doi: 10. 11933 / j. issn. 1007-9289. 20221209001

激光合金化掺杂 TiC 对等离子喷涂 8YSZ 热障涂层 热腐蚀行为的影响^{*}

张盼盼^{1,2,3} 孙宇海^{1,2,3} 孙 磊^{1,2,3} 李 波^{1,2,3} 张群莉^{1,2,3} 姚建华^{1,2,3} (1. 浙江工业大学机械工程学院 杭州 310023;

2. 浙江工业大学激光先进制造研究院 杭州 310023;

3. 浙江工业大学高端激光制造装备协同创新中心 杭州 310023)

摘要: 传统的等离子喷涂热障涂层在高温环境下服役易受熔融腐蚀盐渗透而过早剥落失效,研究激光合金化掺杂自愈合材料 TiC 对热障涂层热腐蚀行为的影响具有重要意义。采用大气等离子喷涂技术 (Atmospheric plasma spray, APS) 在 Inconel 718 镍基高温合金表面制备 NiCrAlY 粘结层,采用大气等离子喷涂技术在 NiCrAlY 粘结层上制备 8 wt.%氧化钇部分稳定的氧化 锆 (8 wt.% yttria partially stabilized zirconia, 8YSZ) 陶瓷层,构建典型双层结构热障涂层体系。采用 1 kW 光纤耦合激光器将 自愈合材料 TiC 熔于 8YSZ 热障涂表层,并考察其在 900 ℃下 25%NaCl+75%Na₂SO₄ 混合熔盐中保温 4 h 的热腐蚀行为。结 果表明,与等离子喷涂涂层相比,激光合金化改性热障涂层表面更加光滑,分布有网状裂纹,且结构致密。等离子喷涂涂层 的热腐蚀产物主要是针状颗粒 Y₂(SO₄)₃和 m-ZrO₂,但仅有较少的热腐蚀盐渗透至激光合金化改性热障涂层内部,其热腐蚀 产物为 Y₂(SO₄)₃和少量的 TiO₂。激光合金化改性热障涂层的抗热腐蚀性能较等离子喷涂态热障涂层提升 55.5%,一方面激光 合金化改性层组织致密,可阻止热腐蚀盐渗透至涂层内部,另一方面,激光合金化改性热障涂层表面粗糙度更低,能减少与 热腐蚀盐的接触面积。此外,自愈合材料 TiC 在高温下发生氧化反应引起体积膨胀,实现裂纹的部分自愈合效应,进一步阻 止了热腐蚀反应的发生。采用激光表面改性技术将自愈合材料 TiC 引入热障涂层,激光合金化改性热障涂层不仅具有光滑的 表面形貌,还具有致密的微观组织结构;同时自愈合材料 TiC 在高温环境下的裂纹自愈合效应有助于抑制热腐蚀盐的渗透, 最终提高热障涂层的抗热腐蚀性能。

关键词: 等离子喷涂; 激光合金化; 热障涂层; 抗热腐蚀性能; TiC; 自愈合 中图分类号: TG156; TB114

Effect of Laser Alloying TiC Doping on the Hot Corrosion Behavior of Plasma Sprayed 8YSZ Thermal Barrier Coatings

ZHANG Panpan^{1, 2, 3} SUN Yuhai^{1, 2, 3} SUN Lei^{1, 2, 3} LI Bo^{1, 2, 3} ZHANG Ounli^{1, 2, 3} YAO Jianhua^{1, 2, 3}

(1. School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;

2. Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310023, China;

3. Collaborative Innovation Center of High-end Laser Manufacturing Equipment,

Zhejiang University of Technology, Hangzhou 310023, China)

Abstract: Double-layered thermal barrier coatings (TBCs), which are composed of a top ceramic coating and a bonding coating, are widely used in the industry to reduce the surface working temperature of hot components. The primary materials used for the ceramic coating have been 6-8 wt.% Y_2O_3 partially stabilized ZrO₂ (6-8YSZ), which has excellent performance of thermal insulation, high

^{*} 国家自然科学基金青年基金(52105311)、浙江省"尖兵""领雁"研发攻关计划(2023C01052,2022C01117)和浙江省自然科学基金(LQ21E010002) 资助项目。

Fund: Supported by National Natural Science Foundation of China (52105311), "Pioneer" and "Leading Goose" R&D Program of Zhejiang (2023C01052, 2022C01117), and Provincal Natural Science Foundation of Zhejiang (LQ21E010002).

