doi: 10. 11933 / j. issn. 1007-9289. 20221115003

具有增强光催化和抗菌活性的 TiO₂@Ag-GO 复合材料

戴 胜 刘鲁英 王致钘 杨 苹

(西南交通大学材料科学与工程学院 成都 610036)

摘要:光催化降解环境中的污染物被认为一种理想的清洁方法,其中二氧化钛(TiO₂)是目前最有前途的光催化材料之一。 但由于能带宽、光生电子与空穴快速复合等特点,限制了其利用效率和范围,开发一种高效的TiO₂基光催化复合材料具有重 要意义。通过简单的溶胶-凝胶法和一步 Marangoni 法,将TiO₂和 Ag 纳米颗粒(AgNPs)和氧化石墨烯(GO)有效结合,制备 出显著增强光催化活性和抗菌能力的复合材料TiO₂@Ag-GO。氧化石墨烯(GO)具有多个催化活性中心,可以高效地进行 光催化反应降解污染物。同时,还能提高电荷分离程度,抑制光生电子和空穴复合,提高TiO₂光催化活性。AgNPs具有存 储电子和促进电荷分离的能力,同时释放的Ag⁺,赋予材料广谱的抗菌性能。光催化试验抑菌试验结果表明,复合材料能高 效降解亚甲基蓝染料,2h降解率达到74.5%,同时对金黄色葡萄球菌和铜绿杆菌有较强的杀灭作用。这种简易制备的高催化 和杀菌功能的TiO₂基复合材料在光催化清洁领域有很大的应用潜力。

关键词:二氧化钛 (TiO₂); Ag 纳米颗粒 (AgNPs); 氧化石墨烯 (GO); 光催化活性; 抗菌性能 中图分类号: TB332

TiO₂@Ag-GO Composite Materials with Enhanced Photocatalytic and Antimicrobial Activities

DAI Sheng LIU Luying WANG Zhixing YANG Ping

(School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610036, China)

Abstract: Environmental pollution has become an increasingly serious issue. Numerous studies have revealed that the increased incidence of cancer and other diseases can be associated with environmental pollution. Pollutants include not only inorganic matter, but also bacteria and organic matter. Photocatalytic breakdown of contaminants in the environment is considered an ideal cleaning technology, and one of the most promising photocatalytic compounds is titanium dioxide (TiO₂). However, their utilization efficiency and range are limited because of their narrow energy bandwidth and the quick recombination of photogenerated electrons and holes. Therefore, developing efficient TiO₂-based photocatalytic composites is crucial. A simple sol-gel and one-step Marangoni methods were used to efficiently combine TiO₂. Ag nanoparticles (AgNPs), and graphene oxide (GO) to make composites of TiO₂@Ag-GO with significantly enhanced photocatalytic activity and antibacterial capabilities. GO has multiple catalytically active centers that can efficiently degrade pollutants via photocatalytic reactions. Simultaneously, it can improve charge separation, restrict the recombination of photogenerated electrons and holes, and boost the photocatalytic activity of TiO₂. AgNPs can hold electrons, facilitate charge separation, and release Ag⁺, making them a material with diverse antibacterial properties. Ag-doped TiO₂ sol-gel was prepared by the sol-gel method, and the prepared sol-gel was then coated on the surface of an Si substrate via spin-coating. An anatase-type Ag-doped TiO₂ film (TiO₂@Ag) was prepared via heat treatment. Finally, the TiO₂@Ag-GO nanocomposite photocatalytic material was

收稿日期: 2022-11-15; 修改日期: 2023-04-20; 接受日期: 2023-06-01; 上线日期: 2023-12-15。

Received November 15, 2022; Revised April 20, 2023; Accepted in revised form June 1, 2023; Available online December 15, 2023.

引用格式:戴胜,刘鲁英,王致钘,等.具有增强光催化和抗菌活性的 TiO2@Ag-GO 复合材料[J].中国表面工程,2024,37(1):118-125.

