引用本文:赵云,何伟伟,许建兵,苏虹阳,刘鹏,乐恢榕,陈迪.通过氢还原热处理提升TiO2薄膜的抗菌性能[J].中国表面工程,2023,36(1):77~84
ZHAO Yun,HE Weiwei,XU Jianbing,SU Hongyang,LIU Peng,LE Huirong,CHEN Di.Antibacterial Properties of TiO2 Film Improved by Hydrogen Reduction Heat Treatment[J].China Surface Engineering,2023,36(1):77~84
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 677次   下载 340 本文二维码信息
码上扫一扫!
分享到: 微信 更多
通过氢还原热处理提升TiO2薄膜的抗菌性能
赵云1,2, 何伟伟1, 许建兵1,2, 苏虹阳1,2, 刘鹏1, 乐恢榕1, 陈迪1
1.清华大学未来实验室 北京 100084;2.清华大学美术学院 北京 100084
摘要:
提升在可见光区间的抗菌效率一直是二氧化钛(TiO2)抗菌性能研究的重要方向。采用脉冲激光沉积(PLD)制备 TiO2 薄膜,并通过氢还原热处理的方法提升 TiO2 表面的氧空位浓度从而增强其抗菌性能。结果发现,在以单晶氧化钇稳定的氧化锆(YSZ)为衬底时,生长的 TiO2 薄膜为高度择优取向的锐钛矿相。生长温度越高,锐钛矿相的 XRD 衍射峰越强,薄膜越致密。将在 600 ℃下生长的 350 nm 厚的 TiO2薄膜进行抗菌性能测试,发现其抗菌率约为 86%。对样品进一步在 4% H2氛围下进行还原处理,发现其抗菌率提升到约为 97%。通过 XPS、UV-Visible 和 PL 测试,发现 TiO2经过还原热处理后在其表面形成更多的氧空位,在 TiO2带隙中形成氧空位缺陷能级,导致在可见光区域吸光性能增强,使其具有更高的抗菌性能。通过氢还原过程调控材料的缺陷组成,并研究 TiO2 薄膜的光催化抗菌性能及抗菌机理。这种简易的调控 TiO2 光吸收的方法可为规模生长提供技术可行性。
关键词:  脉冲激光沉积  TiO2薄膜  抗菌  还原热处理  光吸收效率
DOI:10.11933/j.issn.1007?9289.20220419001
分类号:TB34
基金项目:国家重点研发计划(2021YFA0718900)、佛山-清华产学研合作协同创新专项资金(2020THFS0122)、国家自然科学基金(NSCF52102137)和新型陶瓷与精细工艺国家重点实验室开放课题(KF202101)资助项目
Antibacterial Properties of TiO2 Film Improved by Hydrogen Reduction Heat Treatment
ZHAO Yun1,2, HE Weiwei1, XU Jianbing1,2, SU Hongyang1,2, LIU Peng1, LE Huirong1, CHEN Di1
1.The Future Laboratory, Tsinghua University, Beijing 100084 , China;2.Academy of Art & Design, Tsinghua University, Beijing 100084 , China
Abstract:
Titanium dioxide (TiO2) has good photocatalytic activity and can degrade environmental pollutants by oxidation. It has been used in photocatalysis, on antibacterial, antifouling and self-cleaning surfaces, and ultraviolet (UV) detectors. However, it predominantly absorbs UV light and has low absorption of visible light. Improving antibacterial efficiency in the visible light region has consistently been a key research direction for TiO2 antibacterial properties. Currently, to improve TiO2 photocatalytic efficiency under visible light, multiple schemes have been proposed, such as metal or non-metal doping, and laser surface or vacuum heat treatment. These methods introduce point defects in the TiO2 lattice, and narrow the band gap by changing the semiconductor energy band and introducing impurities or defect energy levels in the band gap, thus enhancing visible light absorption. To better understand the TiO2 antibacterial mechanism, it is necessary to accurately control its morphology, composition, and crystal structure. Thin film materials adequately meet these requirements. Recently, pulsed laser deposition (PLD) has become a widely adopted film deposition technology owing to its simple system setup, wide range of deposition conditions, material selection and ability to prepare high-quality repeatable films. In this study, TiO2 thin films are prepared using PLD, and the oxygen vacancy concentration on the TiO2 surface is increased by hydrogen reduction heat treatment to enhance its antibacterial properties. Results demonstrate that the TiO2 films grown on a single crystal yttria stabilized zirconia (YSZ) substrate are the highly preferred anatase phase, and the higher the growth temperature, the stronger the X-ray diffraction (XRD) peak of the anatase phase and the denser the film. The antibacterial properties of 350 nm thick TiO2 film grown at 600 ℃ were measured and it was identified that the antibacterial rate is approximately 86%. The sample was further reduced in a 4% H2 atmosphere, and it was confirmed that the antibacterial rate increased to approximately 97%. Test results demonstrate that through X-ray photoelectron spectroscopy (XPS), a UV-visible spectrophotometer (UV-visible) and a laser Raman spectrometer (PL), additional oxygen vacancies formed on the TiO2 surface after reduction heat treatment, and oxygen vacancy defect energy levels formed in the TiO2 band gap. This resulted in enhanced light absorption in the visible region and higher antibacterial performance. The material defect is controlled by the hydrogen reduction process, and the TiO2 thin film photocatalytic antibacterial property and antibacterial mechanism were studied. This straightforward method for regulating TiO2 light absorption provides technical feasibility for scale growth.
Key words:  pulsed laser deposition  TiO2 thin film  antibacterial  reduction heat treatment  light absorption efficiency
手机扫一扫看