doi: 10. 11933 / j. issn. 1007-9289. 20221231003

等离子弧增材制造 Ti-6Al-4V 工艺参数对 成形性和显微硬度的影响^{*}

吴向举1 郭登极^{1,2} 林建军^{1,2} 王序进1

(1. 深圳大学半导体制造研究院 深圳 518060;

2. 深圳大学深圳市高性能特种制造重点实验室 深圳 518060)

摘要:等离子弧增材制造技术具有低成本、高沉积率和高材料利用率等优势,对航空航天、海洋工程及军事医学等领域的大型复杂零件制造具有重要意义。但等离子弧能量密度高及钛合金热导率低的特性,导致钛合金沉积零件成形性差,且易生成粗大柱状晶。另外,等离子弧增材制造工艺参数多和调控难的特点,限制了满足力学标准的增材制造工艺参数的快速制定。 采用正交试验法、金相组织分析及组织与力学能关系表征等手段,研究等离子弧增材制造 Ti-6Al-4V 工艺参数对成形性、显微组织及显微硬度的影响规律。研究结果表明,等离子弧工艺参数对成形性的影响程度依次为基值电流(*I*_p)>峰值电流(*I*_p)) >占空比(*I*_{dey})>送丝速度(*T*_{WFS})>沉积速度(*T*_s)>脉冲频率(*F*_P),且基值电流对单道沉积层的熔宽、余高和成形性的影响最大;对平均晶粒尺寸的影响程度依次为*T*_s>*F*_P>*T*_{WFS}>*I*_b>*I*_p>I_{dey},沉积速度越大,晶粒尺寸越小,脉冲频率影响次之;对显微硬度影响程度依次为*T*_s>*I*_b>*F*_P>*I*_p,沉积速度对平均晶粒尺寸和显微硬度影响最大,峰值电流对平均晶粒尺寸及显微硬度的影响有限。研究结果可为等离子弧增材制造及再制造工艺提供理论依据,并为野外矿山机械、海洋船舶、工程装备平台及石油化工装备等受损零件的快速修复提供工艺调控技术参考。 关键词:Ti-6Al-4V;等离子弧增材制造;正交试验;成形性;显微硬度

Effects of Process Parameters on Formability and Microhardness in Plasma Arc Additive Manufacturing of Ti-6Al-4V Alloy

WU Xiangju¹ GUO Dengji^{1,2} LIN Jianjun^{1,2} WANG Xujin¹

(1. Institute of Semiconductor Manufacturing Research, Shenzhen University,

Shenzhen 518060, China;

2. Shenzhen Key Laboratory of High Performance Special Manufacturing, Shenzhen University, Shenzhen 518060, China)

Abstract: Titanium alloys offer the advantages of low density, high specific strength, and good corrosion resistance, making them widely used in aerospace, ocean engineering, military medicine, and other fields. However, the high cost, low thermal conductivity, and low elastic modulus of titanium alloys result in poor quality, low efficiency, and high cost of traditional processing, which seriously restricts their application and development. Plasma-arc additive manufacturing technology provides a cost-effective solution with high deposition and material utilization rates, which is crucial for the production of large and complex parts. However, owing to the high energy density of the plasma arc and the low thermal conductivity of titanium alloys, the formability of titanium alloy-deposited parts is compromised, resulting in the growth of coarse columnar grains. In addition, the characteristics of many parameters and the difficulty in controlling plasma-arc additive manufacturing limit the rapid formulation of additive manufacturing

^{*} 国家自然科学基金资助项目(51805331)。

Fund: Supported by National Natural Science Foundation of China (51805331). 20221231 收到初稿, 20231103 收到修改稿

process parameters that meet mechanical standards. The influence of plasma arc additive manufacturing of Ti-6Al-4V alloy process parameters on formability, microstructure, and microhardness was investigated by orthogonal experiments, metallographic analysis, and characterization of the relationship between the microstructure and mechanical properties. The experiment was conducted in an inert argon gas environment using a plasma arc additive manufacturing system, which consists of a Kuka robot, main power supply, plasma power supply, and wire feeding system. The main process parameters included deposition speed, wire feeding speed, pulse base current, pulse peak current, pulse frequency, and duty cycle. The three main evaluation parameters of formability were evaluated using the melting width, reinforcement, and aspect ratio of the deposited layer as indicators. In addition, the average grain size and microhardness were used as indices to evaluate the effect of microstructure on mechanical properties. The results indicate that the degree of influence of the plasma arc process parameters on the formability is as follows: base current (I_b) > peak current (I_p) > duty cycle (I_{dcv}) > wire feed speed (T_{wFS}) > deposition speed (T_s) > pulse frequency (F_P) . I_b has the greatest influence on the deposited width, deposited height, and formability of a single layer, with a more pronounced effect when I_b is 50%-70% I_p . The deposition speed and duty cycle exhibited the following relationships: the faster the deposition speed, the smaller the width and height of the deposition layer. The effect of the duty cycle on the width and formability of the single-pass deposited layers was positively correlated. The effect of process parameters on the average grain size was $T_s > F_P > T_{WFS} > I_b > I_d > I_{dcv}$, with larger deposition speeds resulting in smaller grain sizes. Pulse frequency was the second most influential parameter on average grain size, demonstrating that pulse disturbance aids in grain refinement. Moreover, the degree of influence of the process parameters on microhardness was $T_s > I_{dev} > T_{WFS} > I_b >$ $F_{\rm P} > I_{\rm p}$. The deposition speed had the greatest influence on average grain size and microhardness, with $I_{\rm p}$ having limited influence on these two aspects. Although the influence of the deposition speed on microhardness was the greatest, the degree of influence was only 4%, indicating that the influence of the selected plasma-arc process parameters on microhardness was not significant. These findings provide a theoretical basis for plasma arc additive manufacturing and additive remanufacturing processes and offer technical support for the rapid repair of damaged parts in applications such as field mining machinery, marine ships, engineering equipment platforms, and petroleum and chemical equipment.