Citation format: DAI Sheng, LIU Luying, WANG Zhixing, et al. TiO₂@Ag-GO composite materials with enhanced photocatalytic and antimicrobial activities[J]. China Surface Engineering, 2024, 37(1): 118-125.

effectively prepared by transferring a large-area ultrathin GO film, produced via the single-step Marangoni process, onto its surface. The compositions of the films made of TiO₂ and TiO₂@Ag were examined using X-ray Diffraction (XRD), Transmission Electron Microscope (TEM), High Resolution Transmission Electron Microscopy (HRTEM), and X-ray Photoelectron Spectroscopy (XPS). the Ag in the TiO₂@Ag sample was primarily in the form of Ag₂O nanoparticles, and the TiO₂ sample was primarily composed of anatase crystals. Ion-release experiments demonstrated that TiO_2 (Ag-GO could stably release Ag^+ from Phosphate Buffered Saline (PBS) for at least 12 d. The rates of TiO₂ and TiO₂@Ag degradation in a 2 h photocatalytic methylene blue degradation test were 42.4 and 52.5%, respectively. Simultaneously, the degradation rate increased considerably after the addition of GO, reaching 74.5% for TiO₂@Ag-GO. These findings suggest that Ag doping and GO loading enhance the photocatalytic activity of TiO₂. This is because when TiO₂ is modified by AgNPs and GO, TiO₂ absorbs UV radiation; the electrons generated by TiO₂ are transferred to the AgNPs, which demonstrate electron storage capability, serving as electron traps that promote charge separation. In contrast, GO on the semiconductor surface contains numerous catalytically active centers that can efficiently break down pollutants in a photocatalytic reaction. Furthermore, GO significantly enhances photocatalysis by increasing the degree of charge separation and preventing the recombination of photogenerated electrons and holes in the semiconductor. Seeding assays with Gram-negative (Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus) were used to assess the broad-spectrum antibacterial capabilities of the composites. Scanning Electron Microscope (SEM) images and statistical analyses of bacterial adhesion and proliferation revealed that many bacteria attached to and proliferated on the TiO₂ surface, and the bacteria tended to aggregate to form colonies. The wrinkled shape of the GO surface prevented bacterial aggregation, resulting in a more even distribution of the bacteria on the TiO_2 -GO surface, with significantly fewer bacteria present. The TiO_2 (2) Ag and TiO_2 (2) Ag-GO surfaces drastically reduced the number of bacteria and severely damaged their morphology, demonstrating significant bactericidal activity. AgNPs and Ag⁺ can bind to negatively charged bacterial biofilms, disrupting the bacterial membrane potential, and leading to bacterial death. This simple TiO₂-based composite, with significant photocatalytic and antibacterial activities, has considerable potential for use in photocatalytic cleaning.

Keywords: titanium dioxide (TiO2); Ag nanoparticles (AgNPs); graphene oxide (GO); photocatalytic activity; antibacterial properties

0 前言

过去的几十年里,环境污染问题变得越来越严 重。大量的研究和调查表明,癌症和其他疾病发病 率的上升与环境污染有关[1-3],污染物不仅包括无机 物,还包括细菌和有机物^[4]。尽管正在努力清洁环 境,但仍然迫切需要找到新的材料和技术,以满足 当前清除环境中各种污染物的需要。光催化是一种 有效、经济、环保的光氧化过程,过程中产生的活 性氧自由基能有效去除污染物。利用太阳能去除污 染物被认为是一种理想的方法^[5-7]。因此,高活性光 催化材料在环境净化装置的应用受到了研究人员的 高度重视。大多数用于光催化降解污染物的材料是 二氧化钛 (TiO₂) 和氧化锌 (ZnO)^[8-10]。其中, TiO₂ 光催化材料具有氧化效率高、光稳定性好、化学惰 性好、环境友好、无毒等优势,是最有前途的材料 之一^[11-12],但由于其带隙较宽(3.2 eV)、光生电子 与空穴快速复合等因素,其光催化性能受到限制, 影响了应用范围和利用效率[13-14]。因此,开发高效 光催化的 TiO2 复合材料具有重要意义。

