doi: 10.11933/j.issn.1007-9289.20180109004

预置 Ti 粉对激光氮化 TC4 涂层组织及性能的影响

童 庆¹, 陈泉志¹, 莫秋凤¹, 董婉冰¹, 蒋智秋¹, 李伟洲^{1,2}

(1.广西大学资源环境与材料学院,南宁 530004;2.广西大学广西有色金属及特色材料加工重点实验室,南宁 530004)

摘 要:采用直接激光氮化及表面预置 1 mm 钛粉后再激光氮化两种工艺在 TC4 合金表面制备了涂层。通过 XRD 和 带能谱仪 (EDS) 的场发射扫描电镜 (SEM) 分析了涂层的物相结构、微观形貌和局部化学成分。由摩擦磨损试验仪、喷 砂机和电化学工作站分别检测了涂层的滑动摩擦性能、抗冲蚀磨损性能以及电化学腐蚀性能。结果表明:两种工艺制 备的涂层主要由 TiN_x(x=1、0.98 和 0.90) 树枝晶、α-Ti 片状晶及表面 TiO₂ 组成。经激光氮化处理后 TC4 合金的抗滑动 摩擦、抗冲蚀磨损和耐酸蚀性能均得到了较大的提升。其中预置粉后再激光氮化由于反应充分,获得的涂层较厚,氮 含量高,成分分布均匀,其抗滑动磨擦性能较 TC4 合金基体及直接激光氮化的样品分别提升了 5.3 倍和 1.3 倍,稳定 的冲蚀失重率比基体及直接激光氮化的样品分别降低了 37% 及 12%,极化电阻分别提高了 18 915 和 12 537 Ω。

文章编号:1007-9289(2018)05-0167-08

Effects of Pre-set Ti Powder on Microstructure and Properties of Laser Nitriding TC4 Coating

TONG Qing¹, CHEN Quanzhi¹, MO Qiufeng¹, DONG Wanbing¹, JIANG Zhiqiu¹, LI Weizhou^{1,2}

(1. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; 2. Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi University, Nanning 530004, China)

Abstract: The nitriding coatings were prepared by direct laser nitriding TC4 (N-TC4) and laser nitriding TC4 with 1 mm titanium power preset on the surface (N-Ti-TC4), respectively. The XRD and field emission scanning electron microscopy (SEM) with EDS were used to analyze phase structure, morphology and local chemical composition of the coating. Sliding friction and erosion wear properties and electrochemical corrosion resistance of the coating were characterized by friction wear tester, sand blasting machine and electrochemical workstation, respectively. Results show that mainly TiN_x(*x*=1, 0.98 and 0.90) dendrites, α -Ti flake crystals and surface TiO₂ are formed in both coating. The sliding friction and erosion wear properties and electrochemical is thicker and exhibits uniform composition with higher nitrogen content than the N-TC4 coating. The sliding wear resistance of the N-Ti-TC4 coating is 5.3 times and 1.3 times higher than that of the TC4 alloy substrate and the N-TC4 coating, respectively. The erosion wear loss rate is reduced by 37% and 12%, respectively. The polarization resistance value of the N-Ti-TC4 is 18 915 Ω higher than that of the TC4 alloy, and 12 537 Ω higher than that of the N-TC4 coating. **Keywords:** laser nitriding; TC4; microstructures; friction and wear; electrochemical corrosion

收稿日期: 2018-04-09; 修回日期: 2018-09-07

网络出版日期: 2018-10-13 13:41; 网络出版地址: http://kns.cnki.net/kcms/detail/11.3905.TG.20181013.1340.010.html

通信作者: 李伟洲 (1975—), 男 (汉), 研究员, 博士; 研究方向: 航空及工业用金属材料的表面处理及防护; E-mail: liwz2008@hotmail.com

基金项目: 国家自然科学基金 (51371059); 广西自然科学基金 (2014GXNSFCA118013, 2016GXNSFDA380022); 广西高等学校高水平创新 团队项目

Fund: Supported by National Natural Science Foundation of China (51371059), Natural Science Foundation of Guangxi Province (2014GXNSFCA118013, 2016GXNSFDA380022) and High School Innovation Team Project of Guangxi

引用格式: 童庆, 陈泉志, 莫秋凤, 等. 预置 Ti 粉对激光氮化 TC4 涂层组织及性能的影响[J]. 中国表面工程, 2018, 31(5): 167-174. TONG Q, CHEN Q Z, MO Q F, et al. Effects of pre-set Ti powder on microstructure and properties of laser nitriding TC4 coating[J]. China Surface Engineering, 2018, 31(5): 167-174.