Keywords: Ti-6Al-4V; plasma arc additive manufacturing; orthogonal experiment; formability; microhardness

0 前言

钛合金因其密度低、比强度高、耐蚀性好等优 点,广泛应用于航空航天、石油化工及军事医疗等 领域,其中 Ti-6Al-4V 合金应用占比最多^[1-3]。但因 钛合金成本高、低热导率及低弹性模量等特性造成 传统加工成型差、效率低及成本高,进一步限制了 钛合金的使用^[4]。增材制造技术的发展促进传统高 价值、难加工材料在重点装备零部件上的应用,特 别是钛合金的加工成形。当前,金属增材制造技术 包括电子束 (Electron beam melting, EBM)、激光 (Selective laser melting, SLM) 和电弧 (Wire arc additive manufacturing, WAAM)等。对比增材制造 技术中的成本^[5-6]和沉积率等因素,如表1所示。电 弧增材制造的沉积率是电子束和激光的几十倍,而 成本却仅为后者的几十分之一。此外,根据 MARTINA 等^[7]的研究发现,等离子弧增材制造 (Plasm arc additive manufacturing, PAM) 薄壁零件具 有更大的材料利用率。所以,等离子弧增材制造技 术成为制造大型零件的首选,尤其是薄壁零件。

表1 不同增材制造技术的优势^[5-6]

 Table 1
 Advantages of different additive

 manufacturing technologies^[5-6]

Process	Deposition rate / (kg • h ⁻¹)	Energy density	Accuracy	Stability	$Cost / 10^6 {\mbox{\sc s}}$
EBM	0.18-0.48	++	++	+	9.5
SLM	0.06-0.12	++	++	+	2-7
WAAM	2-4	+	+	+	0.2–0.7

+: Good; ++: More positive effects.

通过工艺调控在线实时改善增材制造沉积态钛 合金零件的力学性能是当前国内外研究的重点和热 点。LIN等^[8-9]研究脉冲等离子弧对增材制造钛合金 的组织演变和力学性能,发现脉冲可有效细化晶粒 并显著提高成形零件的强度和韧性;王磊磊等^[10]通 过数值模拟研究双脉冲金属极气体保护焊对增材制 造零件的影响,发现双脉冲可获得更高的冷却速度, 进而有效细化晶粒;王振宇^[11]采用正交试验法研究 等离子堆焊中焊接电流、焊接速度和等离子其流量 对堆焊层的影响,确定了镍基合金堆焊层的最佳工 艺参数;吴磊^[12]通过正交试验法优化等离子弧覆镍 基碳化钨涂层的工艺,获得工艺参数对熔覆层成形、 稀释率和硬度的影响规律,并发现各因素对熔覆层 成型质量的影响程度依次为电流>送粉速度>离子 气流量>熔覆速度,对熔覆层硬度的影响程度依次为 离子气流量>电流>送粉速度>熔覆速度;刘宁^[13]利 用正交试验研究钨极氩弧增材制造中各工艺参数对 单道单层成形尺寸的影响,结果表明沉积电流是熔 宽最显著的影响因素,送丝速度是余高最显著的影 响因素;夏然飞^[14]研究熔化极电弧增材制造的工艺 参数和单道单层成形尺寸的关系,发现沉积速度和 送丝速度对沉积层宽度的影响规律,并建立单道单 层尺寸模型。然而,综合研究等离子弧增材制造工 艺参数对沉积态零件的成形性及力学性能影响的研 究,尚未见报道。

因此,本文以等离子弧增材制造技术为手段, 研究等离子弧增材制造 Ti-6Al-4V 合金的工艺参数 对单道单层成形性及显微硬度的影响规律,为金属 增材制造或增材再制造钛合金零件提供技术参考。

1 材料与方法

1.1 材料及设备

本试验采用直径 1 mm 的 Ti-6Al-4V 焊丝,主要 成分(质量分数)为 0.007H、0.01N、0.02C、0.07Fe、 0.14O、3.95V、6.11Al,其余为 Ti。基板选用 Ti-6Al-4V 热轧板,其尺寸为 2 000 mm×1 500 mm×8 mm, 预先使用 150~400 目砂纸打磨,再使用丙酮和乙醇 进行脱脂处理。试验在惰性气体氩气环境保护下, 采用等离子弧增材制造系统设备进行,增材制造系 统由 Kuka 机器人、主电源(Fronius magic wave 5000 Job G/F)、等离子电源 (Fronius plasma module 10) 和送丝系统组成,如图 1 所示。