²⁰²²¹²⁰⁹ 收到初稿, 20230601 收到修改稿

temperature resistance, low thermal conductivity, and effective thermal protection effect on metal substrates. However, traditional plasma-sprayed TBCs contain numerous pores and microcracks, and they are susceptible to corrosive salt penetration at high temperatures, leading to premature peeling failure. Doping with self-healing materials and laser post-treatment methods can effectively improve the hot corrosion resistance of TBCs. Therefore, this study aims to examine the effect of laser alloying on the hot corrosion behavior of plasma-sprayed TBCs. First, a NiCrAlY bonding coating is prepared on the surface of an Inconel 718 nickel-based superalloy via atmospheric plasma spray (APS) technology. An 8YSZ ceramic coating is then applied on the NiCrAlY bonding coating. Finally, self-healing TiC is melted on the plasma-sprayed 8YSZ coating by using a 1 kW fiber-coupled laser. The hot corrosion behaviors of the plasma-sprayed and laser-alloyed TBCs are investigated by immersion in 25% NaCl + 75% Na₂SO₄ mixed salt at 900 °C for 4 h. The weight losses of the plasma-sprayed and laser-alloyed TBCs following hot corrosion are examined. The microstructures of the plasma-sprayed and laser-alloyed TBCs before and after hot corrosion are studied using scanning electron microscopy. X-ray diffraction is used to characterize the phase composition of each coating, and energy-dispersive spectroscopy is used to analyze the elemental compositions. A high-precision electronic balance is used to measure the weights of the plasma-sprayed and laser-alloyed TBCs before and after hot corrosion, and the weight loss due to hot corrosion is determined. The results shows that the surface of the laser-alloyed TBCs is smoother. A few segmented microcracks are distributed on the laser-alloyed TBCs, which exhibits dense microstructure. The main corrosion products of the plasma-sprayed TBCs are needle-shaped $Y_2(SO_4)_3$ particles and m-ZrO₂. Meanwhile, only a small amount of corrosive salt penetrates the interior of the laser-alloyed TBCs, and its corrosion products are $Y_2(SO_4)_3$ and a small amount of TiO₂. After hot corrosion, the volume fraction of m-ZrO₂ in the plasma-sprayed TBCs is 18.2%, whereas that in the laser-alloyed TBCs is only 8.1%. It is advisable to avoid the formation of $m-ZrO_2$ during the preparation of 8YSZTBCs. If a detrimental phase transformation of t-ZrO₂ to m-ZrO₂ occurs, the original pores and cracks will serve as the starting points for stress relief, further exacerbating crack propagation and providing a pathway for the infiltration of corrosive salts, ultimately leading to coating delamination. On the one hand, the microstructure of the laser-alloyed TBCs is denser; this can prevent the penetration of corrosive salts into the interior of the coating. On the other hand, the surface roughness of laser-alloyed TBCs is lower, leading to lowered contact area with corrosive salts. Additionally, the self-healing material TiC undergoes an oxidation reaction during the hot corrosion test, resulting in partial self-healing of the pores and microcracks through volume expansion, further reducing the occurrence of hot corrosion reactions and the formation of harmful m-ZrO2 phases. Compared with plasma-sprayed TBCs, the laser-alloyed coatings shows an improvement in hot corrosion resistance by 55.5%.