0 引 言

钛合金密度小、比强度高、耐热、耐腐蚀以及 力学性能优良^[1-2],已被广泛应用于航空航天、航 海船舶和汽车工业等领域^[3-4]。随着使用范围不断 拓宽,服役环境变得越来越严苛,从而对钛合金 的性能提出了更高的要求。TC4(Ti-6Al-4V)是目 前应用最广的钛合金,由于其显微硬度偏低 (300~450 HV)^[5],在接触摩擦过程中容易产生黏着 磨损,因此改善其表面硬度和耐磨性尤为重要。

表面氮化是提高材料硬度和耐磨性的常用方 法。其中激光氮化工艺简单,成本低,自动化程 度高,常用于钛合金的表面处理。X Chen 等⁶⁹采 用特殊的喷嘴输送氮气,在大气氛围下对钛合金 进行激光氮化,可获得树枝晶状的 TiN 涂层,涂 层样品的耐磨性明显提高,硬度高达920 HV,而 且该方法不需要外置氮气室,灵活性高;但是, 他们发现涂层的 N 含量不足, 过高的激光功率密 度会导致 TiN 相的分解。H. C. Man 等凹将 TC4 置 于氮气室内,采用低功率激光照射样品表面,发 现在基体未熔化的情况下能实现激光扩散氮化, 获得的氮化层硬度较基体提高了 2.5 倍, 磨损量 减少约8倍。SchaafP等^[8]认为,在激光氮化TC4 时,当激光功率及氮气流速增加到一定值的时 候,氮化涂层厚度并不会成比例增大,甚至有下 降的趋势,其主要原因是 N 在熔融钛表面的吸收 速度大于 N 向内扩散的速度, 当钛表面的 N 量达 到饱和时,会限制 N 元素向内扩散,从而抑制渗 氮层厚度的增加,并导致涂层中相分布的不均匀。

为了解决该问题,在 TC4 表面预置 1 mm 钛 粉后再进行激光氮化处理,通过增加反应面积促 使 N 与钛粉充分反应以制备富 TiN 相的涂层,并 与直接激光氮化 TC4 获得的涂层进行比较,分析 和观察两种涂层的物相结构和微观形貌,评价涂 层的滑动摩擦性能、冲蚀磨损性能及电化学腐蚀 性能,讨论造成涂层性能差异的主要原因。

1 材料及方法

采用 TC4(Ti-6Al-4V) 钛合金作为基体材料, 其化学成分如表 1 所示, TC4 钛合金经线切割加 工成尺寸为 30 mm×22 mm×6 mm 的板材, 经 80、 120、240、400 和 600 号水磨砂纸打磨平整后,置 于酒精中超声波清洗 5 min 然后风干, 放入厚度

表 1 试验用 TC4 钛合金的化学成分

Table 1 Composition of TC4 titanium alloy for experiment (w/%)

Element	Fe	Al	0	С
Content	<0.25	5.50-6.50	< 0.012	< 0.08
Element	Н	V	Ν	Ti
Content	< 0.13	3.50-4.50	< 0.05	Bal.