图 1 等离子弧增材制造系统 Fig. 1 Plasma arc additive manufacturing system

1.2 试验方法

试验采用正交试验法进行试验设计^[15-17],研究 等离子弧增材制造工艺参数对零件成形性及显微硬 度的影响规律。等离子弧增材制造(Plasm arc additive manufacturing, PAM)主要工艺参数包括沉 积速度(T_s)、送丝速度(T_{WFS})、脉冲基值电流(I_b)、 脉冲峰值电流(I_p)、脉冲频率(F_p)和占空比(I_{dcy} , 即 $T_p/(T_b+T_p)$,即脉冲峰值电流时间 T_p 与脉冲电 流单位周期T的比值)等^[18-19],其他参数如进气量、 保护气量等,将作为满足工艺要求的固定值,不参 与试验分析。

选取等离子弧增材制造的 6 个主要参数 *T*_s、 *T*_{WFS}、*I*_p、*I*_b、*I*_{dcy}、*F*_P。考虑到交互作用及其他未考 虑随机因素,设置一个空白项 C 参与试验设计。依 据试验设备参数范围及研究现状^[18, 20],设定试验主 要因素参数水平取值范围如表 2 所示。

表 2 试验主要参数及取值范围

Table 2 Main parameters and value rang of experiment

Main parameter	Range
Travel speed $T_s / (m \cdot min^{-1})$	0.2-0.3
Wire feed rate $T_{\rm WFS} / (\rm m \cdot min^{-1})$	2.4-4.0
Peak current $I_{\rm P}$ / A	220-300
Base current $I_{\rm b}$ / A	66–200
Duty cycle I_{dcy} / %	30-90
Pulse frequency $F_{\rm P}/{\rm Hz}$	30-90

根据各参数取值范围,取等分的3个水平,各 因素及参数水平如表3所示。主要因素增加空白项 共7项,每个因素设3个参数水平,则该试验需用 L18(3⁷)正交表,共计试验18次,试验方案如表4 所示。

表 3 主要参数及水平 Table 3 Main parameters and levels

Main monoton	Level				
Main parameter	1	2	3		
Travel speed $T_s/(m \cdot min^{-1})$	0.2	0.25	0.3		
Wire feed rate $T_{\rm WFS}/({\rm m} \cdot {\rm min}^{-1})$	3.0	4.0	3.5		
Peak current I_p / A	250	220	300		
Base current $I_{\rm b}/{\rm A}$	70% I _p	50% <i>I</i> _p	30% <i>I</i> _p		
Duty cycle $I_{\rm dcy}$ / %	50	70	30		
Pulse frequency $F_{\rm P}/{\rm Hz}$	70	50	90		

	Travel	Wire federate	Peak	Base	Duty	Pulse
No.	speed $T_s/$	$T_{\rm WFS}$ /	current	current	cycle	frequency
	$(\mathbf{m} \cdot \mathbf{min}^{-1})$	$(\mathbf{m} \cdot \mathbf{min}^{-1})$	$I_{\rm p}/{\rm A}$	$I_{\rm b}/{\rm A}$	$I_{\rm dcy}$ /%	$F_{\rm P}/{\rm Hz}$
1	0.2	3.0	250	70% <i>I</i> _p	50	70
2	0.2	4.0	220	50% I _p	70	50
3	0.2	3.5	300	30% <i>I</i> _p	30	90
4	0.25	3.0	220	50% I _p	30	90
5	0.25	4.0	300	30% <i>I</i> _p	50	70
6	0.25	3.5	250	70% <i>I</i> _p	70	50
7	0.3	3.0	250	30% <i>I</i> _p	70	90
8	0.3	4.0	220	70% I _p	30	70
9	0.3	3.5	300	50% I _p	50	50
10	0.2	3.0	300	50% I _p	70	70
11	0.2	4.0	250	30% I _p	30	50
12	0.2	3.5	220	70% <i>I</i> _p	50	90
13	0.25	3.0	300	70% $I_{\rm p}$	30	50
14	0.25	4.0	250	50% I _p	50	90
15	0.25	3.5	220	30% <i>I</i> _p	70	70
16	0.3	3.0	220	30% I _p	50	50
17	0.3	4.0	300	70% $I_{\rm p}$	70	90
18	0.3	3.5	250	50% I _p	30	70

表 4 试验方案 Table 4 Experimental schemes

评价指标是分析试验结果的依据。该试验将单 道沉积层的熔宽(W)、余高(H)和宽高比(W/H) 作为3个主要评价成形性的指标。另外,以晶粒尺 寸{平均晶粒宽度,即熔宽/柱状晶粒数(N)}和平 均显微硬度作为组织对力学性能影响程度的评价指 标。平均晶粒尺寸依据金属平均晶粒尺寸测量方法 (GB/T 6394—2017)中的截点法在沉积层中部进 行测量,其熔宽、余高和测量平均柱状晶粒尺寸的 测试位置,如图2所示。