Keywords: plasma spraying; laser alloying; thermal barrier coating; hot corrosion resistance; TiC; self-healing

0 前言

随着现代工业技术的发展,燃气轮机内部热端 部件的工作环境不断向高温、高压和高推重比发 展¹¹,其实际工作温度远超过高温合金承受温度的 极限,从而严重影响燃气轮机的服役寿命和可靠性。 工业上广泛应用双层结构热障涂层来降低热端部件 的表面温度。双层结构热障涂层由顶层陶瓷层和底 层金属粘接层组成,陶瓷顶层主要使用的材料为 6-8 wt.% Y₂O₃ 部分稳定的 ZrO₂ (6-8 wt.% yttria partially stabilized zirconia, 6-8YSZ), 6-8YSZ 陶瓷 具有强隔热、耐高温和热导率低的优异性能^[2],对 金属基体具有有效的热防护作用。

航空发动机、燃气轮机叶片等高温部件在工作 过程会遭受发动机燃料(如Na、S等元素)高温腐 蚀、海水腐蚀和 CMAS(CaO-MgO-Al₂O₃-SiO₂)腐蚀 等,这些腐蚀物质常以 Na₂SO₄、NaCl 或 CMAS 形 式存在于热障涂层表面,高温情况下熔融腐蚀盐渗透进入热障涂层内部,与稳定剂Y₂O₃发生热腐蚀反应,导致ZrO₂发生高温相变,从而使涂层因相变应力而剥落失效^[3]。

通常热腐蚀机制是:① 腐蚀杂质附着在热障涂 层表面,沿着涂层表面的裂纹、孔隙等通道渗入涂 层内部;② 高温情况下粘结层会持续被氧化而使热 生长氧化物的厚度增加且更加疏松,而使涂层内部 裂纹宽度增加,提供更多熔盐渗透途径;③ 熔盐与 Y₂O₃发生反应生成柱状或针状腐蚀物质,消耗了 Y 的含量,最终导致 ZrO₂失稳相变^[4]。腐蚀杂质附着 在热障涂层表面会对叶片表面形状、发动机工作效 率等有较大的影响。

一些学者采用掺杂自愈合材料的方式以提高涂 层的抗热腐蚀性能。自愈合材料是利用材料在应用 过程中出现缺陷等问题时,无须附加作用便可以实 现自我修复的特殊材料^[5]。DERELIOGLU等^[6]在热 障涂层(Thermal barrier coatings, TBCs)中掺入球 形 MoSi₂(B) 修复颗粒,其高温下氧化分解形成非 晶态 SiO₂,流入裂纹并与裂纹面接触,裂纹表面润 湿后,与涂层中的 ZrO₂ 发生化学反应形成固体 ZrSiO₄。这种化学反应在愈合剂和基体材料之间产 生了牢固的结合,并导致裂纹完全填充和密封,但 是会面临 MoSi₂ 过早氧化的问题。OUYANG 等^[7] 将 TiC 和 SiC 作为自愈合材料引入热障涂层,采用 热喷涂技术制备出掺杂 TiC 和 SiC 的自愈合热障涂 层,研究表明高温下涂层发生填充密封效应会导致 涂层孔隙率下降,使熔化的热腐蚀盐无法穿透愈合 的涂层,使用寿命约为传统 TBC 的 180%。

一些学者采用激光后处理手段提升热障涂层的 抗腐蚀性。虞礼嘉等^[8]研究了等离子喷涂制备的热 障涂层和激光重熔热障涂层在 75% Na₂SO₄+25% NaCl (质量分数)熔盐中的热腐蚀性能,结果表 明喷涂态涂层在热腐蚀过程中出现了涂层剥落的现 象,激光重熔热障涂层无剥落现象发生,改善了热 障涂层的抗热腐蚀性能。GU等^[9]采用激光熔覆技术 在 316L 不锈钢基体上制备 YSZ-Al₂O₃-TiC 和 YSZ-Al₂O₃-SiC 自愈合复合涂层,获得了柱状结构 且生成的 TiO2 相实现了裂缝的填补。GUO 等^[10]对 大气等离子喷涂 YSZ TBCs 进行激光上釉改性,并 研究了两种涂层在 700 ℃和 1 000 ℃下 V₂O₅熔盐 中保温4h的热腐蚀行为,结果表明激光上釉改性 处理有利于改善热障涂层的抗热腐蚀性能, 上釉层 保持了结构完整性。然而上釉层中的垂直裂纹为熔 盐渗透提供了路径,加速了未改性涂层的腐蚀。孙 磊等^[11]研究了 TiAl₃ 自愈合剂掺杂的激光合金化改 性热障涂层的热腐蚀性能,结果表明 TiAl,在高温 下发生氧化反应生成了 Al₂O₃ 和少量 TiO₂ 从而填补 了裂纹,有助于抑制高温腐蚀盐的渗透,但尚未量 化涂层的抗热腐蚀性能指标。综上,激光表面处理 技术是一种制备自愈合涂层的可行方法。然而,采 用激光合金化技术将 TiC 掺杂于 8YSZ 热障涂层的 研究报道较少。本文采用激光合金化技术将自愈合 材料 TiC 引入等离子喷涂 8YSZ 热障涂层,研究了 激光合金化掺杂 TiC 对等离子喷涂 8YSZ 热障涂层 热腐蚀行为的影响,最终揭示了激光合金化改性热 障涂层的抗热腐蚀性能强化机制。