为了提高 TiO₂ 的光催化性能, 研究人员做出了 巨大努力, 如贵金属沉积改性、离子掺杂改性、半 导体耦合改性等^[15-20]。有研究表明, 贵金属掺杂改 性 TiO₂ 的光催化性能的提高, 可以归因于贵金属颗 粒能够有效提高光生电子与空穴的分离效率。当贵 金属沉积或掺杂时, 金属与 TiO₂之间形成肖特基能 垒, 可促进光生电子向金属粒子迁移, 减少电子-空穴对复合, 从而提高 TiO₂ 的光催化性能。本研究 选择纳米银 (AgNPs) 作为贵金属进行掺杂, 而 AgNPs 也是应用最广泛的纳米抗菌材料之一^[21], Ag⁺的释放和 ROS 的产生使复合材料具有广谱抗菌 性能。

石墨烯由于自身具有的独特性质,在生命和材 料领域中得到了广泛的应用。研究表明,石墨烯具 有高的电子迁移率和扩展的 π-π 共轭结构,是纳米 复合材料的理想电子受体,目前已得到越来越多的 关注和广泛的开发。芳香族染料可以与石墨烯的芳 香区进行 π-π 堆积,这在很大程度上增加了芳香族 染料在催化剂上的选择性吸附,因此石墨烯的使用 可以显著增强芳香族染料在石墨烯复合光催化剂上 吸附性,从而提升光催化性能^[22]。在此基础上,研 究人员开发了多种 TiO₂-石墨烯复合材料,以提高 TiO₂的光催化性能。其中氧化石墨烯 (GO) 是石 墨烯的水分散氧化衍生物,具有独特的理化性质, 是构建复合光催化剂的良好候选材料。由于 GO 同时包含芳香 (sp2) 和脂肪族 (sp3) 结构域, 而且高表面积上带负电荷的活性位点,进一步扩 展了可能与表面发生的相互作用的类型,包括聚 合物包裹、π-π相互作用、电子供体-受体配合物、氢 键和范德华力^[23]。

基于上述背景,将半导体 TiO₂、AgNPs 和 GO 结合,制备出具有强光催化活性和抗菌能力的纳米复 合光催化材料。首先制备了掺 Ag 的 TiO₂溶胶-凝胶, 然后用旋涂镀膜的方法将制备的溶胶-凝胶涂覆在 Si 基底表面,再通过热处理制备锐钛矿型掺 Ag 的 TiO₂ 薄膜 (TiO₂@Ag)。最后,将单步 Marangoni 法自组装 得到的大面积超薄 GO 膜转移到 TiO₂@Ag 表面,成功 制备出纳米复合光催化材料 TiO₂@Ag-GO。光催化试 验和抑菌试验结果表明,该复合材料能有效降解亚甲 基蓝染料,同时对金黄色葡萄球菌和铜绿杆菌具有超 强的杀伤作用。因此,推测 TiO₂@Ag-GO 材料在光催 化清洗领域有很大的应用潜力。

1 试验准备

1.1 材料

氧化石墨烯 (GO, 片状, $15\sim20 \mu m$) 和亚甲 基蓝 (AR, $\geq 96\%$) 从上海阿拉丁生化科技股份有 限公司采购。钛酸丁酯 (AR, $\geq 98.5\%$)、无水乙醇 (AR, $\geq 99.7\%$)、冰乙酸 (AR, $\geq 99.0\%$)、乙酰丙 酮 (AR, $\geq 99.5\%$)、十二烷基硫酸钠 (SDS, AR, $\geq 92.5\%$) 从成都科龙化学试剂有限公司采购和 AgNO₃ 固体 (ACS, $\geq 99.0\%$) 从 Sigma 采购。