图 2 试样的测试位置 Fig. 2 Test location of the sample

1.3 试样制备

选取试样中部位置,垂直沉积方向横向切取厚

度约 1.5 cm 的试样。将试样依次打磨、抛光和腐蚀 (腐蚀剂: 1 mL 氢氟酸+2 mL 硝酸+50 mL 水), 腐蚀后的试样组织显示为魏氏体组织和马氏体组 织,沉积试样的显微组织如图 3 所示。

采用扫描电子显微镜(TESCAN, LYRA3)观 察并测量试样的熔宽和余高的尺寸,分别计算宽高 比。采用超景深三维显微镜(Keyence, VHX-2000E) 观察并测量晶粒数目,计算平均晶粒尺寸,即熔宽/ 柱状晶粒数。将显微硬度作为评价力学性能指标, 采用显微硬度计(FUTURE-TECH, FM-ARS9000) 对试样不同组织区域的马氏体组织、魏氏体组织和 晶界分别选取 3 个点进行显微硬度测量,测量载荷 设定为 200 g,加载时间为 10 s。

2 结果与讨论

2.1 单道沉积层宏观形貌

正交试验结果 18 道单道沉积宏观形貌,如图 4 所示。从图中可以看出,4#和 11#试样整体沉积形 貌并不完整。4#试样前段保持完整,中后段基本消 失,11#试样起弧和收弧段沉积层不能成形。试样形 貌不连续可能是沉积速度高或送丝速度低造成的。 从形貌整体完整性观察,1#、2#、3#、5#、10#、13# 及 15#成形质量更好。

图 4 18 道单道沉积宏观形貌 Fig. 4 Macrostructure of 18 single deposition

表 5 为统计试样的熔宽、余高及宽高比的结果。 由表 5 可知, 沉积宽度最大的为 11.11 mm (10#), 最小的为 5.11 mm (4#),最大沉积高度为 2.83 mm (3#),最小沉积高度为 1.48 mm (13#),宽高比是 表征成形性的指标,宽高比范围为 7.11~2.08。

表 5 试样的熔宽、余高及宽高比 Table 5 Fusion width, deposited height and aspect ratio of the test samples

No.	Fusion width W/mm	Deposited height H / mm	Aspect ratio W/H
1	10.95 ± 0.01	1.85	5.92
2	8.7 ± 0.15	2.49 ± 0.02	3.49
3	7.4 ± 0.30	2.83 ± 0.11	2.61
4	5.11 ± 0.11	2.46 ± 0.02	2.08
5	9.11 ± 0.46	2.1 ± 0.07	4.34
6	10.11 ± 0.57	1.81 ± 0.06	5.59
7	7.07 ± 0.07	1.68 ± 0.01	4.21
8	6.47 ± 0.28	1.91 ± 0.13	3.39
9	7.65 ± 0.23	1.87 ± 0.04	4.09
10	11.11 ± 0.01	1.76 ± 0.11	6.31
11	6.2 ± 0.90	1.74 ± 0.11	3.56
12	9.96 ± 0.44	2.07 ± 0.05	4.81
13	10.52 ± 0.10	1.48 ± 0.02	7.11
14	8.81 ± 0.51	2.05 ± 0.04	4.30
15	7.92 ± 0.16	1.95 ± 0.10	4.06
16	6.11 ± 0.06	1.83 ± 0.02	3.34
17	10.54 ± 0.07	1.49 ± 0.03	7.07
18	5.41 ± 0.25	2.19 ± 0.08	2.47

2.2 工艺参数对成形性的影响

由表 5 所得数据对应试验方案安排表 4,统 计结果如表 6 所示。表中 *K_i*为因素在水平 *i* 时所 对应的全部数据之和。*k_i*为所对应 *K_i*的均值。极 差 *R* 即同因素 *K_i*的极差,即极差 *R*=max *K_i*-min *K_i*。在选定水平区间内,极差 *R*越大代表对成形 尺寸影响能力越大。由此,得到各参数对成形性 的影响规律。

由表 6 可知,工艺参数对成形性影响程度依次 为基值电流(*I*_b)>峰值电流(*I*_p)>占空比(*I*_{dcy}) >送丝速度(*T*_{WFS})>沉积速度(*T*_s)>脉冲频率 (*F*_P),且基值电流对单道单层的熔宽、余高和宽高 比(成形性)的影响最大。图 5 所示为基值电流对 熔宽、余高和宽高比的影响,从图中可知,*I*_b数值 越高,熔宽越大,而基值电流对余高呈现出先升后 降的趋势,当 *I*_b=50% *I*_p时,平均余高达到最大值为 2.14 mm。另外,对比横轴上 30% *I*_p和 50% *I*_p,在 数值上相差 20%,但对熔宽、余高和宽高比的影响 程度的变化却只有 6.4%、5.6%和 2.6%,然而对比 50% *I*_p和 70% *I*_p,熔宽、余高和宽高比影响程度的 变化分别达到 20%、17.2%和 32.9%。显然,基值电 流取峰值电流的 50%~70%对单道沉积层成形尺寸 的影响最大。

