doi: 10.11933/j.issn.1007-9289.2015.03.007

SiO2 涂层热循环过程中损伤与脱落的试验表征*

王 杨,朱嘉琦,代 兵,高 鸽,杨 磊

(哈尔滨工业大学复合材料与结构研究所,哈尔滨150080)

摘 要:为了解可能导致 SiO₂ 陶瓷涂层损伤和脱落的因素,从而有针对性地提出减缓涂层损伤与脱落的方法,延长涂 层的寿命,采用扫描电子显微镜(SEM)、X 射线衍射仪(XRD)、原子力显微镜(AFM)、Raman 光谱等表征手段,对利用 溶胶凝胶法制备的 SiO₂ 涂层,在温度范围为 250~450 ℃,经历 0、10、30、50 次热循环试验后表、界面形貌、结构和化学 键变化情况进行了表征和描述。结果表明,随着热循环次数增加,涂层表面和内部产生了裂纹并发生扩展,表面粗糙 度(Ra)增加到 727.3 nm,某些区域还出现了颗粒撞击和气泡状破损导致的损伤。同时界面逐步开裂、脱层、钝化,涂层 表面和内部出现了局部烧结、晶粒细化、内应力释放、微观应变增加等现象,这些都是导致其损伤乃至脱落的诱因。

关键词: SiO₂ 涂层; 热循环试验; 损伤脱落; 裂纹扩展; 界面钝化

中图分类号: TG174.453 **文献标志码:** A **文章编号:** 1007-9289(2015)03-0042-07

Experimental Characterization of Damage and Spallation of SiO₂ Coatings During Thermal Cycling Process

WANG Yang, ZHU Jia-qi, DAI Bing, GAO Ge, YANG Lei

(Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080)

Abstract: To know the factors for the damage and spallation of SiO₂ coatings, a method was put forward to slow the damage and spallation of the coatings, and to extend the life of the coatings. Scanning electron microscope (SEM), X-ray diffraction (XRD), atomic force microscope (AFM), Raman spectroscopy and some other characterization methods were used. SiO₂ coatings were prepared by sol-gel method. At 250-450 °C, after 0, 10, 30 and 50 thermal cycles, respectively, changes in surface and cross section morphologies, structures and chemical bonds of damaged SiO₂ coatings during the thermal cycling process are characterized and described. The results show that as the number of cycles increases, cracks generate and propagate on the surface of and in the coatings, with the roughness (Ra) going up to 727.3 nm. There are also damage and spallation caused by particles striking or bubble-like caves in some regions. Meanwhile, the interface gradually cracks, delaminates and passivates. Some phenomena on the surface of and in the coatings, such as partial sintering, grain refinement, stress release and micro-strains increasing, are also observed. These are all the causes for the damage and spallation of the coatings.

Keywords: SiO₂ coatings; thermal cycling; damage and spallation; crack propagation; interface passivation

0 引 言

随着科技的发展,传统陶瓷和先进陶瓷及其制品在各个领域得到广泛的应用,各种成分的陶 瓷涂层也被用于航空航天器的发动机表面^[1]、半 导体及电子器件^[2]、传感器^[3]、新能源^[4]等领域。

其中,以氧化物、氮化物、碳化物或某些有机物,特别是SiO₂为主要结构成分,添加辐射填料 所制备的高辐射涂层在航空航天领域得到了应

收稿日期: 2015-01-08; 修回日期: 2015-05-04; 基金项目: * 国家自然科学基金(51372053)

通讯作者:朱嘉琦(1974—),男(汉),教授,博士;研究方向:光电薄膜与晶体;Tel:(0451)86417970;E-mail:zhujq@hit.edu.cn

网络出版日期: 2015-05-07 15:59; 网络出版地址: http://www.cnki.net/kcms/detail/11.3905.TG.20150507.1559.001.html
 引文格式: 王杨,朱嘉琦,代兵,等. SiO₂ 涂层热循环过程中损伤与脱落的试验表征 [J]. 中国表面工程, 2015, 28(3): 42-48. Wang Y, Zhu J Q, Dai B, et al. Experimental characterization of damage and spallation of SiO₂ coatings during thermal cycling process [J]. China Surface Engineering, 2015, 28(3): 42-48.