为 7 mm,中间镂空尺寸为 31 mm×23 mm 的模具 中,取过量用聚乙烯醇调配好的膏状钛粉放入模 具中样品表面,用玻璃棒铺平并抹除多余量,风 干后放入干燥箱,在 80 ℃下干燥 2 h。采用型号 为 ZKSX-2004 固体光纤耦合激光器,激光波长为 1064 nm, 焦距 200 mm,光斑直径为 3 mm。在激 光辐照的同时,从专用的保护气体喷嘴送入高纯 氮气 (99.9997%)。

具体的制备参数:激光功率 P=700 W,扫描 速度 vg=300 mm/min,氮气流速 vL=15 L/min,搭 接率 50%。为方便比较,将先预置钛粉再激光氮 化制备的 TiN 涂层记为 N-Ti-TC4,直接对 TC4 进 行激光氮化制备的 TiN 涂层记为 N-TC4。从制备 好的样品截取检测样品至标准尺寸,依次对检测 面进行 400~8000 号水磨砂纸打磨抛光,以降低粗 糙度对后续性能检测的影响,然后进行续性能检测。

采用型号为 D/Max2500 V 的 XRD 衍射仪对 涂层进行物相结构分析。具体参数如下: Cu-Ka 射线,管压和管流分别为 40 kV 和 120 mA, 扫描范围为 20°~80°,扫描速度为 8°/min。根据 SEM 观测获得的涂层厚度,对样品表面进行逐层 打磨,并用千分尺测量磨除的涂层厚度,再由 XRD 分析涂层表面、中部及底部的相组成。

采用配有能谱仪 (EDS) 的 SU-8020 场发射电 子显微镜 (FESEM) 对样品截面进行形貌观察及元 素分析。观察前,用氢氟酸:硝酸:水=1:2: 17 的腐蚀液对抛光后的样品进行腐蚀 30 s,之后 用去离子水冲洗,再风干。

样品经过打磨抛光,去除氧化层后进行滑动 摩擦磨损、冲蚀磨损性能及电化学腐蚀性能测 试。滑动摩擦磨损试验在 MM-2000 型摩擦磨损试 验机上进行。对摩环材质是 YT15 钨钴钛类硬质 合金,硬度约为 2400 HV;对摩环尺寸:直径 D=40 mm、厚度 h=10 mm;测试样品尺寸:30 mm× 7 mm×6 mm。参数为载荷 100 N,转速 200 r/min, 试验时间 30 min。通过分析磨损形貌与磨损率对 涂层的耐磨性进行评判。用精度为 0.01 mg 的 BT25S 型电子天平对磨损前后试样的质量进行称 重以计算磨损率,计算公式 (1) 如下:

$$V = \frac{m_0 - m_1}{\pi D v t d} \tag{1}$$

其中 m₀ 为磨损前的质量, m₁ 为磨损后的质量, D 为对磨环的直径, v 为对磨环的转速, t 为 磨损时间, d 为对磨环与试样接触线宽。

采用 9070W 喷砂机对涂层样品进行冲蚀磨损 实验。样品尺寸为 10 mm×10 mm×6 mm。空气压 力为 0.51 MPa,砂水比为 25%;冲蚀砂粒为 SiO₂,粒径为 200~400 μm。喷嘴直径为 5 mm, 喷嘴距样品 300 mm,冲蚀角度 90°,单次冲蚀时 间 1 min,对冲蚀前后试样进行称重。通过冲蚀磨 损失重速率对样品冲蚀性能进行评判,其计算方 法如下:

冲蚀磨损失重速率 =
$$\frac{样品单次失重量}{面积×单词冲蚀时间}$$
 (2)

采用 CHI750e 型电化学工作站对不同样品进 行电化学性能检测。使用标准的三电极体系,试 样、铂电极和甘汞电极分别为工作电极、辅助电 极和参比电极。测试在室温条件下进行,腐蚀液 为 1 mol/L 的 HCl 溶液,待测样品涂层面积为 1 cm²,其余部分石蜡包覆。