表 6 工艺参数对成形性的影响

Fac	tor	Travel speed T_{1} (m + min ⁻¹)	Wire feed rate $T = \sqrt{(m + min^{-1})}$	Blank	Peak current	Base current	Duty cycle	Pulse frequency
		$I_{\rm s}$ (m • min)	T _{WFS} /(m•mm)	tem C	<i>I</i> _p / A	<i>I</i> _b / A	I _{dcy} / %	<i>F</i> _P / HZ
	K_1	54.32	50.87	48.37	48.55	58.55	52.59	50.97
	K_2	51.58	49.83	50.77	44.21	46.79	55.45	49.29
	K_3	43.25	48.45	50.01	56.33	43.81	41.11	48.89
Fusion width	k_1	9.05	8.48	8.1	8.09	9.76	8.77	8.5
W/mm	k_2	8.6	8.31	8.46	7.37	7.8	9.24	8.22
	k_3	7.21	8.1	8.34	9.39	7.3	6.85	8.15
_	R	11.07	2.42	2.4	7.78	14.74	11.48	2.08
	Influence degree			$I_{\rm b} > I_{\rm dc}$	$_{\rm y} > T_{\rm s} > I_{\rm p} > T_{\rm WFS}$	$> C > F_P$		
	K_1	12.74	11.06	11.36	11.32	10.61	11.77	11.76
	K_2	11.85	11.78	12.01	12.71	12.82	11.18	11.22
	K_3	10.97	12.72	12.19	11.53	12.13	12.61	12.58
Deposited	k_1	2.12	1.84	1.89	1.89	1.77	1.96	1.96
height	k_2	1.98	1.96	2.0	2.12	2.14	1.86	1.87
H/mm	k_3	1.83	2.12	2.03	1.92	2.02	2.1	2.1
	R	1.77	1.66	0.83	1.39	2.21	1.43	1.36
-	Influence degree			$I_{\rm b} > T_{\rm s}$	$> T_{\rm WFS} > I_{\rm dcy} > I_{\rm p}$	$>F_{\rm P}>{\rm C}$		
	K_1	26.7	28.97	26.78	26.05	33.89	26.8	26.49
	K_2	27.48	26.15	26.43	21.17	22.74	30.73	27.18
	K_3	24.57	23.63	25.54	31.53	22.12	21.22	25.08
A	k_1	4.45	4.83	4.46	4.34	5.65	4.47	4.42
Aspect ratio W/H	k_2	4.58	4.36	4.41	3.53	3.79	5.12	4.53
<i>w / 11</i>	k_3	4.1	3.94	4.26	5.26	3.69	3.54	4.18
	R	2.91	5.34	1.24	10.36	11.77	9.51	2.1
-	Influence			$I_{\rm b} > I_{\rm p}$	$> I_{\rm dcy} > T_{\rm WFS} > T_{\rm s} >$	$F_{\rm P} > {\rm C}$		

Table 6 Effect of process parameters on formability

图 5 基值电流对熔宽、余高和宽高比的影响

2.3 工艺参数对晶粒尺寸和显微硬度的影响

表 7 所示为试样平均晶粒尺寸和显微硬度的统 计结果,晶粒数的统计位置如图 6 所示,测量显微 硬度的典型组织和晶界的微观形貌如图 7 所示。由 表 7 结果可知同一水平截面上晶粒数目最多为 34 个,即晶粒最细 (17#),晶粒数目最少的为 16 个, 即晶粒最粗 (4#、8#)。表 8 所示为工艺参数对平均 晶粒尺寸和显微硬度的影响规律,由表 8 极差数据 表明,沉积速度对平均晶粒尺寸和显微硬度影响最 大。沉积速度越大,平均晶粒尺寸和显微硬度影响最 大。沉积速度越大,平均晶粒尺寸宽度越小,由此 可知,沉积速度越大,组织凝固速度越大,其平均 晶粒尺寸越小,脉冲频率对晶粒尺寸影响次之。空 白项对晶粒尺寸的影响位于脉冲频率之后,可知各 主要因素之间可能存在交互作用,沉积速度的快慢

表 7	试样平均晶粒尺寸及显微硬度
Table 7	Grain size and microhardness

No.	Width / mm	Grains No.	Grain size /mm	Microhardness/ HV
1	10.95	26	0.42	330.3 ± 23
2	8.7	22	0.40	332.0 ± 22
3	7.4	17	0.44	346.3±19
4	5.11	16	0.32	330.4 ± 12
5	9.11	22	0.41	308.8 ± 27
6	10.11	33	0.31	337.8 ± 17
7	7.07	19	0.37	343.9 ± 11
8	6.47	16	0.40	342.3 ± 19
9	7.65	28	0.27	345.7 ± 10
10	11.11	29	0.38	339.7 ± 10
11	6.2	21	0.30	328.8 ± 12
12	9.96	27	0.37	332.5±13
13	10.52	28	0.38	336.5 ± 12
14	8.81	24	0.37	309.9 ± 16
15	7.92	23	0.34	296.8 ± 19
16	6.11	20	0.31	316.5 ± 11
17	10.54	34	0.31	305.9 ± 15
18	5.41	17	0.32	332.0 ± 8