用。美国研制的 X-37B 轨道试验飞行器在其迎 风面使用了带 TUFI 涂层(主要结构成分为 SiO₂)的 AETB 陶瓷隔热瓦,可在恶劣天气下发 射^[5]。此外,一种主要成分为 SiO₂ 的硼硅玻璃涂 层目前应用在 2/3 以上的航天器的表面,这种高 辐射涂层具有良好热稳定性和低催化系数^[6]。

虽然溶胶-凝胶法制备 SiO₂ 涂层受到了越 来越多的关注,但这种方法制备的 SiO₂ 涂层在制 备初期就可能产生贯穿裂纹等影响涂层性能的 缺陷[7],导致涂层在使用和贮存过程中容易损伤 和脱落。同时,对于陶瓷涂层损伤失效机理和脱 落过程也一直是一项热点。大多数研究者直接 套用断裂力学的相关模型和理论来研究陶瓷涂 层破损失效的过程。有研究利用疲劳理论和循 环加载的方法,借助 R 曲线计算加载次数^[8]或应 力阈值^[9];还有些研究集中于脆性裂纹,利用裂 纹生长的速率模型(da/dN曲线)^[10],或利用残余 应力释放理论[11],模拟裂纹的产生与生长。但由 于陶瓷损伤失效受到形状、材料、载荷与环境、时 间等多因素的影响^[12],在模拟分析中建立的模型 往往不能与实际的陶瓷涂层损伤与失效过程完 美吻合,因此,以实验方法研究陶瓷涂层损伤和 脱落过程势在必行。

已有试验研究涂层或表面损伤失效的过程。 李东荣[13]等在不同输出功率的激光热冲击条件 下,研究了利用等离子喷涂方法制备的 ZrO₂ 涂 层的损伤规律和机理。对于陶瓷涂层,常采用热 震(单次或多次)的方法对其脱落、开裂[14]、氧化 失效[15]的情况和机理进行讨论。实际上,除了表 面裂纹,在陶瓷涂层表面还存在其他形式破损, 这些破损会对其性能及使用寿命产生很大影响。 同时,对于陶瓷涂层在较温和热循环条件下的研 究较为缺乏,而在温和热震条件下涂层表面破损 情况及其机理,对涂层设计及制备具有重要意 义。文中制备了 SiO₂ 涂层,并通过在较低温度下 的热循环试验,研究了热循环过程中SiO2涂层的 表面和界面形貌、粗糙度、结构、成分和化学键变 化情况,从而了解其损伤脱落机制,为延长涂层 的寿命提供了指导方法。

1 试验部分

1.1 涂层制备方法

选用 Ni-Fe 高温合金(各元素的质量分数为

16%Cr、52%Ni和23%Fe,其余为9%)作为基体 材料,利用溶胶凝胶法制备厚度约为60 μm的 SiO₂高辐射率涂层。

溶胶的制备:预先配置浓度为 6%的稀硝酸 溶液,量取 95 mL 正硅酸乙酯和 120 mL 无水乙 醇在室温下搅拌。将稀硝酸缓慢滴入上述溶液 中,在 60 ℃的水浴锅中搅拌并保温 4 h,直到溶 液澄清。

凝胶涂层的制备:取 30 mm×70 mm 的 Ni-Fe高温合金片,用提拉法以 5 mm/s 的速度在制 得的样品溶液中进行提拉,之后进行 200 ℃的快 速热处理,重复如上操作 5 次。经过多次热处 理,直到得到 1 050 ℃热处理试样。

1.2 热循环试验方法

所使用的循环加热系统为由天津市中环实 验电炉有限公司生产的型号为 SK-G08123K 的 1 200 ℃开启式真空/气氛管式电炉(Furnace 1 200 ℃)。考虑 SiO₂ 陶瓷的耐高温特性,又要尽 量使模拟试验与真实情况相接近,选取的循环温 度区间为 250~450 ℃。其中,在高温(450 ℃)保 温时间 60 min,在低温(250 ℃)不保温;升温时间 40 min(升温速率约为 5 ℃/min),降温时间 120 min(降温速率约为 1.67 ℃/min)。

