doi: 10.11933/j.issn.1007-9289.20200304001

活塞环表面液相等离子体电解渗氮处理工艺

朱宗宁¹,赵鸿岳¹,梅德清¹,赵卫东¹,陈 晨²,陶 俊² (1.江苏大学汽车与交通工程学院,镇江 212013; 2.江苏苏扬包装股份有限公司,扬州 211400)

摘 要:以甲酰胺作为渗剂、氯化铵作为导电盐,配制电解液,以活塞环为阴极和不锈钢棒为阳极,对活塞环进行了液 相等离子体电解渗氮(PEN)处理,并对处理后的活塞环表面渗氮改性层的结构、元素分布及相组成等特征进行了分析, 探究了 PEN 工艺操作参数对改性层的硬度和摩擦学性能的影响。结果表明:在有机电解液体系下进行活塞环表面电解 渗氮处理会同时渗入 N、C 两种元素,但以渗 N 为主;活塞环表面的 PEN 改性层由化合物层、扩散层和过渡层组成,改性 层中 N 元素的含量由表及里逐渐降低;改性层的主要相组成为铁的氮化物 Fe₂₋₃N、Fe₄N 和铁的碳化物 Fe₃C 等强化相; 改性层的最大硬度可达基体硬度的 3 倍,且随工作电压提高、处理时间延长和频率降低而增大;摩擦试验表明活塞环试 样经 PEN 处理后其摩擦因数会增大,但对工作电压、处理时间和频率等工艺参数进行合理控制,便能够通过提高活塞环 表面硬度和储油能力来抑制因摩擦因数增大而导致的磨损率升高。

关键词:活塞环;表面处理;等离子体电解渗氮;硬度;摩擦因数;磨损率 中图分类号:TG162.7 文献标志码:A 文章编号:1007-9289(2020)05-0047-09

Plasma Electrolytic Nitriding Technology on Piston Ring Surface in Solution

ZHU Zongning¹, ZHAO Hongyue¹, MEI Deqing¹, ZHAO Weidong¹, CHEN Chen², TAO Jun²

(1. School of Automatic and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China; 2. Jiangsu Su Yang Package Company Limited by shares, Yangzhou 211400, China)

Abstract: An electrolyte was prepared by using formamide as penetrant and NH_4Cl as conductive salt. Piston rings were treated with plasma electrolytic nitriding technology in the electrolyte through working as cathode while a stainless steel rod serving as anode. The structure, element distribution and phase composition of the modified layer on the surface of the treated piston ring were analyzed, and the effects of process parameters such as working voltage, processing time and frequency on the hardness and tribological properties of the modified layer were investigated as well. The results show that the plasma electrolytic nitriding treatment on the surface of the piston ring under the organic electrolyte system will infiltrate N and C elements simultaneously, while the main element is nitrogen. The PEN modified layer on the surface of the piston ring is composed of compound layer, diffusion layer and transition layer. The content of the N element in the modified layer gradually decreases from the surface to the inside. The main phase compositions of the PEN modified layer are iron nitrides such as $Fe_{2-3}N$, Fe_4N and iron carbide Fe_3C . The maximum hardness of the modified layer can reach 3 times which compared to the hardness of the substrate, and it increases with the increase of working voltage, processing time and the decline of the frequency. Furthermore, friction tests show that the friction coefficient can be weakened by improving the surface hardness and oil storage capacity of the piston ring through choosing appropriate process parameters such as working voltage, processing time, and frequency.

Keywords: piston ring; plasma electrolytic nitriding; hardness; friction coefficient; wear rate

收稿日期: 2020-03-04; 修回日期: 2020-08-24

通信作者:梅德清(1974—),男(汉),教授,博士;研究方向:发动机节能与排放控制; E-mail; meideqing@ujs.edu.cn

基金项目: 江苏高校品牌专业建设工程资助项目(苏政发办[2014]82); 江苏省科技厅重点研发计划项目(BE2016139)

Fund: Supported by University Brand Professional Construction Funding Project of Jiangsu and Key Research (Suzheng Development Office [2014] 82) and Development Project of Science and Technology Department of Jiangsu Province (BE2016139)

引用格式:朱宗宁,赵鸿岳,梅德清,等.活塞环表面液相等离子体电解渗氮处理工艺[J].中国表面工程,2020,33(5):47-55.