2 结果与分析

2.1 TiN 涂层物相结构及 EDS 能谱分析

采用 XRD 分别对两种工艺制备的涂层逐层打

磨后进行物相分析,结果如图1所示。由图1(a) 可知, N-TC4 涂层较薄, TiNx(x=1, 0.98 和 0.90) 峰强随深度增大衰减较快, 在深度为 108 μm 时氮化物的峰几乎消失。而 N-Ti-TC4 涂层的 TiN_x 峰强随深度增大基本保持稳定,在深度为 286 与 626 μm 的强度几乎是一致的 (图 1(b)), 这 是由于预置钛粉层相对疏松,氮气容易渗入,钛 粉与氮气的反应面积大:在激光熔覆同时, 钛粉 与氮气发生自蔓延反应,更多的 N 元素参与形成 氮化物反应充分,从而生成较厚富 TiN 相的致密 涂层。涂层表面也出现了 TiO2 相。这是由于涂层 制备是在大气氛围下通过同步送气进行的,存在 少量氧气与基体表面接触, TiO2 的生成吉布斯自 由能较 TiN 的低^[9-10],如反应 (3) 和 (4) 所示,因 此会生成 TiO2 相。此外, TiN0.3 相的生成是由于 N量不足造成的, Kaspar J 等^[8,11]认为, 当氮与钛 的原子比小于 10% 时会生成低 N 量的 TiN_{0.3} 相。

 $2\text{Ti}(s) + N_2 \rightarrow 2\text{TiN}(s), \ \Delta G_f^o = -74.0 \text{ kcal/mol}$ (3)

 $Ti(s) + O_2 \rightarrow TiO_2(s), \Delta G_f^o = -212.6 \text{ kcal/mol}$ (4)

图 2 是两种工艺制备的涂层截面形貌,图中 相应点的 EDS 能谱分析结果见表 2。从图 2(a)可 以发现,N-TC4 涂层厚约为 130 µm,涂层中的树 枝晶比较粗大,排列不规则。而 N-Ti-TC4 涂层则 厚达 650 µm 左右,其形成的树枝晶比较细小,分 布更均匀和紧密 (图 2(b))。同时,对比 A、D 区域 元素比例可发现 N-Ti-TC4 涂层中的氮含量约是 N-TC4 的 3~4 倍,说明了 N-Ti-TC4 中的氮化物含 量较高,这与 XRD 分析结果是一致的。N-TC4 涂

图 1 逐层打磨后样品不同深度的 XRD 衍射图谱 Fig.1 XRD diffraction patterns of laser nitriding samples at different depths

(a) N-TC4

(b) N-Ti-TC4

图 2 涂层样品的截面微观形貌

					(w/%)
Area –		Element			
		Ν	Al	V	Ti
N-TC4	A(surface)	2.02	3.36	1.83	92.79
	B(point)	3.82	1.15		95.03
	C(point)		7.73	4.52	87.75
N-Ti-TC4	D(surface)	7.76	2.09	1.12	89.03
	E(point)	10.03	0.78		89.19
	F(point)	0.02	7.83	3.34	88.83

表 2 图 2 中各标注区相应元素平均含量

Table 2 Average chemical composition of area marked in Fig. 2

层中 A 区域的 N 元素含量为树枝晶 B 中的 53%, N-Ti-TC4 涂层中 C 区域的 N 元素含量为树枝晶 E 中的 77%,这也反应出 N-Ti-TC4 涂层中树枝晶 更加密集。从对片状晶 B、C 等点及树枝晶 E、 F 等点的能谱分析结果可发现,片状晶中几乎没 有发现氮元素,而 Al 元素含量却高于基体的 (5.5%~ 6.5%),根据片状晶局部取向一致的特点^[12]可知其 为二次析出的含 Al、V 的α-Ti。树枝晶上的 N 元 素含量较高,结合 XRD 分析可知树枝晶应为 TiNx 组织; 与传统气体扩散氮化制备的 TiN 涂层 不同,激光氮化过程中,由于 TiN 相凝固点较高,凝固时会首先形核,并以树枝晶的形态沿散热方向生长。当温度降至 Ti 的凝固点时,熔融 Ti 才在枝晶之间以片状形式生成 α-Ti,从而形成 含有 TiN 与 α-Ti 的混合组织^[13-14]。