1.2 样品制备

1.2.1 TiO2@Ag 溶胶-凝胶的制备

如图 1 所示,首先在 36 mL 乙醇溶液中加入 9 mL 钛酸丁酯,搅拌 30 min,然后依次加入 5 mL 冰醋酸和 1 mL 乙酰丙酮,搅拌 30 min,得到 TiO₂ 溶胶。在 TiO₂ 溶胶中加入 5 mL 乙醇和 4 mL 水的 混合物,促进钛酸丁酯水解,得到 TiO₂溶胶-凝胶^[24]。最后称取 0.225 g AgNO₃,溶于 20 mL 乙醇溶液中,接着滴加到 TiO₂ 溶胶-凝胶中。搅拌均匀后静置 30 min,得到 Ag 掺杂的 TiO₂ 溶胶-凝胶^[25]。

图 1 TiO₂、Ag 纳米颗粒(AgNPs)和氧化石墨烯(GO)复合材料的制备示意图

Fig. 1 Schematic diagram of preparation of TiO₂, Ag nanoparticles (AgNPs) and graphite oxide (GO) composites

1.2.2 锐钛矿型 TiO₂@Ag 纳米薄膜的制备 采用旋涂法将上述过程制备的 Ag 掺杂的 TiO₂ 溶胶-凝胶旋涂在 Si 表面,制备出 TiO₂@Ag 纳米薄 膜^[26],温度为室温,转速为 2 000 r / min。最后将纳

米膜在 450 ℃下退火 3 h,得到锐钛矿型 TiO₂@Ag 纳米薄膜。该样品被命名为 TiO₂@Ag。

1.2.3 TiO₂@Ag-GO 复合材料的制备

首先,利用单步 Marangoni 法自组装大面积超 薄氧化石墨烯薄膜^[27]。其中自组装过程如图 1 所示。 将氧化石墨烯超声分散在乙醇溶液中,浓度配制为 5 mg / mL。将氧化石墨烯分散体注入去离子水表 面,乙醇由于马兰戈尼效应在去离子水表面迅速扩 散,带有石墨烯薄片的乙醇从表面张力低的区域(富 含乙醇)移动到表面张力高的区域(富含去离子水)。 当乙醇蒸发时,氧化石墨烯薄片碰撞并通过 π-π 相 互作用相互结合。然后,随着氧化石墨烯分散体负 载的增加,组装好的氧化石墨烯薄片迅速被推进到 去离子水的裸露表面。加入表面活性剂 SDS 后,氧 化石墨烯膜进一步压缩压实,在去离子水表面形成 大面积氧化石墨烯膜。这样形成的 GO 膜可以任意 转移,将 GO 膜转移到 TiO₂@Ag 表面就以形成 TiO₂@Ag-GO 复合材料。

1.3 材料表征

为了观察 Ag 掺杂 TiO₂的组成和结构,用刀片 将 TiO₂@Ag 薄膜刮掉并分散在酒精溶液中超声分 散 30 min,然后将其置于非晶铜网格上制备电镜样 品,最后用场发射透射电镜(TEM,JEM-2100F, JEOL,Japan)对其进行观察。采用 X 射线衍射分析 (XRD, X'Pert Pro MPD, Philips, Netherlands)分析材 料的晶体结构。采用 X 射线光电子能谱(XPS, K-Alpha, Thermo Fisher Scientific, USA)分析薄膜表 面 化 学 成 分,采用 扫 描 电 子 显 微镜(SEM, JSM-7800F, JEOL, Japan)观察材料表面形貌,采用 水接触角(WCA, DSA 100 Krüss, GmbH, Germany) 测试材料表面亲疏水性。

1.4 Ag⁺释放

采用原子吸收光谱法(AAS, TAS-990F)测定 不同样品在磷酸盐缓冲盐水(PBS, pH=7.4)中的 $Ag^{+}释放量。简单地说,将样品(7 mm×7 mm)浸$ 泡在 2 mL PBS 中, 2 d 收集一次溶液测试,随后添 $加 2 mL 新鲜 PBS。为了确定 <math>Ag^{+}释放的时间曲线,$ 这个过程总共重复了 12 d,以生成不同时间点的释 放曲线。