1 试验

1.1 材料

本试验所选用的基体材料为 Inconel 718 镍基高 温合金。试验选用的粘结层材料为 NiCrAlY 粉末, 其粉末粒径为15~60 μm,其化学成分(质量分数) 如表 1 所示。陶瓷层材料为 8 wt.% Y₂O₃-ZrO₂ (8YSZ),其粉末粒径为15~45 μm。本试验采用的 自愈合粉末为TiC,粉末粒径为15~45 μm。为了避 免自愈合粉末的热膨胀系数与热障涂层不匹配,将 10 wt.% TiC 与 CYSZ(CeO₂、Y₂O₃共同部分稳定的 ZrO₂)粉末以球磨方式混合,利用行星球磨机 (QM-3SP4)进行球磨混粉制备而得,球磨转速150 r/min,球磨时间60 min,球料比为3:1。有研究 表明,利用 CYSZ 粉末制备的涂层在高温下表现出 更好的相稳定性和抗热腐蚀性能。此外,向涂层中 掺入 CeO₂可有效降低 ZrO₂材料的热导率,从而提 高涂层的隔热性能、热膨胀系数和抗热震性能^[12-13]。

表1 NiCrAlY 粉末的化学成分(wt.%)

 Table 1
 Chemical composition of NiCrAlY powder (wt.%)

Element	Ni	Cr	Al	Zr	0	Y
NiCrAlY	Bla	21-23	2-4	-	-	0-0.4

1.2 涂层制备工艺

利用电火花线切割机将 718 镍基高温合金切割 成 20 mm×20 mm×7 mm 的尺寸,利用数控超声波 清洗机进行超声清洗以除去表面油污、杂质等,然后 对基体进行喷砂粗化处理,以提高基体表面粗糙度。 粘结层与陶瓷层均采用大气等离子喷涂制备,粘结层 厚度在 90~110 μm,陶瓷层厚度在 260~300 μm。

1.3 激光合金化改性工艺

在热障涂层表面铺上厚度 0.1 mm 的 10 wt.% TiC+90 wt.% CYSZ 混合粉末,采用 1 kW 光纤耦 合激光器在涂层表面进行合金化处理。激光功率 140 W,激光扫描速度 5 mm/s,光斑直径 2 mm。

1.4 热腐蚀试验

在高温箱式炉(型号: SG-XL1400)中分别腐 蚀喷涂态热障涂层和激光合金化热障涂层。具体步 骤为称取一定量腐蚀盐,然后将 25% NaCl+75% Na₂SO₄的混合熔盐粉末以 20 mg/cm²的沉积量置 于喷涂态热障涂层和激光合金化热障涂层表面,以 避免边缘效应,铺腐蚀盐面积为 14 mm×14 mm; 以 10 ℃/min 的升温速度升温至 900 ℃,将试样置 于高温箱式炉中保温 4 h,允许试样在炉内冷却;将 试样取出置于 98%无水乙醇中超声波清洗 10~ 15 min,以除去表面残留腐蚀盐和残留水分。