2.2 滑动摩擦性能

图 3 为 TC4 基体及两种涂层在滑动磨损后的 表面形貌。从图 3(a) 中观察发现,TC4 基体表面 存在较多较深的犁沟和大量片状磨屑,这是由于 TC4 硬度低,粘性较大^[15],在磨损试验过程中, 对磨环快速转动与 TC4 基体表面形成相对滑动, 磨环对基体形成显微切削,从而产生较深的犁 沟;基体磨屑粘着在磨环表面,受挤压成片状磨 屑并附着在基体表面。因此,TC4 的磨损方式为 切削磨损和粘着磨损。

磨损后 N-TC4 样品表面的犁沟较浅, 磨粒和 片状的磨屑也较少, 如图 3(b) 所示。这是由于表 面的氧化物去除后, 次表层中的 α-Ti 相硬度相对 较低, 粘着力大, 在与高硬度的磨环相对滑动摩 擦过程中, 在压应力与切向应力的共同作用下形

(a) TC4 substrate

(b) N-TC4

成浅犁沟;随着摩擦的进行,犁沟交汇导致涂层 中的 TiN 硬质颗粒脱落。剥落的硬质颗粒在随后 的滑动摩擦过程中对涂层造成挤压和刻划,从而 形成细线状的磨痕。因此,N-TC4 的磨损方式主 要为磨粒磨损和黏着磨损。

如图 3(c) 所示, N-Ti-TC4 涂层磨损后的形貌 较平整,没有明显的犁沟和划痕。这是由于其氮 化涂层中 TiN 相含量高,分布均匀,而 TiN 具有 良好的耐磨性^[16],在滑动摩擦过程中,TiN 硬质 颗粒脱落较少,在随后的相对滑动摩擦过程中对 涂层破坏低,不会产生犁沟或划痕,只会增加涂 层的局部应力。当涂层所受的局部应力超过其应 变时,产生微裂纹和局部脱落,从而出现了少量 的磨粒和片状剥落磨屑。N-Ti-TC4 的磨损方式主 要是磨粒磨损。

图 4 为 3 种不同试样的单位面积磨损率。从 图 4 中可知, TC4 基体磨损率为 4.66 mg/m²; N-TC4 涂层的磨损率为 1.10 mg/m², 较 TC4 基体降低了 近 76%; N-Ti-TC4 涂层的磨损率为 0.89 mg/m²,

图 4 不同试样的滑动磨损率 Fig.4 Sliding wear loss rate of different samples 较 TC4 基体降低了近 81%,比激光氮化 TC4 制备的氮化涂层降低近 19%。表明 N-Ti-TC4涂层的耐磨性最好,这与表面磨损形貌分析结果一致。

2.3 冲蚀磨损性能

图 5 是样品冲蚀过程中的磨损失重率曲线。 由图 5 可见,TC4 的冲蚀主要分为两个阶段。冲 蚀磨损初始阶段,时间从 1~3 min,冲蚀失重率由 14.7 mg/(cm²·min)降低到 10.7 mg/(cm²·min);冲蚀 磨损稳定阶段,时间从 3~10 min,冲蚀失重率基 本保持稳定,约 10.6 mg/(cm²·min)。在初始冲蚀 阶段,观察到样品表面出现冲击火花,这是由于 表面强化的作用^[17-18],使样品表面强度与硬度提 高,石英砂粒对样品的显微切削效果降低,冲蚀 磨损失重逐渐降低。到达冲蚀稳定阶段后,样品 的表面强化达最大值,砂粒对 TC4 表面的冲蚀作 用达到了稳定,因此冲蚀失重率几乎保持不变。

N-TC4 涂层的冲蚀过程分为 4 个阶段。冲蚀 磨损的初始阶段,时间为 1~2 min,冲蚀失重率从 13.5 mg/(cm²·min)降低到 8.3 mg/(cm²·min)。由于 涂层表面的冲击强化作用,从而使冲蚀磨损失重