1.5 光催化降解亚甲基蓝

用去离子水将亚甲基蓝粉末配制成 5 mg/L。 将样品浸泡在 1 mL 的亚甲基蓝溶液中,紫外照射 (365 nm, 16 mW/cm²) 10、20、30、60 和 120 min。 在每个时间点,收集 200 μL 的溶液,用酶标仪 (BIO-TEK Instruments, USA)在 664 nm 波长下测定 吸光度(A)。A 与降解率(G)的关系计算为:

$$G = [(A_0 - A_t) / A_0)] \cdot 100\%$$
(1)

式中, *A*₀为未降解亚甲基蓝的原始吸光度, *A*_t为降 *t*小时后的吸光度值。

1.6 抗菌试验

细菌播种的方法与文献描述的方法一致^[28]。金 黄色葡萄球菌和铜绿杆菌来自四川省人民医院。用 细胞培养基将细菌原液稀释,调整密度为 1× 10⁶ CFU/mL。然后取出1mL细菌悬浮液液滴加到 24 孔细胞培养板中(样品提前灭菌后放置在 24 孔 细胞培养板中)。37 ℃下孵育 6 h 后用 0.9% NaCl 溶液洗涤三次,然后用 2.5%戊二醛溶液固定 12 h 以上。最后利用扫描电子显微镜(SEM)进行观察, 采用 Image pro 软件进行细菌计数。数据以平均数± 标准差(*n*=3)表示,并使用单因素方差分析(*表示 和 TiO₂, TiO₂@Ag 比较;三个符号表示*p*<0.005)。

2 结果与讨论

2.1 材料表征

采用 TEM 和 HRTEM 对 TiO₂和 TiO₂@Ag 薄膜的组成进行分析。图 2 的左侧显示了薄膜的形貌。结果表明, TiO₂ 薄膜由 TiO₂纳米颗粒(小于 50 nm)组成,而 TiO₂@Ag 薄膜由 TiO₂纳米颗粒和直径约25 nm 的 Ag₂O 颗粒(暗黑色圆点)组成。HRTEM结果表明,TiO₂样品主要由锐钛矿型 TiO₂组成(间距为 0.35 nm,对应锐钛矿型 TiO₂(101)晶体晶面),而 TiO₂@Ag 中的银纳米颗粒主要由 Ag₂O(211)组成,晶面间距为 0.19 nm^[29]。综上所述,TiO₂样品 主要由锐钛矿晶体组成,而 TiO₂@Ag 样品中的 Ag 主要以 Ag₂O 纳米颗粒的形式存在。

图 2 Ag 掺杂前后 TiO₂ 薄膜的 TEM 和 HRTEM 结果 Fig. 2 TEM and HRTEM results of TiO₂ film before and after Ag doping

XRD 结果(图 3a)也显示 TiO₂ 薄膜晶型为锐 钛矿型。锐钛矿型 TiO₂ 为亚稳相,室温下带隙为 3.2 eV,被认为比稳定相金红石具有更好的光催化 活性。

此外,用 XPS 对薄膜表面的元素组成进行检测,图 3b 为完整的 XPS 谱,在 TiO2薄膜组中,370 eV

中没有 Ag 的特征峰。而在 TiO₂@Ag 组出现了明显 的 Ag 特征峰。Ag3d 的高分辨率结果进一步显示 (图 3c),在 367.6 和 373.6 eV 处的特征峰分别为 Ag3d5/2和 Ag3d3/2^[25]。Ag 的原子含量为 0.18%。 同时检测到明显的 Ti 元素特征峰(图 3d)。上述结 果表明成功制备了 Ag 掺杂 TiO₂ 薄膜。

Fig. 3 XRD results of TiO₂ and XPS results of TiO₂ before and after doping with Ag

通过扫描电镜观察 TiO₂、TiO₂-GO、TiO₂@Ag 和 TiO₂@Ag-GO 的表面形貌,结果如图 4a 所示, Si 和 TiO₂表面光滑、平整无颗粒,而 TiO₂@Ag 表 面观察到少量纳米颗粒,可能是 Ag 颗粒。同时, TiO₂-GO 和 TiO₂@Ag-GO 表面出现大量片层状薄 片。TiO₂@Ag-GO的进一步 EDS 结果表明(图 4b), 片层状位置中有明显的 C 和 O 元素信号,因此该部 分应为 GO。此外,样品组还表现出较强的 Ti、Ag 元素映射,且分布均匀。上述结果说明成功制备了 TiO₂@Ag-GO 复合材料。