对于进行热循环的涂层试样,在经历 0、2、5、 10、18、30、50 次循环之后,利用 FEI 公司生产的 Helios nanolab 600i 型场发射扫描电子显微镜对 其表面、截面形貌进行观测;利用布鲁克公司生 产的 Dimension Icon 型原子力扫描探针显微镜 对样品的粗糙度进行分析;利用 Philips 公司 X' pert-Pro 型号的 X 射线衍射仪,表征涂层的结构 变化;利用 Horiba Jobin Yvon 公司所生产的 HR800 型号激光拉曼光谱仪,分析其化学键震动 模式的变化。

2 结果及分析

2.1 表面形貌和粗糙度的演变

图 1(a)~(d)中可以明显看出由于裂纹扩展 导致涂层破损失效和脱落的趋势。未经历热循 环的涂层,表面裂纹较少且不明显。当循环次数 达到 30 次时,形成不连续的"孤岛",50 次时形成 由贯穿裂纹包络的连续区域。随着循环次数的 增加,表面裂纹产生和扩展,形成片状,并最终导 致涂层片状脱落。

(a) 0 cycles

(b) 10 cycles

(c) 30 cycles

(d) 50 cycles

从其他的一些扫描电子显微镜照片中也可 以明显看出另外几种涂层损伤和脱落失效模式。 如由某些 SEM 图中边缘区域的损伤,可以看出 在失效过程中涂层表面存在分层现象,两层之间 可以看到类似气泡破裂状的脱层,如图 2 所示, 随循环次数增加,这样的脱层区域数目增多,同 时每个区域的面积增大。

图 2 SiO₂ 涂层气泡状脱层的形貌 Fig. 2 Morphology of bubble-like spallation of SiO₂ coating

解释这一现象的涂层气泡状脱落过程的示 意图如图 3 所示,在镀膜过程中由于颗粒间的堆 叠形成了一些孔洞,这些孔洞内部封存了一些气 体,在热循环过程中孔洞内部压强增大,孔洞聚 集,形成的大孔洞为减小表面积会发生聚集形成 气泡,逐步形成较大的气泡空气层,在内部残余应

Fig. 3 Schematic diagrams of the bubble-like spallating of SiO₂ coating

力释放过程中导致涂层的脱落。特别地,在涂层 中间有过渡层的情况下,有些时候由于表面涂层 和过渡层之间的结合力较弱,表面涂层更容易发 生这种形式的脱落。

还有类似颗粒撞击的损伤失效区域形成,如 图 4(a)所示,这种撞击可能是由于试样贮存和处 理过程中不可避免发生碰撞,且在压痕实验中预 制压痕时也容易产生这种现象。这种失效模式 出现的较早。在若干次热循环过程中成为裂纹 源,开始产生裂纹,经历 30 次和 50 次热循环后涂 层的表面形貌分别如图 4(b)(c)所示。

利用原子力显微镜测定涂层表面粗糙度,得 到的轮廓算术平均偏差(Ra)和轮廓最大高度 (R_{max})变化曲线如图 5 所示。

从图中可以看出,随着循环次数增加,Ra近 似呈线性上升趋势。表明涂层表面粗糙度随热 循环次数增加而增加。同时,由于 R_{max}可以在一 定程度上反应裂纹深度情况,其数值随热循环次 数的增加而增加,也可以在一定程度上说明裂纹 在也发生了纵向扩展。

(a) Initial stage (10 cycles)

(b) Mid-term stage (30 cycles)

(c) Latest stage (50 cycles)

图 5 热循环过程 SiO₂ 涂层轮廓算术平均偏差 (Ra)和 轮廓最大高度(R_{max})变化曲线

Fig. 5 Average roughness (Ra) as a function of maximum height(R_{max}) during thermal cycling of SiO₂ coatings