因う 叶底居顶入重半面线

Fig.5 Curves of weight loss rate after erosion wear test

率逐渐减小。涂层的消耗阶段,时间 2~6 min,冲 蚀失重率稳定,约为 8.3 mg/(cm²·min),是由于涂 层中部 TiN 分布较为均匀,冲蚀磨损失重率维持 在较低的水平。基体暴露阶段,时间为 6~9 min, 冲蚀失重率逐渐从 8.3 mg/(cm²·min)增加到 10.7 mg/(cm²·min),这是由于涂层底部 TiN 减少, *a*-Ti 逐渐增多,氮化层已几乎耗完,TC4 基体开 始暴露,砂粒的显微切削的效果增强。基体完全 暴露阶段,时间 9~10 min,其冲蚀磨损失重率与TC4 稳定的冲蚀磨损失重率相当。

N-Ti-TC4 涂层的冲蚀磨损过程与 TC4 的类 似,但失重率明显降低。在初始冲蚀阶段,冲蚀 失重率从第 1 min 的 12.3 mg/cm² 降低到第 3 min 的 7.3 mg/(cm²·min)。之后,样品的冲蚀失重率基 本保持在 7.2 mg/(cm²·min) 左右。

样品冲蚀磨损 10 min 实验前后的表面微观形 貌如图 6 所示。由图 6(a) 可见,TC4 表面存在着 大量显微切削犁沟和冲击凹坑,这是由于冲蚀过 程中,石英砂粒撞击基体表面形成犁沟,犁沟相 互叠加后导致凹坑生成,使表面变得凹凸不平。 相对而言,冲蚀后的 N-TC4 涂层表面较平整,显 微切削犁沟与冲击凹坑较少(图 6(b)),这是因为 TiN 相的存在降低了石英砂对涂层的切削破坏。 N-Ti-TC4 样品经冲蚀后,表面最为平整,显微切 削犁沟很少,冲击凹坑较浅,能谱分析表明涂层 尚保留,说明其耐冲蚀磨损性能最好。

Fig.6 Surface morphologies of different samples before and after erosion wear test

2.4 电化学腐蚀

图 7 为样品浸泡于 1 mol/L HCl 稀盐酸溶液中 的塔菲尔极化曲线,对应的拟合结果如表 3 所 示。从图中可以发现,TC4 基体的自腐蚀电位最 小,自腐蚀电流密度最大,分别为-0.557 V 和 2.845×10⁻⁶A/cm²,极化电阻为 18 514 Ω。当扫描 电压超过自腐蚀电位后,电流密度随之增大,并 从 A 点进入钝化阶段,这是由于 TC4 表面形成的 钝化膜对基体起到保护作用。之后,随着扫描电 压增加,样品中的电流密度缓慢减小,曲线出现 多处局部跳动,表明样品表面形成的保护膜出现 了点蚀的破坏;当到达 B 点后,点蚀逐渐增多并 出现大面积腐蚀,直至钝化膜被完全破坏。

N-TC4 涂层的自腐蚀电位为-0.544 V, 自腐 蚀电流密度 2.061×10⁻⁶A/cm²,极化电阻 24 892 Ω, 极化曲线随电压的变化与 TC4 基体类似,但耐蚀 性较基体有一定程度提高。N-Ti-TC4涂层具有最 大的自腐蚀电位-0.487 V,最小的自腐蚀电流密 度 1.326×10⁻⁶A/cm² 和最大的极化电阻 37 429 Ω, 耐蚀性最好。但电化学腐蚀机理相同,分别从 A、C、E 点开始钝化,然后从 B、D、F 点开始由 局部点蚀转化为面蚀从而腐蚀破坏钝化层。

Fig.7 Tafer curves of different samples

表 3 不同样品 Tafel 曲线拟合结果

Table 3 Tafer curve fitting results of different samples					
Sample	Self-corrosion current / V	Current density / (A·cm ⁻²)	Polarization resistance / Ω		
TC4	-0.557	2.845×10^{-6}	18 514		
N-TC4	-0.544	2.061×10^{-6}	24 892		
N-Ti-TC4	-0.487	1.326×10 ⁻⁶	37 429		