1.5 表征方法

利用金相切割机(型号 QG-50)对激光合金化 改性后的热障涂层进行纵向切割,以观察截面形貌。 采用德国 Zeiss EVO18 型扫描电子显微镜(SEM) 观察涂层表面形貌、截面组织、涂层与基体结合区 等微观特征;采用形状测量激光显微系统进行涂层 表面粗糙度的表征,分别对喷涂态和激光合金化改 性热障涂层的表面粗糙度进行测量。采用 Zeiss EVO18型扫描电镜自带的 Bruker Xflash 6130 能量 色谱仪(EDS)对涂层表面及截面元素含量和分布 进行分析。采用 X 射线衍射仪(型号 X Pert PRO) 检测粉末及涂层的物相组成。

2 结果与讨论

2.1 合金化形貌与组织结构分析

图 1 是等离子喷涂和 TiC 激光合金化热障涂层 表面形貌图。观察图 1a~1c,喷涂态形貌为扁平颗 粒团聚层层堆叠,表面凹凸不平,表面粗糙度大约 为 5.895 μm,同时存在熔化、半熔、未熔颗粒。观 察图 1d,合金化后激光作用区明显比周边涂层光 滑,出现网状裂纹。图 1e 中,涂层出现致密排布的 柱状晶结构,有利于抑制腐蚀盐向涂层内渗透。激光 合金化改性热障涂层表面粗糙度大约为 2.408 μm,明 显小于喷涂态热障涂层的表面粗糙度。这是由于激光 热源同时加热陶瓷层及铺在上方的 10 wt.% TiC 与 CYSZ 粉末使其温度瞬间上升形成熔池,当激光光斑 移开后,熔池快速冷却凝固从而形成光滑的激光合金 化改性区。图 1b 中半熔、未熔颗粒形成的粗糙区域 经过加热熔化凝固后,未观测到残留的半熔、未熔颗 粒,光滑程度明显优于原本喷涂态颗粒的堆叠。激光 合金化改性热障涂层表面更光滑,使其与腐蚀盐的接 触表面积减少,可进一步减少热腐蚀反应的发生,从 而改善热障涂层的抗热腐蚀性能。

Fig. 1 Surface morphology of plasma sprayed and laser-alloyed thermal barrier coatings

图 2 是等离子喷涂和激光合金化改性热障涂层 的横截面形貌。图 2a 为喷涂态热障涂层的横截面形 貌,陶瓷层厚度为 290 µm,粘结层厚度为 110 µm。 由图 2b 可知,喷涂态陶瓷层存在较多的孔隙,孔隙 形成的原因主要分为两种^[14]:一方面,熔融粉末在 飞行过程中快速冷却,导致在基体表面快速凝固收 缩,而部分包裹在等离子体焰流中的环境气体和喷 涂气体未能及时溢出,这些气体遗留在层状结构中, 冷却后形成孔隙;另一方面,在等离子焰边上或尾 部进入的粉末颗粒,未能被等离子焰完全熔化,导 致粉末在基体上附着时是不均匀和不充分的变形, 其他熔化粉末变形后与其形成不良的堆叠,产生孔 隙。这些孔隙虽不利于涂层的抗热腐蚀和抗热震性 能,但却能提高涂层的隔热性。图 2c 为激光合金化 改性热障涂层的横截面形貌,可以发现激光合金化 改性热障涂层由深度为130 μm的改性层、110 μm 未改性的陶瓷层和100 μm 粘结层组成,各层之间结 合良好。激光合金化改性层结构致密且分布着少量 的垂直裂纹,未改性区仍保持疏松多孔结构。进一 步观察激光合金化改性层的放大形貌,改性区为致 密的柱状晶结构,如图 2d 所示。由于采用的激光束 能量分布为高斯分布,激光光斑中心区域能量密度 高周围低,能量密度分布不均匀,呈高斯分布。当 激光移动时,光斑中心和四周区域冷却凝固速度不 同,使得该区域产生较大的残余应力,当应力累积 叠加到一定程度时,在改性层中就会产生垂直裂 纹^[15]。已有研究表明,引入垂直裂纹可以提高陶瓷 层的应变容限,释放热循环过程中陶瓷顶层与粘接 层不匹配产生的热失配应力,从而延长涂层寿命的 有效途径之一^[16-17]。激光合金化改性区的柱状晶结 构主要取决于激光处理过程中温度梯度与凝固速度 的比值,对应最高热梯度的方向。