2.2 截面形貌的演变

新制备的涂层及经历热循环后的涂层截面 形貌如图 6 所示。涂层在热循环过程中截面形 貌发生了较大的演变,主要包括以下 3 个方面:

(1)涂层内部裂纹的出现和扩展。当热循环 次数小于10次时,涂层内部基本无裂纹产生,当 热循环次数达到 10 次时,涂层内部开始产生微小的裂纹,并随热循环次数增加而扩展,当循环次数达到 50 次时,可以看到有从表面延伸至界面的裂纹产生,如图 6(c)所示。

(2)界面脱层的产生。如图 6(d),涂层在热 循环过程中,最初界面粘接较好,后开始出现基 体与涂层界面间空隙变大的现象。在涂层加速 老化的热循环过程中,涂层中残余应力的释放和 重新分布使得界面成为应力集中区,引起涂层和 基体之间产生相对应变,是导致界面脱层的最直 接原因。

(3)界面钝化模糊。结合扫描电子显微镜附带的能谱附件对涂层界面处成分进行线扫描,得 到涂层与基体界面附近元素分布情况,新制备涂 层和经过50次热循环后的涂层的界面附近Fe 元素分布情况如图7所示。可知界面由最开始 的清晰明显,逐渐变得模糊,一般认为这种现象 是由于涂层和基体之间的成分渗透、界面处吸氧 与元素富集所引起的,由于陶瓷涂层与基体间的 结合主要是机械结合的锚固作用,界面钝化可能 会造成界面与基体之间机械结合力的下降。

(a) 0 cycles

(b) 10 cycles

(c) 50 cycles (penetrationg crack)

(d) 50 cycles (interface delamination)

图 7 经历不同热循环次数后 SiO₂ 涂层界面附近 Fe 元素分布随距离变化 Fig. 7 Curves of distribution of Fe near the interface after different cycles in SiO₂ coatings with the distance differs

2.3 微观结构的演变

从 XRD 图谱中发现经历不同次数热循环后 的图谱形状极为相似,说明过程中并没有新的相 产生。这也从一方面说明,热循环试验没有破坏 涂层的原有状态,其循环温度范围选择较为合理,可以对陶瓷涂层贮存与使用的实际过程进行 模拟。根据 Sherry-Hall 公式计算样品的晶粒大 小和微观应变,可以得到图 8 所示的曲线图。

图 8 SiO₂ 涂层内部晶粒大小和微观应变随热循环次数 变化曲线

Fig. 8 Change curves of the grain size and microscopic strain in SiO_2 coatings with the thermal cycles increase

在热循环过程中,随着循环次数的增加,晶 粒大小近似呈指数下降,即出现了晶粒细化的现 象,这是由于加热时所产生的能量提供给晶界生 长,晶界的面积增加。对于成分复杂的晶体,晶 界是较为脆弱的区域,会产生成分偏析等各种现 象,这些晶界为裂纹的继续扩展提供了通道,使 涂层更容易沿晶界开裂。

随着循环次数的增加,涂层的微观应变近似 呈线性增大。这是由于涂层的内应力造成的。 由于涂层制备和热循环过程中,涂层与基体热膨 胀系数的不同使得涂层内部存在残余应力,涂层 中存在的残余应力随着热循环而逐渐释放,释放 过程导致陶瓷内部的微观应变不断增大。

根据涂层脱落的主要原因,在涂层的实际制 备或应用过程中,可以采取以下方法尽量减少涂 层的损伤与脱落,尽可能发挥功效,延长寿命:通 过对表面形貌的监测,对较大的裂纹和气泡状脱 落区域进行原位修补;在运输过程中注意缓冲, 减少涂层因颗粒撞击发生的损坏;使用增强相或 与衬底材料和表面涂层结合情况较好的过渡层 (如 SiC 等)对界面情况进行改善,等。