3 结 论

(1)两种工艺方法制备的涂层表面主要由 TiN_x(*x*=1,0.98,0.90)及少量TO₂相组成;N-TC4 涂层中部由TN_x、TN_{0.3}及α-Ti相组成,涂层底部 没有TiN_x相形成;N-Ti-TC4 涂层由于Ti与N 反应充分,涂层较厚,含氮量较高,涂层中部及 底部主要由TN_x及α-Ti相组成,涂层底部存在少 量的TiN_{0.3}相。

(2)氮化层可有效提高基体的耐磨性和耐冲蚀 性。N-TC4 涂层的磨损率较基体的 4.66 mg/m² 降 至 1.1 mg/m²; N-Ti-TC4 涂层的耐磨性较高,磨损 方式主要是磨粒磨损,磨损率为 0.89 mg/m²,冲 蚀磨损失重率较基体和 N-TC4 涂层分别降低了 37% 和 12%。

(3) 表面氮化层可提高基体的耐酸性腐蚀。 N-Ti-TC4 涂层腐蚀趋势与腐蚀速率较低,耐酸蚀 性能最好,其极化电阻较 TC4 钛合金基体和 N-TC4 涂层提高了 18 915 和 12 537 Ω。

参考文献

[1] 赵永庆. 钛合金相变及热处理[M]. 中南大学出版社, 2012, 78-96.

ZHAO Y Q. Phase Transformation and heat treatment of ti-

tanium alloys[M]. Central South University Press, 2012, 78-96 (in Chinese).

[2] 林翠, 杜楠. 钛合金选用与设计[M]. 化学工业出版社,
 2014, 23-25.
 LIN C, DU N. Selection and Design of Titanium alloys[M].

Chemical Industry Press, 2014, 23-25 (in Chinese).

- [3] 付艳艳, 宋月清, 惠松骁, 等. 航空用钛合金的研究与应用 进展[J]. 稀有金属, 2006, 30(6): 850-856.
 FU Y Y, SONG Y Q, HUI S X, et al. Progress in research and application of aerospace titanium alloys[J]. Rare Metals, 2006, 30(6): 850-856 (in Chinese).
- [4] PORNSIN-SIRIRAK T N, TAI Y C, NASSEF H, et al. Titanium-alloy MEMS wing technology for a micro aerial vehicle application[J]. Sensors & Actuators A Physical, 2001, 89(1/2): 95-103.
- [5] 张喜燕,赵永庆,白晨光. 钛合金及应用[M]. 化学工业出版 社, 2005: 45-49.
 ZHANG X Y, ZHAO Y Q, BAI C G. Titanium alloy and its application[M]. Chemical Industry Press, 2005: 45-49(in Chinese).
- [6] CHEN X, WU G, WANG R, et al. Laser nitriding of titanium alloy in the atmosphere environment[J]. Surface & Coatings Technology, 2007, 201(9-11): 4843-4846.
- [7] MAN H C, BAI M, CHENG F T. Laser diffusion nitriding of Ti-6Al-4V for improving hardness and wear resistance[J].
 Applied Surface Science, 2011, 258(1): 436-441.
- [8] SCHAAF P, KASPAR J, HOECHE D. Laser gas-assisted nitriding of Ti alloys[M]. Comprehensive Materials Processing, 2014: 261-278.
- [9] CHAN C W, LEE S, SMITH G C, et al. Fiber laser nitriding of titanium and its alloy in open atmosphere for orthopedic implant applications: Investigations on surface quality, microstructure and tribological properties[J]. Surface & Coatings Technology, 2017, 309: 628-640.
- [10] DEAN J A. Handbook of Lan's chemistry[M]. Science Press, 2003: 838-866(in Chinese)
- [11] KASPAR J, BRETSCHNEIDER J, JACOB S, et al. Microstructure, hardness and cavitation erosion behavior of Ti-6Al-4V laser nitrided under different gas atmospheres[J]. Surface Engineering, 2013, 23(2): 99-106.
- [12] ZHECHEVA A, SHA W, MALINOV S, et al. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods[J]. Surface & Coatings Technology, 2005, 200(7): 2192-2207.
- [13] MALINOV S, ZHECHEVA A, SHA W. Relation between the microstructure and properties of commercial titanium alloys and the parameters of gas nitriding[J]. Metal Science & Heat Treatment, 2004, 46(7-8): 286-293.