ZHU Z N, ZHAO H Y, MEI D Q, et al. Plasma electrolytic nitriding technology on piston ring surface in solution [J]. China Surface Engineering, 2020, 33(5): 47-55.

0 引 言

随着内燃机不断向高功率密度、高转速、低 燃油消耗和低有害排放等方向发展,以及新型替 代燃料的广泛使用,未来活塞环组不仅要适用于 普通大功率、高转速车用发动机,还要适应采用 天然气、液化石油气和甲醇燃料等的特种发动 机,对活塞环的性能提出了更高的要求。钢质活 塞环经氮化处理后表面具有高的硬度、良好的耐 磨性和耐腐蚀性,且心部又具有较强的韧性,因 此其应用比重正逐渐升高^[1]。由于传统的活塞 环表面氮化方式存在氮化周期长、能耗高、设备 成本贵、操作繁琐等问题,因而有必要探索更加 高效、节能和环保的内燃机活塞环表面氮化 工艺。

液相等离子体电解渗氮(Plasma electrolytic nitriding, PEN)技术是属于等离子体电解沉积 (Plasma electrolytic deposition, PED)技术范畴的 一种高效、节能、环保的新型钢铁表面氮化处理 技术,该技术具有环境适应性好、处理时间短、能 耗低、有害气体排放少等优点^[2]。Jiang 等^[3]在 尿素和氯化铵混合溶液中对 Q235 钢处理 15 min 后得到了厚度为 50 µm 的扩散层。张荣^[4]在甲 酰胺-氯化钠体系电解液中对 45 钢试样进行了 处理,以170 V 工作电压处理 40 min 后得到了 200 µm 的改性层。研究表明,钢铁材料经 PEN 处理后,其表面硬度、耐磨性和耐腐蚀性等各项 表面性能都得到显著改善^[5-6]。Kong 等^[7]用尿 素和氢氧化钾混合溶液作电解液对 SCM420 钢进 行 PEN 处理后使其表面硬度提高了 HV500。Nie 等^[8]在尿素溶液中对 S0050 钢进行了 PEN 处理, 发现 S0050 钢经 PEN 处理后的磨损率仅为处理 前的三分之一。Aliev 等^[9] 对经过 PEN 处理后的 AISI 430 不锈钢试样进行了耐腐蚀性能测试,结 果表明经 PEN 处理过的试样的腐蚀电位均发生 了正移,而且电位正移的程度随工作电压升高和 处理时间延长而增大。

虽然 PEN 技术具有环境适应性好、处理速 度快、成本低以及节能环保等诸多优点,但该技 术目前还处于试验研究阶段,在处理形状较复杂 或表面积较大的工件时,仍会出现局部过热、放 电不均以及渗层分布不均等问题^[10]。因此,有 必要探寻合适的处理参数和电解液组合方式,使 该技术能够更好应用于形状特殊且能承受的热 处理变形量极小的活塞环表面处理。为实现该 目标,文中在甲酰胺-氯化铵体系电解液中对活 塞环进行了 PEN 处理,并对处理后的活塞环表面 PEN 改性层的结构、元素分布及相组成等特征进 行了分析,探究工作电压、处理时间和频率等工 艺参数对 PEN 改性层的硬度和摩擦学性能的 影响。

1 试验条件与测试方法

1.1 试验材料与设备

试验用活塞环试样为定型、清洗工序后未经 其他处理的钢制活塞环,由仪征市润扬机械有限 公司提供,其名义化学成分如表1所示。试验前 需用金相砂纸逐级打磨至1000号粒度,然后用 丙酮清洗,烘干备用。图1为自制的10kW液相 等离子体电解渗氮装置示意图。该装置主要包 括直流脉冲电源、搅拌器、液相放电系统和循环 冷却系统。在对活塞环进行等离子体电解渗氮 处理时,以活塞环作阴极,不锈钢棒作阳极。

表1 活塞环材料	的化学成分
----------	-------

Table 1 Chemical compositions of piston ring						(w/%)
Element	С	Mn	Si	Р	S	Fe
Content	0. 12~0. 20	0.30~0.70	≤0.30	≤0.045	≤0.045	Bal.

