Cr/CrN/DLC and Cr/CrN/CrNC/DLC films
图 7 Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜磨痕的拉曼光谱与ID/IG和G峰位置 Figure 7 Raman spectra, ID/IG and G peak position of wear track of Cr/DLC, Cr/CrN/DLC and Cr/CrN/CrNC/DLC films

为了探索Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜的摩擦磨损机制,对相同摩擦磨损试验条件下DLC薄膜磨痕表面形貌进行SEM观察分析,图8为Cr/DLC、Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜磨痕表面形貌以及A、B、C处的局部放大图。从图8(a)可以看出, Cr/DLC在2 N载荷下滑动30 min后,DLC薄膜出现了大面积的剥落,从A处的局部放大图(图8(d))可以看出,DLC薄膜出现大面积剥落暴露出部分基体,与对偶钢球发生剧烈的粘着磨损,其失效形式主要为脆性剥落;从图8(b)可以看出,Cr/CrN/DLC薄膜表面相对光滑,无明显的失效特征,但从B处的局部放大图(图8(e))可以看出局部发生小面积的剥落,磨痕表面元素组成分析结果表明,在摩擦过程中对偶球元素未向薄膜磨损表面转移,对偶表面形成富C的转移层,失效形式主要为粘着磨损;从图8(c)看出Cr/CrN/CrNC/DLC薄膜表面光滑完整,状态良好,从C处的局部放大图(图8(f))看出在摩擦方向上具有轻微的沟痕,无裂缝和剥落迹象,这同其相应的较低的摩擦因数和较长的耐磨寿命相一致。

图 8 Cr/DLC,Cr/CrN/DLC和Cr/CrN/CrNC/DLC薄膜磨痕的形貌 Figure 8 Morphologies of wear track of Cr/DLC, Cr/CrN/DLC and Cr/CrN/CrNC/DLC films
3 结 论

在Ti6Al4V合金表面制备了具有3种不同过渡层结构的DLC薄膜,探讨了不同过渡层对DLC薄膜结构、硬度、内应力、结合力和摩擦学性能的影响。梯度过渡层的引入对薄膜的表面粗糙度和硬度无明显的影响。由于结构和成分的连续变化,DLC与基体性能上的失配得到减缓,结合更加牢固,使梯度过渡层薄膜Cr/CrN/CrNC/DLC具有最低的内应力(−1.92±0.1) GPa和最高的结合力(28.1±0.9) N。Cr/CrN/CrNC/DLC薄膜具有最低的摩擦因数和磨损率,分别为0.07~0.10和(1.89±0.15)×10−7 mm3/N·m,表现出优异的抗磨减摩性能。