和脉冲频率的扰动相互之间影响到沉积层的冷却速 率^[9,18],进而对沉积层的晶粒尺寸和显微硬度产生 不同程度影响。考虑交互因素需采用二次回归分析 进一步研究,本文暂探讨主要因素的非交互影响规 律。另一方面,沉积速度对显微硬度影响最大,但 其影响程度仅为4%左右(如图8所示),LIN等^[21] 进行等离子弧增材制造薄壁零件组织演变,发现随 着沉积层增加,基体的冷却效应减弱,脉冲扰动作 用增强,表现为沉积零件底部硬度值较沉积零件项 部更高。由此可知,单道单层基板的冷却速度的影 响程度高于沉积速度对凝固组织的影响程度。

Fig. 5 Effect of base current on fusion wdth, deposited height, and aspect ratio

K_1 K_2 K_3 k_1 k_2 k_3 R mfluence degree K_1 K_2 K_2	2.31 2.13 1.98 0.39 0.36 0.33 0.33 2 009.6 1 920.2	2.18 2.19 2.05 0.36 0.37 0.34 0.14	1.96 2.25 2.21 0.33 0.38 0.37 0.29 $T_s > F_P$	2.09 2.14 2.19 0.35 0.36 0.37 0.1	2.19 2.06 2.17 0.37 0.34 0.36 0.13	2.15 2.11 2.16 0.36 0.35 0.36 0.36 0.05	2.27 1.97 2.16 0.38 0.33 0.36		
K_2 K_3 k_1 k_2 k_3 R influence degree K_1 K_2 K_2	2.13 1.98 0.39 0.36 0.33 0.33 2 009.6 1 920.2	2.19 2.05 0.36 0.37 0.34 0.14	2.25 2.21 0.33 0.38 0.37 0.29 $T_s > F_P$	2.14 2.19 0.35 0.36 0.37 0.1	2.06 2.17 0.37 0.34 0.36 0.13	2.11 2.16 0.36 0.35 0.36 0.05	1.97 2.16 0.38 0.33 0.36		
K_3 k_1 k_2 k_3 R mfluence degree K_1 K_2 K_2	1.98 0.39 0.36 0.33 0.33 2 009.6 1 920.2	2.05 0.36 0.37 0.34 0.14	2.21 0.33 0.38 0.37 0.29 $T_s > F_P$	2.19 0.35 0.36 0.37 0.1	2.17 0.37 0.34 0.36 0.13	2.16 0.36 0.35 0.36 0.05	2.16 0.38 0.33 0.36		
k_1 k_2 k_3 R nfluence degree K_1 K_2 K_2	0.39 0.36 0.33 0.33 2 009.6 1 920.2	0.36 0.37 0.34 0.14	0.33 0.38 0.37 0.29 $T_s > F_P$	0.35 0.36 0.37 0.1	0.37 0.34 0.36 0.13	0.36 0.35 0.36 0.05	0.38 0.33 0.36		
k_2 k_3 R influence degree K_1 K_2 K_2	0.36 0.33 0.33 2 009.6 1 920.2	0.37 0.34 0.14	0.38 0.37 0.29 $T_{s} > F_{P}$	0.36 0.37 0.1	0.34 0.36 0.13	0.35 0.36 0.05	0.33		
k_3 R influence degree K_1 K_2 K_2	0.33 0.33 2 009.6 1 920.2	0.34 0.14	0.37 0.29 $T_{\rm s} > F_{\rm P}$	0.37 0.1	0.36 0.13	0.36 0.05	0.36		
$\frac{R}{\text{nfluence}}$ $\frac{K_1}{K_2}$ K_2	0.33	0.14	0.29 $T_{\rm s} > F_{\rm P}$	0.1	0.13	0.05	0.3		
nfluence degree K_1 K_2 K_4	2 009.6 1 920.2	1 007 2	$T_{\rm s} > F_{\rm P}$				0.5		
K ₁ K ₂ K ₅	2 009.6 1 920.2	1 007 2		$T_{\rm s} > F_{\rm P} > {\rm C} > T_{\rm WFS} > I_{\rm b} > I_{\rm p} > I_{\rm dcy}$					
K ₂ K ₂	1 920.2	1 997.5	1 937.9	1 982.7	1 985.3	1 943.7	1 949.9		
K.		1 927.7	1 985.7	1 950.5	1 989.7	1 956.1	1 997.3		
M 3	1 986.3	1 991.1	1 992.5	1 982.9	1 941.1	2 016.3	1 968.9		
k_1	334.9	332.9	323	330.5	330.9	323.9	325		
k_2	317	321.3	331	325.1	331.6	326	332.9		
k_3	331	331.9	332	330.5	323.5	336	328.2		
R	89.4	69.6	54.6	32.4	48.6	72.6	47.4		
nfluence degree			$T_{\rm s} > I_{\rm dcy}$	$> T_{\rm WFS} > C > I_b$	$>F_{\rm P}>I_{\rm p}$				
0.44 0.42 0.40 0.38 0.36 0.36 0.32 0.30 0.28 0.28	0.20		Mirrordonador (UIV	350 - 340 - 330 - 320 - 310 - 300 - 0.20	0.25 Deposition speed	0.30			
Grain size / m	0.38 0.36 0.34 0.32 0.30 0.28 0.28	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.38 0.36 0.36 0.34 0.32 0.30 0.28 0.26 0.20 0.25 0.30 Deposition speed / (m/min) (a) Grain size 图 8 沉积速度死	0.38 0.36 0.36 0.34 0.32 0.30 0.28 0.26 0.20 0.25 0.30 Deposition speed / (m/min) (a) Grain size 图 8 沉积速度对晶粒尺寸	0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.20 0.20 0.25 0.30 0.25 0.30 0.25 0.30 0.25 0.30 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.20 0.25 0.30 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0	0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.20 0.20 0.20 0.25 0.30 0.25 0.30 0.25 0.30 0.20 0.25 0.30 0.30 0.25 0.30 0.30 0.20 0.25 0.30 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.30 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.20 0.25 0.30 0.20 0.25 0.20 0.20 0.25 0.20 0.20 0.25 0.20 0.20 0.25 0.20	0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.20 0.20 0.20 0.25 0.30 0.25 0.30 0.25 0.30 0.25 0.30 0.25 0.30 0.25 0.30 0.25 0.30 0.20 0.25 0.30 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.25 0.30 0.20 0.25 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0		