2.2 材料性能

首先,检测材料表面亲疏水性,结果如图 5 所 示。Si 衬底表面的水接触角(WCA)为 68.1±4.6°, 沉积 TiO₂ 薄膜后,表面水接触角(WCA)为 23.8 ±2.0°。Ag 掺杂 TiO₂薄膜后,WCA 增大到 45.3± 2.6°。GO 加载后,TiO₂-GO 和 TiO₂@Ag-GO 的表 面 WCA 进一步增大,分别为 60.9±2.6°和 63.2± 5.1°。然后测试 TiO₂@Ag-GO 的 Ag⁺释放能力,结 果如图 6 所示,在 12 d 的浸泡释放过程中,前两天 出现了 Ag⁺的突释,可能是由于表面部分暴露的 AgNPs。后期 Ag⁺释放量相对平缓,长期稳定性约 为 0.097 μ g / mL,说明 TiO₂@Ag-GO 能长时间稳定 释放 Ag⁺。

图 5 样品的水接触角结果

Fig. 6 Result of Ag⁺ releasing of the samples in PBS

2.3 光催化性能

光催化降解亚甲基蓝是检测光催化活性强弱的常用方法。亚甲基蓝在相对时间内降解率较高的样品具有较强的光催化活性。在2h内的光催化试验中,分别在10、20、30、60、120min收集待测样品进行吸光度测试。测试结果如图7a所示,在每个时间点,TiO2、TiO2@Ag、TiO2-GO、TiO2@Ag-GO的亚甲蓝降解率依次增加。降解120min后,TiO2和TiO2@Ag 的降解率分别达到42.4%和52.5%。同时,更明显的是,添加GO后降解率显著提高,降解120min后,TiO2@Ag-GO的降解率达到74.5%,

说明 Ag 掺杂和 GO 加载都能提高 TiO₂ 的光催化活 性。纯 TiO₂ 光生电子-空穴复合速度快,只有一小 部分电子和空穴能参与光催化反应,导致光催化效 率低。而当 TiO₂ 被 AgNPs 和 GO 共修饰时(图 7b), 一方面,TiO₂ 吸收紫外线后,TiO₂产生的电子可以 转移到 AgNPs 中,AgNPs 表现出电子存储能力,起 到电子捕获的作用,有利于电荷分离^[30]。另一方面, 负载在半导体表面的 GO 具有许多催化活性中心, 可以有效地进行光催化反应降解污染物,同时还可 以提高电荷分离程度,抑制半导体中光生电子与空 穴载流子的复合,表现为更强的促进光催化能力。

(a) Photocatalytic degradation of methylene blue

(b) Schematioc diagram of photocatalysis

图 7 光催化降解亚甲基蓝

2.4 抗菌性能

生物污染也是环境污染中亟待解决的问题之一。因此,通过革兰氏阴性菌铜绿杆菌和革兰氏阳 性菌金黄色葡萄球菌播种试验,对复合材料的广谱 抗菌性能进行评价。根据 SEM 图像(图 8)和细菌 粘附增殖菌数统计结果(图 9)可以发现,TiO₂ 表 面有大量的细菌粘附增殖,且细菌有聚集形成菌落 的趋势。TiO₂-GO 表面的细菌更加分散,数量相对 减少,这可能是由于氧化石墨烯表面的褶皱形态抑 制了细菌的聚集。TiO₂@Ag 和 TiO₂@Ag-GO 表面 细菌数量明显减少,细菌形态严重破坏,显示出明 显的杀菌能力。AgNPs 和 Ag⁺可以与带负电荷的细 菌生物膜结合,从而引起细菌膜电位的干扰,导致 细菌死亡^[29]。