1.2 电解液体系

一般情况下,用于液相等离子体电解渗氮处 理的有机电解液体系由含氮有机物、导电盐和去 离子水组成^[11]。其中,含氮有机物的作用是保 证在一定的温度范围内快速、充分、持久地提供 渗入所需的活性氮原子。加入导电盐溶液是为 了提高电解液的导电性,以便形成稳定的放电电 弧。常用的含氮有机物有尿素、甲酰胺和乙醇胺 等。其中,甲酰胺(HCONH₂)在400~700 ℃范围 内,按下式分解:

1-Stirrer; 2-DC pulse power supply; 3-Cooling tank; 4-Insulation electrolyzer; 5-Piston ring; 6-Stainless steel rod; 7-Pump; 8-Insulation pad

Fig. 1 Schematic diagram of plasma electrolytic nitriding equipment

$$\text{HCONH}_2 \rightarrow \text{NH}_3 \uparrow +\text{CO} \uparrow$$
 (1)

$$HCONH_2 \rightarrow HCN + H_2O$$
 (2)

当活塞环表面形成弧光放电时,甲酰胺第一 阶段分解产物中的 NH₃、HCN 及 CO 在弧光放电 作用进一步分解,产生 C、N 活性原子。进一步分 解反应的方程式如下:

$$2\mathrm{NH}_{3} \rightarrow 3\mathrm{H}_{2} \uparrow +2[\mathrm{N}] \tag{3}$$

$$2CO \rightarrow CO_2 \uparrow + [C] \tag{4}$$

$$2\text{HCN} \rightarrow \text{H}_2 \uparrow +2[\text{C}] +2[\text{N}] \tag{5}$$

由于弧光放电时活塞环表面温度范围为 500~650 ℃,也是甲酰胺受热分解的最佳温度范 围,故选用甲酰胺做渗剂。试验选用氯化铵作导 电盐。这是由于氯化铵溶液在高温下极易释放 出大量氨气,可以使整个 PEN 处理系统更快达 到弧光放电状态。此外,氯化铵分解生成的氨气 在气膜层内被电离后可以提高膜层内活性氮离 子的浓度,有助于增强渗入氮势。具体的电解液 组成为:80%甲酰胺+20% NH₄Cl 溶液, NH₄Cl 浓 度(质量分数)为10%。

1.3 试验方案

按上述方案配置的电解液在 PEN 处理过程 中的最佳工作电压范围为 220~300 V,从中选取 230、260 和 290 V 这 3 组工作电压,再搭配不同 的处理时间和频率制定如表 2 所示的活塞环表 面 PEN 试验方案。

表 2 活塞环表面液相等离子体电解渗氮工艺方案

Schemes	Operating	Processing	Frequency/
	Voltage/V	time/min	Hz
S1	230	10	1000
S2	260	10	1000
S3	290	10	1000
S4	260	5	1000
S5	260	15	1000
S6	260	10	500
S7	260	10	1500

1.4 PEN 活塞环制备工艺流程

PEN 活塞环的具体制备流程为:打磨→自来 水冲洗→酒精清洗→烘干→PEN 处理→自来水 冲洗→酒精清洗→烘干。

1.5 分析测试方法

将经过 PEN 处理的活塞环试样进行镶嵌、抛 光、腐蚀、清洗和烘干等处理,再放入 S-3400 N 型钨灯丝扫描电子显微镜进行观察。S-3400 N 型钨灯丝扫描电子显微镜配备有 EDS 能谱分析 仪,可以对活塞环试样断面不同区域进行点扫描 和线扫描分析。扫描电镜工作时加载电压为 15 kV,电流为 50 μA。

利用 D8-ADVANCE 型 X 射线衍射仪对经过 PEN 处理的活塞环试样进行相组成分析,衍射条 件为:阳极选用铜靶,扫描速度为 5°/min,扫描范 围为 10°~90°,得到 XRD 衍射图及数据后,使用 MDI Jade 软件对 XRD 衍射图进行峰值标定,查 出对应的相组成。

使用 KB30S-FA 型全自动显微维氏硬度测量 系统测量活塞环表面 PEN 改性层的硬度。硬度 仪的加载载荷为 0.5 N,保载时间为 10 s。

在 CETR UMT-3 型多功能摩擦学试验机上 进行 PEN 活塞环的摩擦学性能测试。与 PEN 活 塞环对摩的缸套试样的粗糙度约为 0.8 μm,试 验温度参考柴油机活塞环的实际工作温度范围 确定为 200 ℃,载荷为 100 N,试验冲程为 8 mm, 滑动频率为 30 Hz,试验时间为 60 min。润滑油 型号为 CD5W-30。