表 8 工艺参数对平均晶粒尺寸和显微硬度的影响规律

Fig. 8 Effect of deposition speed on grain size and microhardness

3 结论

通过等离子弧增材制造 Ti-6Al-4V 合金的单道 单层试验,以沉积速度、送丝速度、峰值电流、基 值电流、占空比和脉冲频率等六个主要参数为研究 对象,采用正交试验法,研究工艺参数对单道沉积 层成形性及力学性能的影响规律,为金属增材制造 提供技术参考。研究得出以下结论:

(1)等离子弧增材制造 Ti-6Al-4V 合金工艺参数对成形性影响程度依次为基值电流(*I_b*)>峰值
 电流(*I_p*)>占空比(*I_{dcy}*)>送丝速度(*T_{WFS}*)>

沉积速度(T_s)>脉冲频率(F_P),且基值电流对单 道单层的熔宽、余高和宽高比的影响最大。基值电 流对单道沉积层熔宽、余高和宽高比的影响最大, 其中基值电流取峰值电流的 50%~70%对成形尺寸 的影响最大。

(2)工艺参数对平均晶粒尺寸的影响依次为*T*_s> *F*_P>*T*_{WFS}>*I*_b>*I*_p>*I*_{dcy}。沉积速度对平均晶粒尺寸最 大,沉积速度越大,晶粒宽度越小,脉冲频率对平 均晶粒尺寸影响次之,相对比其他工艺参数,电流 值对晶粒尺寸的影响稍弱。

(3)工艺参数对显微硬度影响程度依次为 $T_{\rm s}$ > $I_{\rm dcy}$ > $T_{\rm WFS}$ > $I_{\rm b}$ > $F_{\rm P}$ > $I_{\rm p}$ 。沉积速度对晶粒尺寸和显微

硬度影响均为最大,而峰值电流对晶粒尺寸及显微 硬度的影响有限。

参考文献

[1] 龙旭,贾啟普,李娇,等.选区激光熔化成形 TC4 钛
 合金力学性能及其工艺关联性[J].中国表面工程,
 2022, 35(2): 215-223.

LONG Xu, JIA Qipu, LI Jiao, et al. Mechanical properties and parameter optimization of TC4 alloy by additive manufacturing[J]. China Surface Engineering, 2022, 35(2): 215-223. (in Chinese)

[2] 伊浩,黄如峰,曹华军,等.基于 CMT 的钛合金电弧
 增材制造技术研究现状与展望[J].中国表面工程,
 2021,34(3):1-15.

YI Hao, HUANG Rufeng, CAO Huajun, et al. Research progress and prospects of CMT-based wire arc additive manufacturing technology for titanium alloys[J]. China Surface Engineering, 2021, 34(3): 1-15. (in Chinese)

 [3] 钱丽艳, 王艳虎, 戴峰泽, 等. 激光冲击强化对钛合金 疲劳寿命影响综述[J]. 中国表面工程, 2022, 35(2): 103-112.

QIAN Liyan, WANG Yanhu, DAI Fengze, et al. Laser shock processing and its effect on fatigue life of titanium alloys: A review[J]. China Surface Engineering, 2022, 35(2): 103-112. (in Chinese)

[4] 尹博,赵鸿,王金彪,等. 钛合金电弧增材制造技术研究现状及发展趋势[J]. 航空精密制造技术, 2016, 52(4): 1-3, 44.