图 8 金黄色葡萄球菌和铜绿杆菌粘附在样品上 的扫描电镜图像

Fig. 8 SEM images of *S. aureus* and *V.coli* that

adhered or colonized on the samples

Fig. 9 Statistical results of bacteria number

3 结论

(1)通过溶胶-凝胶法和单步 Marangoni 法将 TiO₂、银纳米颗粒(AgNPs)和氧化石墨烯(GO) 有效结合,制备出光催化复合材料 TiO₂@Ag-GO。

(2) 光催化试验结果证实 TiO₂@Ag-GO 复合材 料与传统纯 TiO₂相比,能高效降解亚甲基蓝染料, 具有显著增强的光催化活性。

(3)抑菌试验证实 TiO₂@Ag-GO 复合材料对金 黄色葡萄球菌和铜绿杆菌有较强的杀灭作用。这种 制备高光催化活性和抑菌能力的 TiO₂ 基复合材料 的策略可能为解决环境清洁领域的许多实际问题提 供一种思路。

参考文献

- GIANì F, MASTO R, TROVATO M A, et al. Heavy metals in the environment and thyroid cancer[J]. Cancers, 2021, 13(16): 4052.
- [2] BAINES C, LEREBOURS A, THOMAS F, et al. Linking pollution and cancer in aquatic environments: A review[J]. Environ Int, 2021, 149(7): 106391.
- [3] RODRIGUES S D, UEDA R M, BARRETO A C, et al. How atmospheric pollutants impact the development of

chronic obstructive pulmonary disease and lung cancer: A var-based model[J]. Environ Pollut, 2021, 275: 116622.

- [4] BELL K Y, WELLS M J M, TRAEXLER K A, et al. Emerging pollutants[J]. Water Environ Res, 2008, 80(10): 2026-2057.
- [5] WANG J L, XU L J. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application[J]. Crit Rev Environ Sci Technol, 2012, 42(3): 251-325.
- [6] SILVA C P, OTERO M, ESTEVES V. Processes for the elimination of estrogenic steroid hormones from water: A review[J]. Environ Pollut, 2012, 165: 38-58.
- [7] MAEDA K, DOMEN K. Photocatalytic water splitting: recent progress and future challenges[J]. J Phys Chem Lett, 2010, 1(18): 2655-2661.
- [8] SAPKAL R T, SHINDE S S, MAHADIK M A, et al. Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films[J]. J Photochem Photobiol B-Biol, 2012, 114: 102-107.
- [9] ZHANG Y Z, XIONG X Y, HAN Y, et al. Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO₂ film electrodes: An overview[J]. Chemosphere, 2012, 88(2): 145-154.
- [10] 杨明刚, 吕晨, 刘慧, 等. 钛种植体表面 CuO 和 Nb₂O₅ 共掺杂 TiO₂ 涂层的制备及抗菌性能和生物相容性[J]. 中国表面工程, 2019, 32(5): 22-29.
 YANG M G, LV C, LIU H, et al. Preparation of CuO and Nb₂O₅ Co-doped TiO₂ coating on titanium implants andits antibacterial properties and biocompatibility[J]. China Surface Engineering, 2019, 32(5): 22-29. (in Chinese)
- [11] ZHANG J, WU Y, XING M, et al. Development of modified N doped TiO₂ photocatalyst with metals, nonmetals and metal oxides[J]. Energy Environ Sci, 2010, 3(6): 715-726.
- [12] OUYANG J L, CHANG M L, LI X J. CdS-sensitized ZnO nanorod arrays coated with TiO₂ layer for visible light photoelectrocatalysis[J]. J Mater Sci 2012, 47(9): 4187-4193.
- [13] DAGHRIR R, DROGUI P, ROBERT D. Modified TiO₂ for environmental photocatalytic applications: A review[J]. Ind Eng Chem Res, 2013, 52(10): 3581-3599.
- PARK H, PARK Y, KIM W, et al. Surface modification of TiO₂ photocatalyst for environmental applications[J]. J Photochem Photobiol C-Photochem Rev, 2013, 15: 1-20.
- [15] FAN G, CHEN L, SU Z, et al. Synthesis and characterization of the optical Properties of $Pt-TiO_2$

aanotubes[J]. J Nanomater, 2017, 201(17): 2309-2315.