结果与讨论 2

2.1 PEN 改性层结构和元素分析

图 2 为活塞环表面 PEN 改性层截面 SEM 图. 图 2(b) 为图 2(a) 中方框内区域的放大图。从图 中可以看出,整个活塞环表面 PEN 改性层截面可 以分为4层,由外而内,依次为化合物层、扩散层、 过渡层和基体^[12]。图中1区域为化合物层,包含

大量 Fe-N、Fe-C 化合物以及少量 N、C 固溶体^[13]。 2区域为扩散层,含有大量 N、C 固溶体。这是由 于 PEN 处理时活塞环表面温度很高, 而 PEN 处理 结束后迅速停止供电相当于淬火,导致次表层中 的 N_xC 原子还未来得及与铁形成化合物,故淬火 冷却后以固溶体形式存在[13]。3区域为扩散层和 基体之间的过渡层,该区域内以基体材料为主,仅 包含极少量的 N、C 固溶体。4 区域为基体。

(a) × 500

图 2 活塞环 PEN 改性层截面 SEM 图

图 3 为活塞环表面 PEN 改性层截面 EDS 线扫描分析图。线扫描行程的起点为改性层 最外侧。从图中可以看出,Fe元素含量在扫 描行程的初始阶段明显低于后续阶段,这是由 于扫描行程的初始阶段正好对应于改性层中 的化合物层部分,也是 C、N 元素集中分布的 区域,因此该阶段内 Fe 元素含量相对较低。

图 3 活塞环表面 PEN 改性层截面 EDS 线扫描图像 Fig. 3 EDS line scan image of the cross section of PEN modified layer on piston ring surface

图 4 为 N 元素的含量随 PEN 改性层深度 的分布。从图中可以看出,活塞环表面 PEN 改性层中 N 元素的含量在化合物层、扩散层和 过渡层中呈梯度降低趋势,变化较为平缓。图 5为C元素的含量随PEN改性层深度的分布。 从图中可以看出,C元素主要集中分布在化合 物层,当扫描行程经过化合物层后,C元素含 量逐渐趋于稳定。

Fig. 4 Distribution of N element along the depth in the PEN modified layer

图 5 C 元素沿 PEN 改性层深度的分布

Fig. 5 Distribution of C element along the depth in the PEN modified layer

图 6 为活塞环表面 PEN 改性层内不同区域 的 EDS 点分析,其中化合层中的 a 区域、扩散层 中的b区域和过渡层中的c区域内的元素分析 结果分别见图 6(b)、6(c) 和 6(d)。各区域内 Fe、C、N 这 3 种元素的质量分数和原子数分数见 表3。比较各图6中的特征峰强度和表3中各区 域内C、N元素的占比可以发现,由改性层最外侧 化合物层至过渡层,C、N 元素的含量有明显的变 化,在最外侧化合物层中C、N 元素的原子数分数 分别为 20.02% 和 21.66%. 在扩散层中 C、N 元素 的原子数分数减小,分别为 15.22%和 15.87%,在 过渡层中C、N元素的原子数分数分别为14.77% 和 7.71%。可见, PEN 改性层中的 N 元素含量明 显高于 C 元素含量。这是因为 PEN 处理过程中, 在活塞环表面所处的温度范围内,N在活塞环材料 中的固溶极限高于 C 的固溶极限所致[14]。

Fig. 6 EDS analysis of different regions in the PEN modified layer on piston ring surface

表 3 不同区域元素占比汇总

Table 3	Summary	of the	proportion	of	elements	in	different	region
			Proposition.	~~~				

El .		a		b		с		
Liement	w/%		a/%	w/%	a/%			
Ν	7.8	21.66	5.23	15.87	2.34	7.71		
С	6. 18	20.02	4.3	15.22	3.84	14.77		
Fe	86.02	58.32	90.48	68.91	93.81	77.52		