YIN Bo, ZHAO Hong, WANG Jinbiao, et al. Research status and prospect of wire and arc additive manufactured titanium alloy[J]. Aviation Precision Manufacturing Technology, 2016, 52(4): 1-3, 44. (in Chinese)

- [5] 马驰,刘永红,纪仁杰,等. 电弧增材制造综述:技术 流派与展望[J]. 电加工与模具,2020(4): 1-11.
 MA Chi, LIU Yonghong, JI Renjie, et al. Review of wire and arc additive manufacturing: technology genre and Prospect[J]. Electromachining & Mould, 2020(4): 1-11. (in Chinese)
- [6] LIU Shunyu, SHIN Y C. Additive manufacturing of Ti6Al4V alloy: A review[J]. Materials & Design, 2019, 164: 107552.
- [7] MARTINA F, MEHNEN J, WILLIANMS S W, et al. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2012, 212(6): 1377-1386.

- [8] LIN J J, LV Y H, LIU Y X, et al. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69: 19-29.
- [9] LIN Jianjun, GUO Dengji, LV Yaohui, et al. Heterogeneous microstructure evolution in Ti-6Al-4V alloy thin-wall components deposited by plasma arc additive manufacturing[J]. Materials & Design, 2018, 157: 200-210.
- [10] 王磊磊,张占辉,徐得伟,等.双脉冲电弧增材制造数
 值模拟与晶粒细化机理[J].焊接学报,2019,40(4):
 137-140.

WANG Leilei, ZHANG Zhanhui, XU Dewei, et al. Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(4): 137-140. (in Chinese)

- [11] 王振宇. 等离子堆焊 WC 及稀土 Y₂O₃ 增强镍基堆焊层 组织及性能的研究[D]. 沈阳: 沈阳工业大学, 2021.
 WANG Zhenyu. Study on microstructure and properties of Ni-based surfacing layer enhanced by plasma surfacing WC and rare earth Y₂O₃[D]. Shenyang: Shenyang University of Technology, 2021. (in Chinese)
- [12] 吴磊. 等离子弧熔覆镍基碳化钨涂层组织及性能研究
 [D]. 镇江: 江苏科技大学, 2021.
 WU Lei. Microstructure and properties of nickel-based tungsten carbide coating cladding by plasma arc cladding[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021. (in Chinese)
- [13] 刘宁. TC4 钛合金 TIG 填丝堆焊成型技术研究[D]. 哈尔滨:哈尔滨工业大学,2013.
 LIU Ning. Research on Ti-6Al-4V shaped metal deposition by TIG welding with wire[D]. Harbin: Harbin
- Institute of Technology, 2013. (in Chinese)
 [14] 夏然飞. 电弧增材制造成形尺寸及工艺参数优化研究
 [D]. 武汉: 华中科技大学, 2016.
 XIA Ranfei. Study on forming dimensions and process parameters optimization of wire arc additive manufacturing[D]. Wuhan: Huazhong University of Science and Technology, 2016. (in Chinese)
- [15] LIN Zidong, SONG Kaijie, YU Xinghua. A review on wire and arc additive manufacturing of titanium alloy[J]. Journal of Manufacturing Processes, 2021, 70: 24-45.
- [16] 刘瑞江,张业旺,闻崇炜,等.正交试验设计和分析方 法研究[J].实验技术与管理,2010,27(9):52-55.

LIU Ruijiang, ZHANG Yewang, WEN Chongwei, et al. Study on the design and analysis methods of orthogonal experiment[J]. Experimental Technology and Management, 2010, 27(9): 52-55. (in Chinese)

- [17] 郝拉娣,于化东. 正交试验设计表的使用分析[J]. 编 辑学报,2005,17(5):334-335.
 HAO Ladi, YU Huadong. On use of orthogonal experimental design[J]. Acta Editologica, 2005, 17(5): 334-335. (in Chinese)
- [18] 林建军. 脉冲等离子弧增材制造 Ti-6Al-4V 合金组织演变 机理及力学性能研究[D]. 上海: 上海交通大学, 2017.
 LIN Jianjun. Study on mechanism of microstructure evolution and mechanical properties of Ti-6Al-4V alloy deposited by pulsed plasma arc additive manufacturing[D].
 Shanghai: Shanghai Jiaotong University, 2017. (in Chinese)
- [19] 曹军, 连平. 正交试验在焊接工艺评定中的应用[J]. 焊接, 2007(12): 47-50.

CAO Jun, LIAN Ping. Application of orthogonal test to welding procedure qualifications[J]. Welding & Joining, 2007(12): 47-50. (in Chinese)

- [20] PAN Zengqi, DING Donghong, WU Bintao, et al. Arc welding processes for additive manufacturing: A review[J]. Transactions on Intelligent Welding Manufacturing, 2018: 3-24.
- [21] LIN Jianjun, HUANG Haijun, LIU Yuxin, et al. Mechanism of enhanced ductility of Ti-6Al-4V alloy components deposited by pulsed plasma arc additive manufacturing with gradient-changed heat inputs[J]. Materials Science and Engineering: A, 2023, 865: 144601.

E-mail: wuxiangjuky@163.com

林建军(通信作者),男,1983年出生,博士,助理教授,硕士研究生导师。主要研究方向为金属增材制造及再制造。 E-mail: im.jianjun@szu.edu.cn

作者简介:吴向举,男,1998 年出生,硕士。主要研究方向为金属增 材制造及再制造。