- [16] LI P, ZHANG Y, GU H, et al. Mild solution-processed metal-doped TiO₂ compact layers for hysteresis-less and performance-enhanced perovskite solar cells[J]. J Power Sources, 2017, 372: 235-244.
- [17] WANG S Q, LIU W B, FU P, et al. Enhanced photoactivity of N-doped TiO₂ for Cr(VI) removal: Influencing factors and mechanism[J]. Korean J Chem Eng, 2017, 34(5): 1584-1590.
- [18] KIM M W, YOON H Y, OHM T Y, et al. Nanotextured cupric oxide nanofibers coated with atomic layer deposited ZnO-TiO₂ as highly efficient photocathodes[J]. Appl Catal B-Environ, 2017, 201: 479-485.
- [19] MAZABUEL-COLLAZOS A, RODRIGUEZ-PAEZ J E. Chemical cynthesis and characterization of ZnO–TiO₂ semiconductor nanocomposites: Tentative mechanism of particle formation[J]. J Inorg Orgnaomet P, 2018, 28(5): 1739-1752.
- [20] MAKAROVA O V, RAJH T, THURNAUER M C, et al. Surface modification of TiO₂ nanoparticles for photochemical reduction of nitrobenzene[J]. Environ Sci Technol, 2000, 34(22): 4797-4803.
- [21] FRANCI G, FALANGA A, GALDIERO S, et al. Silver nanoparticles as potential antibacterial agents[J]. Molecules, 2015, 20(5): 8856-8874.
- [22] SELIM ARIF SHER SHAH M, PARK A U, ZHANG K, et al. Green synthesis of biphasic TiO₂-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity[J]. ACS Appl Mater Interfaces, 2012, 4(8): 3893–3901.
- [23] GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical bpplications[J]. Chem Rev, 2016, 116(9): 5464.
- [24] LI L H, XU Y, ZHOU Z, et al. The effects of Cu-doped

TiO₂ thin films on hyperplasia, inflammation and bacteria infection[J]. Appl Sci, 2015, 5(4): 1016-1032.

- [25] YAO H, JIANG L, LUO X, et al. Highly efficient photocatalytic anti-bacterial Ag doped titanium dioxide nanofilms with combination of reactive oxygen species and Ag Ions releasing for application of vascular implants[J]. Adv Mater Interfaces, 2021, 8: 2100892.
- [26] ÇIÇEK BEZIR N, EVCIN A, KAYALI R, et al. Comparison of pure and doped TiO₂ thin films prepared by sol-Gel spin-coating method[J]. Acta Phys Pol A, 2017, 132(3): 620-624.
- [27] LI X M, YANG T T, YANG Y, et al. Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application[J]. Adv Funct Mater, 2016, 26(9): 1322-1329.
- [28] LIU X, CHEN J, QU C, et al. A mussel-inspired facile method to prepare multilayer-AgNP-loaded contact lens for early treatment of bacterial and fungal keratitis[J]. ACS Biomater Sci Eng, 2018, 4(5): 1568–1579.
- [29] DAI S, JIANG L, LIU L Y, et al. Photofunctionalized and drug-loaded TiO₂ nanotubes with improved vascular biocompatibility as a potential material for polymer-free drug-eluting etents[J]. ACS Biomater Sci Eng, 2020, 6(4): 2038-2049.
- [30] ESKANDARLOO H, BADIEI A, BEHNAJADY M A, et al. Minimization of electrical energy consumption in the photocatalytic reduction of Cr(VI) by using immobilized Mg, Ag co-impregnated TiO₂ nanoparticles[J]. Rsc Adv, 2014, 4(54): 28587-28596.

作者简介:戴胜,男,1995 年出生,博士研究生。主要研究方向为光 催化材料和生物医用材料。

E-mail: 18883765395@163.com

杨苹(通信作者), 女, 1965年出生, 博士, 教授, 博士研究生导师。 主要研究方向为材料表面设计和金属材料热处理。 E-mail: yangping8@263.net