参考文献
[1] GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review[J]. Progress in Materials Science, 2009, 54(3): 397-425.
点击浏览原文
[2] BOYER R R, BRIGGS R D. The use of β titanium alloys in the aerospace industry[J]. Journal of Materials Engineering & Performance, 2005, 14(6): 681-685.
[3] BOYER R, WELSCH G, COLLINGS E W. Materials properties handbook: titanium alloys[M]. Ohio: American Society for Metals International, 1994.
[4] BUDINSKI K G. Tribological properties of titanium alloys[J]. Wear, 1991, 151(2): 203-217.
点击浏览原文
[5] GRUPP T M, MEISEL H J, COTTON J A, et al. Alternative bearing materials for intervertebral disc arthroplasty[J]. Biomaterials, 2010, 31(3): 523-531.
点击浏览原文
[6] 唐伟忠. 薄膜材料制备原理、技术及应用[M]. 北京: 冶金工业出版社, 2003: 189-191.
TANG W Z. Principle, technology and application of film material preparation[M]. Beijing: Press of Metallurgy Industry, 2003: 189-191 (in Chinese).
[7] WIKLUND U, HUTCHINGS I M. Investigation of surface treatments for galling protection of titanium alloys[J]. Wear, 2001, 251(1-12): 1034-1041.
点击浏览原文
[8] 徐滨士, 谭俊, 陈建敏. 表面工程领域科学技术发展[J]. 中国表面工程, 2011, 24(2): 1-12.
XU B S, TAN J, CHEN J M. Science and technology development of surface engineering. China Surface Enginneering, 2011, 24(2): 1-12 (in Chinese).
点击浏览原文
[9] 石万凯, 李宁, 韩振华. 低温离子渗硫FeS涂层的摩擦学性能研究[J]. 重庆理工大学学报, 2015, 29(9): 48-52.
SHI W K, LI N, HAN Z H. Research on tribological properties of sulfide layer produced by ion sulphurization[J]. Journal of Chongqing University of Technology, 2015, 29(9): 48-52(in Chinese).
点击浏览原文
[10] ROBERTSON J. Properties of diamond-like carbon[J]. Surface & Coatings Technology, 1992, 50(3): 185-203.
[11] GRILL A. Diamond-like carbon coatings as biocompatible materials-an overview[J]. Diamond & Related Materials, 2003, 12(2): 166-170.
[12] Lifshitz Y. Diamond-like carbon-present status[J]. Diamond & Related Materials, 1999, 8(8-9): 1659-1676.
[13] KOIDL P, WILD C, DISCHLER B, et al. Plasma deposition, properties and structure of amorphous hydrogenated carbon films[J]. Materials Science Forum, 1991, 52-53(7): 41-70.
[14] ZHANG D, SHEN B, SUN F. Study on tribological behavior and cutting performance of CVD diamond and DLC films on Co-cemented tungsten carbide substrates[J]. Applied Surface Science, 2010, 256(8): 2479-2489.
点击浏览原文
[15] 张艳. rf PECVD法在不锈钢表面沉积类金刚石碳膜的性能研究[D]. 沈阳: 东北大学, 2006.
ZHANG Y. The properties of diamond-like carbon films on stainless steel by rf PECVD[D]. Shenyang: Northeastern University, 2006 (in Chinese).
[16] 谢红梅. 类金刚石薄膜的摩擦学特性研究进展[J]. 表面技术, 2011, 40(3): 90-93.
XIE H M. Recent development of research on tribological properties of DLC films[J]. Surface Technology, 2011, 40(3): 90-93(in Chinese).
点击浏览原文
[17] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B Condensed Matter, 2000, 61(20): 14095-14107.
点击浏览原文
[18] CASIRAGHI C, FERRARI A C, ROBERTSON J. Raman spectroscopy of hydrogenated amorphous carbons[J]. Physical Review B Condensed Matter, 2005, 72(8): 85401.
点击浏览原文
[19] BRANTLEY W A. Calculated elastic constants for stress problems associated with semiconductor devices[J]. Journal of Applied Physics, 1973, 44(1): 534-535.
点击浏览原文
[20] SUN Y, BELL T. Plasma surface engineering of low alloy steel[J]. Materials Science & Engineering A, 1991, 140(91): 419-434.
[21] LUO Q, HOVSEPIAN P E, LEWIS D B, et al. Tribological properties of unbalanced magnetron sputtered nano-scale multilayer coatings TiAlN/VN and TiAlCrYN deposited on plasma nitrided steels[J]. Surface & Coatings Technology, 2005, 193(1-3): 39-45.
[22] Kim D W, Kim K W. Effects of sliding velocity and ambient temperature on the friction and wear of a boundary-lubricated, multi-layered DLC coating[J]. Wear, 2014, 315(1-2): 95-102.
点击浏览原文
[23] KIM D W, KIM K W. Effects of sliding velocity and normal load on friction and wear characteristics of multi-layered diamond-like carbon (DLC) coating prepared by reactive sputtering[J]. Wear, 2013, 297(1-2): 722-730.
点击浏览原文
[24] 赵佳群, 李刘合, 景凯, 等.梯度过渡层对硬质合金沉积类金刚石膜的耐磨性影响[J]. 表面技术, 2017, 46(1): 82-87.
ZHAO J Q, LI L H, JING K et al. Effects of gradient interlayers on wear resistance of diamond-like coatings on cemented carbide[J]. Suface Technology, 2017, 45(1): 82-87(in Chinese).
点击浏览原文
http://dx.doi.org/10.11933/j.issn.1007-9289.20180108003
中国科协主管,中国机械工程学会主办。
0

文章信息

王军军, 何浩然, 黄伟九, 王林青, 陈环谷, 王汝强, 王佳
WANG Jun-jun, HE Hao-ran, HUANG Wei-jiu, WANG Lin-qing, CHEN Huan-gu, WANG Ru-qiang, WANG Jia
Cr基过渡层对钛合金表面类金刚石薄膜摩擦学性能的影响
Effects of Cr-based Interlayers on Tribological Property of Diamond-like Carbon Films on Titanium Alloy
中国表面工程, 2018, 31(3): 61-67.
China Surface Engineering, 2018, 31(3): 61-67.
http://dx.doi.org/10.11933/j.issn.1007-9289.20180108003

文章历史

收稿日期: 2018-01-08
修回日期: 2018-05-07
网络出版日期: 2018-05-15

工作空间