2.2 PEN 改性层相组成分析

图 7 为活塞环基体材料的 XRD 衍射谱.图 8 为在方案 S2 所示条件下,经 PEN 处理后活塞环 样件的 X 射线衍射谱。从图中可以看出,活塞环 基体的 X 射线衍射图谱中只有 Fe 元素的衍射 峰,而PEN活塞环的X射线衍射图谱中出现了 包括 Fe₃C、Fe₂₋₃N 和 Fe₄N 等铁的氮化物和碳化 物衍射峰。在 PEN 处理过程中, 当活塞环表面 产生弧光放电现象时,其表面温度已经达到了奥 氏体的相变温度。由于甲酰胺在弧光放电作用 下分解生成 N 活性原子的同时也会附带产生 C 活性原子, 而 N、C 原子作为一种扩大γ相区的元 素,增加了过冷奥氏体的稳定性,因此,当N、C源 充足时,活塞环表面的温度决定了 PEN 改性层 的相组成。此外,PEN 处理过程中的电解液温度 在 80 ℃左右,完成活塞环表面 PEN 处理后关掉 电源相当于快速淬火发生马氏体转变,所以,在 此过程中渗入的 N_xC 元素是以固溶体 α -Fe_{c N} γ-Fe_{CN}和碳化物 Fe₃C、氮化物 Fe₂₋₃N 和 Fe₄N 的形式存在[4,15]。

图 7 活塞环基体 X 射线衍射谱

Fig. 7 X-ray diffraction patterns of the piston ring matrix

图 8 PEN 活塞环 X 射线衍射谱

Fig. 8 X-ray diffraction patterns of PEN piston ring surface

2.3 PEN 改性层硬度分布

图 9 为不同工艺参数对应的 PEN 改性层硬 度分布。如图所示,改性层的最大硬度随工作 电压提高、处理时间延长和频率降低而增大。 当改性层厚度大于 25 μm 时,可以明显观察到 改性层的最大硬度值出现在扩散层中,而非出 现在最外层。这是因为表层碳氮含量较高,钢 的过冷奥氏体稳定性高,存在较多的残余奥氏 体,这使其表层硬度值降低[16]。以在工作电压 为 260 V、占空比为 40%、频率为 1000 Hz 的工 艺条件下,对活塞环进行 PEN 处理 10 min 后得 到的改性层截面硬度分布为例,在靠近活塞环 表面的化合物层区域内,由表及里,硬度逐渐增 加,并在距离表面 25 µm 左右达到峰值,约 865 HV:之后,随着改性层深度增加,硬度逐渐 下降,约在45 μm 处硬度接近基体,约320 HV。 可见,活塞环表面 PEN 改性层的硬度可达基体 硬度的 3~4 倍, 而较高的表面硬度有利于提高 活塞环的抗磨损性能。

Fig. 9 Hardness distribution of PEN modified layer under different processing parameters

2.4 PEN 改性层摩擦学性能

表 4 为不同工艺参数条件下活塞环表面粗 糙度, PEN 处理前活塞环的表面粗糙度 Ra = 0.075 μm。

图 10 为未经 PEN 处理的活塞环和在工作电 压分别为 230、260 和 290 V,占空比为 40%,频率 为 1000 Hz 条件下经 PEN 处理 10 min 的活塞环 与缸套摩擦副在对摩试验中测得的摩擦因数和 磨损率。图 10(a)中,未经 PEN 处理的活塞环在 湿摩擦状态下的摩擦因数为 0.233,而在工作电 压为 230、260 和 290 V 条件下处理得到的 PEN 活塞环的摩擦因数分别为 0.173、0.206 和 0.335。可见,摩擦因数随工作电压升高而增大。 这是因为工作电压提高引起的弧光放电强烈,导 致表面粗糙度增大,进而导致 PEN 活塞环和缸 套摩擦副的摩擦因数增大。图 10(b)中,未经 PEN 处理的活塞环与缸套摩擦副的磨损率为 5.36×10⁻⁶ mm³/(N·m),而在工作电压为 230、260 和 290 V条件下处理得到的 PEN 活塞环和缸套摩 擦副的磨损率分别为 4.25×10⁻⁶、3.83×10⁻⁶ 和 7.11×10⁻⁶ mm³/(N·m)。可见,在工作电压为 230 V和 260 V条件下处理得到的 PEN 活塞环 摩擦副的磨损率降低了 20.7%和 28.5%,但在 工作电压为 290 V条件下处理得到的 PEN 活塞 环摩擦副的磨损率却增加了 32.6%。这是因为 工作电压过高易导致活塞环表面粗糙度值过 大,使摩擦副的磨损率升高;但工作电压过低会 造成摩擦副的磨损率因 PEN 活塞环改性层的 表面硬度降低而升高。因此,活塞环表面 PEN 处理存在最佳的工作电压值。