2.4 涂层表面化学键变化

涂层经历不同热循环次数后的 Raman 图谱 如图 9 所示。

文献[16]SiO₂ 晶体具有 1 000~1 200 cm⁻¹、 600~800 cm⁻¹和 300~600 cm⁻¹3 个拉曼谱带,分 别对应了 Si—O 键的非对称伸缩振动、Si—O—Si 键的对称伸缩振动和 Si—O 键的弯曲振动。每 一个 谱带 都由 2~3 个带组成,且拉曼峰在 400 cm⁻¹和 800 cm⁻¹处发生分裂。由图 9 可知,涂 层在经历热循环前,拉曼位移峰位在 400 cm⁻¹附近 出现分裂的双峰,在 800 cm⁻¹附近几乎不见峰的 分裂。而在涂层经历 30、50 次热循环之后,在 400 cm⁻¹附近出现了 2~3 个分裂的峰,而在 800 cm⁻¹附近也出现了 3 个左右分裂的峰,分裂 数目和强度随循环次数增加而增大,说明涂层内 晶型的混乱度增大,同时峰的宽度变大,说明涂 层内部晶体结晶度变差。

图 9 SiO₂ 涂层在不同循环次数下的拉曼图谱 Fig. 9 Raman spectra of SiO₂ coatings at different thermal cycles

在未经热循环的涂层的拉曼图谱中,未见 208 cm⁻¹处拉曼散射峰,而在经历 30、50 次热循 环后的图谱中出现且随循环次数增加而增强。 在 214 ~ 208 cm⁻¹范围的拉曼散射峰,对应了 [SiO₄]的旋转或平移振动,说明在热循环过程中, 涂层中 SiO₂ 与基体中或烧结过程混入的的一些金 属元素发生了反应烧结,形成了 A_2B_3 [SiO₄]₃ 结 构的石榴子石。

另外,在经历热循环之后的涂层中,501 cm⁻¹ 附近也有新的散射峰出现,这是由于纤维石英的 石英晶体中 Si—O 键的对称弯曲振动所引起的, 这种单斜的多晶质石英经常在玛瑙和绿玉髓等 矿石中存在。同时,关注位于 400 cm⁻¹左右的分 裂的散射峰,可以发现,在未经热循环时,两个峰 的位置为 385 cm⁻¹和 410 cm⁻¹,而在经历 30 和 50 次热循环之后,峰的位置变为 389.5 cm⁻¹、 413.4 cm⁻¹和 387.3 cm⁻¹、411.4 cm⁻¹,这证明了 涂层中应力的存在。当涂层中存在应力时,会造 成散射峰的红移或蓝移^[17]。

3 结 论

(1) SiO₂ 高辐射率涂层在经历热循环过程

中,表面裂纹数量增多且在横向和纵向均发生扩展。同时界面处产生裂纹并扩展,界面脱层和模糊钝化,表面和基体的成分互相渗透,且结合界面发生氧元素富集。

(2)所使用的热循环温度(250~450℃)下, 未见新相生成或原有相消失的情况。随热循环 次数增加,样品中晶粒尺寸减小,晶粒细化,涂层 内部的微观应变呈现增长趋势。

(3)试验中可能存在的 SiO₂ 破损失效和脱落的原因主要有:表面裂纹扩展、气泡微脱粘、颗粒撞击、内部裂纹扩展、界面脱粘和钝化、晶格畸变、应力释放等。

参考文献

- [1] Dragomir S D, Oprişan C, Ianus G, et al. Study of the influence of ceramic thermal coating on the mechanical resistance of the blades of aircraft engines [J]. Procedia Technology, 2014, 12: 329-333.
- [2] Sayer M, Sreenivas K. Ceramic thin films: fabrication and applications [J]. Science, 1990, 247(4946): 1056-60.
- [3] Seo D, Jung S, Lombardo S J, et al. Fabrication and electrical properties of polymer-derived ceramic (PDC) thin films for high-temperature heat flux sensors [J]. Sensors and Actuators A: Physical, 2011, 165(2): 250-255.
- [4] Liu H Y, Xu J, Guo B H, et al. Effect of Al₂O₃/SiO₂ composite ceramic layers on performance of polypropylene separator for lithium-ion batteries [J]. Ceramics International, 2014, 40(9): 14105-10.
- [5] 武勇斌,赫晓东,李军. 陶瓷隔热瓦表面 SiO₂-B₂O₃-Mo-Si₂-SiB₄ 涂层的制备与性能研究 [J]. 航天制造技术,2012 (5): 6-9.