- [14] GIL F J, CANEDO R, PADRÓS A, et al. Enhanced wear resistance of ball-and-socket joints of dental implants by means of titanium gaseous nitriding[J]. Journal of Biomaterials Applications, 2002, 17(1): 31.
- [15] ZHANG F, YAN M. Microstructure and wear resistance of in situ, formed duplex coating fabricated by plasma nitriding Ti coated 2024 Al alloy[J]. Journal of Materials Science & Technology, 2014, 30(12): 1278-1283.
- [16] FARè S, LECIS N, VEDANI M, et al. Properties of nitrided layers formed during plasma nitriding of commercially pure Ti and Ti-6Al-4V alloy[J]. Surface & Coatings Technology, 2012, 206(8-9): 2287-2292.
- [17] 张辉, 付尧, 张成成, 等. 激光原位制备 TiN/Al 复合涂层及 其抗冲蚀性能[J]. 中国表面工程, 2016, 29(4): 125-131.
 ZHANG H, FU W, ZHANG C C, et al. In-situ preparation of tin/al composite coating by laser and its erosion resistance[J].
 China Surface Engineering, 2016, 29(4): 125-131 (in Chinese).
- [18] 高玉魁. 喷丸强化对 TC4 钛合金组织结构的影响[J]. 稀有 金属材料与工程, 2010, 39(9): 001536-1539.
 GAO Y K. Effect of Shot Peening on microstructure of TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2010, 39(9): 001536-1539 (in Chinese).

(责任编辑:陈茜)

•本刊讯•

2018 抗菌科学与技术论坛将在北京召开

2018(第3届)抗菌科学与技术论坛由全国卫生产业企业管理协会抗菌产业分会、北京化工大学生 命科学与技术学院、生物医用材料北京实验室共同主办,将于2018年11月24—25日在北京西郊宾馆召 开。大会以"健康中国建设国家战略下的抗菌学术发展"为主题,届时国内外抗菌相关学术领域的知名专 家、学者将就抗菌表面与界面、无机抗菌材料、有机抗菌材料、其他抗菌材料、微生物检测及分析等主题 进行报告和展开交流。

大会将设立 7 个不同主题的分会场/专场:①抗菌表面与界面分会场:专注于探讨无机/有机/生物等二 元或多元复合抗菌材料的表面、微观结构、接合界面及其抗菌机理理论研究及应用;②无机抗菌材料分会 场:专注于探讨银、锌、铜、钛等金属元素或非金属低维碳材料相关的无机抗菌材料与纳米抗菌材料及其 抗菌理论或应用研究;③有机抗菌材料分会场:专注于探讨有机小分子、高分子等合成抗菌材料或天然 抗菌材料及其抗菌理论或应用研究;④微生物检测及分析分会场:专注于探讨微生物(特别是耐药菌) 的基本理论与发现、抗菌材料与微生物、抗菌检测与抗菌性能评价新方法,新的诸如光、电等物理抗菌理 论或应用研究等;⑤抗菌纺织专场:专注于探讨纤维/纺织品改性用抗菌功能材料、抗菌纤维/纺织品及其 抗菌理论和应用研究;⑥青年学者专场:面向 35 岁以下抗菌科学工作者,以及在校硕士生、博士生,为 他们提供介绍研究方向、展示研究成果和进行学术报告的机会;⑦产学研专场:将邀请学术界和产业界 的同仁共聚一堂,从技术、产品、产业、人才等角度进行产学研合作的交流和探讨。

会议联系方式: 曾雅晶 15652838082; E-mail: ciaa2001@126.com

(摘自全国卫生产业企业管理协会抗菌产业分会网)