Fig. 10 Friction coefficient and wear rate of PEN piston rings treated under different operating voltage conditions

图 11 为未处理活塞环在工作电压为 260 V, 占空比为 40%,频率为 1000 Hz 条件下分别经 PEN 处理 5、10、15 min 的活塞环与缸套摩擦副 在对 摩 试 验 中 测 得 的 摩 擦 因 数 和 磨 损 率。 图 11(a) 中,经 PEN 处理 5、10、15 min 的活塞 环与缸套摩擦副的摩擦因数分别为 0.248、 0.206 和 0.172。可见,摩擦因数随处理时间延长 而减小。图 11(b) 中,经 PEN 处理 5、10、15 min 的 活塞环与缸套摩擦副的磨损率分别为 4.59×10⁻⁶、 3.83×10⁻⁶ 和 2.85×10⁻⁶ mm³/(N·m)。与未处理 活塞环相比,分别降低了 14.4%、28.5% 和 46.8%。这是因为处理时间延长为活塞环表面多 孔结构的形成提供了充足的时间,且等离子体放 电时间越长,在活塞环表面留下的放电通道越密 集,越有利于提高活塞环的润湿性,减小摩擦副 的摩擦因数,降低磨损率^[8,17]。此外,活塞环 PEN 改性层的硬度随处理时间延长而增大,增强 了 PEN 活塞环与缸套摩擦副的耐磨性,使磨损率 降低。

图 12 为未处理活塞环和在工作电压为

Fig. 11 Friction coefficient and wear rate of PEN piston rings treated under different processing time conditions

图 12 不同频率条件下 PEN 活塞环的摩擦因数和磨损率

Fig. 12 Friction coefficient and wear rate of PEN piston rings treated under different under different frequency conditions

260 V,占空比为 30%,频率分别为 500、1000、 1500 Hz 的条件下经 PEN 处理 10 min 的活塞环 与缸套摩擦副在对摩试验中测得的摩擦因数和 磨损率。图 12(a)中,当 PEN 处理所用频率分别 为 500、1000、1500 Hz 时, PEN 活塞环与缸套摩 擦副的摩擦因数分别为 0.237、0.206 和 0.189。 可见,摩擦副的摩擦因数随频率的升高而减小。 图 12(b)中,当 PEN 处理频率分别为 500、1000、 1500 Hz 时,摩擦副的磨损率分别为 4.66×10⁻⁶、 3.83×10⁻⁶ 和 3.24×10⁻⁶ mm³/(N·m),比未处理活 塞环分别降低了 13.1%、28.5%和 40%。可见,摩 擦副的磨损率随频率的升高而降低。这主要归功 于频率升高造成的表面粗糙度降低。因此,对活 塞环进行 PEN 处理时应选择合适的频率以避免实 际使用中活塞环与缸套摩擦副的摩擦因数或磨损 率过高。

3 结 论

(1) PEN 活塞环表面的改性层由化合物层、

扩散层和过渡层构成,渗入的 N 元素主要分布在 化合物层和扩散层,而 C 元素作为附带的渗入元 素主要分布于化合物层。由于 N 元素在活塞环 材料中的固溶极限在 PEN 处理过程中活塞环表 面所处的温度条件下高于 C 元素,故 PEN 处理 以渗氮为主。

(2) PEN 过程中渗入的 N、C 元素在改性层 中以固溶体 α -Fe_{C_N}、 γ -Fe_{C_N} 的形式存在。活塞 环表面 PEN 改性层的主要相组成为铁的氮化物 Fe₂₋₃N、Fe₄N 和铁的碳化物 Fe₃C 等强化相。

(3)改性层截面硬度分布呈先增高后降低 趋势,最大硬度值一般出现在扩散层中,最大硬 度值可达基体硬度的3~4倍,并且随工作电压提 高、处理时间延长和频率降低而增大。此外,改 性层的最大硬度值处与活塞环表面之间的距离 会随改性层厚度的增加而增大。

(4)活塞环试样经 PEN 处理后其摩擦因数 会因表面粗糙度增加而增大,但表面硬度以及储 油能力的提高能够有效抑制因摩擦因数增大而 导致的磨损率升高。对于特定组分的电解液,活 塞环表面 PEN 处理的工作电压存在最佳值;延 长处理时间和提高频率有助于降低 PEN 活塞环 与缸套摩擦副的磨损率。若工艺参数控制得当, 经 PEN 处理后的活塞环的耐磨性能能够得到有 效的改善。