Wu Y B, He X D, Li J. Preparation and properties of $SiO_2 - B_2O_3 - MoSi_2 - SiB_1$ coating for ceramic insulation tile [J]. Aerospace Manufacturing Technology, 2012(5): 6 – 9 (in Chinese).

- [6] 赵骁.新型混杂 SiO₂ 凝胶的制备及其涂层的抗氧化性能研究 [D].哈尔滨:哈尔滨工业大学,2008.
 Zhao X. Preparation of new hybrid SiO₂ gel and investigation on the coating's oxidation resistance [D]. Harbin: Harbin Institute of Technology, 2008 (in Chinese).
- [7] Li M W, Lin T G, Zeng G, et al. High-emissivity SiO₂-SiC Hybrid sol-gel coatings over YSZ/NiCrAlY layers for Ni-based superalloy [J]. Rare Metal Materials and Engineering, 2012, 41(S3): 310-312.

- [8] Kruzic J J, Cannon R M, Ager J W, et al. Fatigue threshold R-curves for predicting reliability of ceramics under cyclic loading [J]. Acta Materialia, 2005, 53(9): 2595-605.
- [9] Kruzic J J. Predicting fatigue failures [J]. Science, 2009, 325(5937): 156-158.
- [10] McDowell D L, Dunne F P E. Microstructure sensitive computational modeling of fatigue crack formation [J]. International Journal of Fatigue, 2010, 32(9): 1521-2.
- [11] Pettinà M, Biglari F, Heaton A, et al. Modelling damage and creep crack growth in structural ceramics at ultra-high temperatures [J]. Journal of the European Ceramic Society, 2014, 34(11): 2799-805.
- [12] 周益春,刘奇星,杨丽. 热障涂层的破坏机理与寿命预测
 [J]. 固体力学学报,2010,31(5):504-531.
 Zhou Y C, Liu Q X, Yang L. Failure mechanisms and life prediction of thermal barrier coatings [J]. Chinese Journal of Solid Mechanics, 2010, 31(5): 504-531 (in Chinese).
- [13] 李东荣,王富耻,马壮,等. ZrO₂ 涂层激光热冲击损伤机 理研究 [J]. 新技术新工艺,2006(6):39-42.
 Li D R, Wang F C, Ma Z, et al. Mechanics study of thermal shock by laser irradiation in ZrO₂ ceramic coatings [J].
 New Technology & New Process, 2006(6): 39-42 (in Chinese).
- [14] 王学兵,张幸红,杜善义.梯度热障涂层的研究现状[J]. 中国表面工程,2004,17(3):5-12.
 Wang X B, Zhang X H, Du S Y, et al. Current status of graded thermal barrier coatings[J]. China Surface Engineering, 2004, 17(3): 5-12 (in Chinese).
- [15] 魏振毅,李强,叶辉,等.等离子喷涂纳米结构 Al₂O₃+ 13%TiO₂ 涂层的热震失效机理 [J].中国表面工程, 2009,22(3):38-42.
 Wei Z Y, Li Q, Ye H, et al. Thermal shock failure mechanism of plasma sprayed nanostructured Al₂O₃-13% TiO₂ coating [J]. China Surface Engineering, 2009, 22(3):38-42 (in Chinese).
- [16] 祖恩东,李茂材,张鹏翔. 二氧化硅类玉石的显微拉曼光 谱研究 [J]. 昆明理工大学学报,2000,25(3):77-78.
 Zu E D, Li M C, Zhang P X. Study on jades of SiO₂ by Raman spectroscopy [J]. Journal of Kunming University of Science and Technology, 2000,25(3):77-78 (in Chinese).
- [17] Chen S L, Shen B, Zhang J G, et al. Evaluation on residual stresses of silicon-doped CVD diamond films using X-ray diffraction and Raman spectroscopy [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(12): 3021-6.