参考文献

- [1] 杨明,窦朝举,尹国锋.现代钢制活塞环的发展与应用
 [J].内燃机与配件,2006(3):25-28.
 YANG M, DOU C J, YIN G F. Development and application of modern steel piston rings[J]. Internal Combustion Engine and Parts, 2006(3):25-28(in Chinese).
- BELL T, SUN Y, SUHADI A. Environmental and technical aspects of plasma nitrocarburising [J]. Vacuum, 2000, 59 (1): 14-23.
- [3] JIANG Y, GENG T, BAO Y, et al. Electrolyte-electrode interface and surface characterization of plasma electrolytic nitrocarburizing [J]. Surface & Coatings Technology, 2013, 216: 232-236.
- [4] 张荣. 45 钢液相等离子体电解渗透表面改性技术研究
 [D]. 兰州:兰州理工大学, 2009.
 ZHANG R. Surface modification on 45 steel with plasma electrolytic saturation in solution[D]. Lanzhou: Lanzhou University of Technology, 2009(in Chinese).
- [5] 李杰.液相等离子体电解碳氮共渗技术研究[D].秦皇岛:燕山大学,2006.
 LI J. Investigation of plasma electrolytic carbonitriding technique in solution [D]. Qinhuangdao: Yanshan University, 2006(in Chinese).
- [6] BELKIN P N, YEROKHIN A, KUSMANOV S A. Plasma electrolytic saturation of steels with nitrogen and carbon [J]. Surface and Coatings Technology, 2016, 307: 1194–1218.
- [7] KONG J H, OKUMIYA M, TSUNEKAWA Y, et al. Surface modification of SCM420 steel by plasma electrolytic treatment
 [J]. Surface & Coatings Technology, 2013, 232(10): 275 -282.
- [8] NIE X, WANG L, YAO Z C, et al. Sliding wear behaviour

of electrolytic plasma nitrided cast iron and steel[J]. Surface & Coatings Technology, 2005, 200: 1745–1750.

- [9] ALIEV M K, SABOUR A, SHAHRABI T. Study of corrosion protection of different stainless steels by nanocrystalline plasma electrolysis [J]. Protection of Metals, 2008, 44 (4): 402-407.
- [10] 乔宝蓉.液相等离子体电解处理中的温度计算[D].南京:南京理工大学,2015.
 QIAO B R. Temperature calculation in Plasma Electrolysis Saturation[D]. Nanjing: Nanjing University of Science and Technology, 2015(in Chinese).
- [11] YEROKHIN A L, NIE X, LEYLAND A, et al. Plasma electrolysis for surface engineering [J]. Surface and Coatings Technology, 1999, 122: 73-93.
- [12] BELKIN P N, KUSMANOV S A. Plasma electrolytic nitriding of steels [J]. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2017, 11(4):767-789.
- [13] 杨群. 中碳钢液相等离子体电解碳氮共渗的研究[D]. 南京:南京理工大学, 2012.
 YANG Q. Study on plasma electrolytic carbonitriding of medium carbon steel[D]. Nanjing: Nanjing University of Science and Technology, 2012(in Chinese).
- [14] STRAUMAL B B, KILMAMETOV A R, KUCHEEV Y O, et al. Transformation of hume-rothery phases under the action of high pressure torsion [J]. JETP Letters, 2014, 100(6): 376-379.
- [15] 潘应君,周磊,王蕾.等离子体在材料中的应用[M].武汉:湖北科学技术出版社,2003.
 PAN Y J, ZHOU L, WANG L. Application of plasma in materials[M]. Wuhan: Hubei Science and Technology Press, 2003(in Chinese).
- [16] 沈德久. 金属表面等离子电解沉积强化层制备及特性研究[D]. 秦皇岛:燕山大学, 2010.
 SHEN D J. Preparation and characteristics of plasma deposition coatings on metal surface[D]. Qinhuangdao: Yanshan University, 2010 (in Chinese).
- [17] BIZI-BANDOKI P, BENAYOUN S, VALETTE S, et al. Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment[J]. Applied Surface Science, 2011, 257(12): 5213-5218.