中同时存在四方相 t、立方相 c 和单斜相 m 三种晶

型的 ZrO₂。图 3b 是等离子喷涂热障涂层的 XRD 图 谱, 与图 3a 对比发现, 有害相 m-ZrO2 消失, 出现 t'-ZrO₂。m-ZrO₂在1170 ℃会转变成 t-ZrO₂,而 t-ZrO2在2370 ℃会转变为 c-ZrO2。8YSZ 粉末经过 高温喷涂后, m-ZrO2发生马氏体相变形成 t'-ZrO2, 这主要是喷涂过程中温度高冷却快,极冷极热的过 程所导致,但是由于涂层中存在稳定剂Y2O3,抑制 了 t'-ZrO2向 m-ZrO2的相变。图 3c 是激光合金化改 性热障涂层的 XRD 图谱,发现经过改性后,涂层 物相并未发生变化,主要为t'-ZrO2和 c-ZrO2,表明 激光合金化处理手段并不会促使有害相 m-ZrO2 生 成,影响涂层质量。YSZ 热障涂层制备过程中应避 免 m-ZrO2 生成,因为在 t'-ZrO2 向 m-ZrO2 转变过程 中,同时伴随着 3%~5%体积的膨胀,在涂层内部 产生一个较大的压应力。若有害相变发生将使原来 的孔隙和裂纹作为应力释放的起点,进一步加剧裂 纹的扩散,为腐蚀盐与氧的渗透提供路径,最终导 致涂层剥落。此外, 激光合金化改性涂层中没有检 测到自愈合剂 TiC 及其氧化产物 TiO₂的衍射峰(图 3c),可能是由于自愈合剂 TiC 的添加量较少, X 射 线衍射方法的局限性使其无法检测到含量较低的 物相。

2.2 热腐蚀后物相分析

图 4 是热腐蚀后喷涂态和激光合金化改性热障 涂层的 XRD 图谱。图 4a 中发现涂层中有 t'-ZrO₂、 m-ZrO₂和 Y₂(SO₄)₃生成,表明喷涂态涂层热腐蚀后 生成了腐蚀产物发生物相转变,热腐蚀产物 Y₂(SO₄)₃和m-ZrO₂的生成会引起应力以及相变导致 裂纹扩展涂层失稳剥落,最终导致热障涂层提前失 效。而图 4b 中可以看出,激光合金化改性涂层在热 腐蚀后的主要物相为 t'-ZrO₂、c-ZrO₂、少量 Y₂(SO₄)₃、 TiO₂和 m-ZrO₂,表明激光合金化热障涂层的热腐蚀 产物为 TiO₂、Y₂(SO₄)₃和 m-ZrO₂,可能是由于稳定

剂被消耗较少,所生成的 m-ZrO2较少,被腐蚀盐所 覆盖,所以 XRD 图谱只检测到少量 m-ZrO2,表明涂 层内部未发生有害相的转变。

2.3 热腐蚀后表面形貌

图 5a、5b 是喷涂态热障涂层在 900 ℃下 25% NaCl+75% Na₂SO₄ 混合熔盐中热腐蚀4h后的表面 形貌,与图 3a、3b 相比,热腐蚀后喷涂态涂层表面 出现了空洞和点蚀,部分颗粒或扁平小块出现剥落, 涂层疏松,且存在大量细小针状晶和块状的腐蚀盐 颗粒。根据表 2 的元素分析,区域 A 主要存在 Zr 和 O 元素,原子比约为 1:2,表明该区域主要是 ZrO₂;区域 B 中的不仅存在较多的 Zr、O 元素,还 有较多的 Na 和 S 元素,根据原子比推断区域 B 为 ZrO₂和 Na₂SO₄的混合物;区域 C 存在较多的 Y、S 和 O 元素,结合图 4 的 XRD 图谱推断该区域是热 腐蚀产物,即腐蚀盐与稳定剂 Y₂O₃反应生成的 Y₂(SO₄)₃。

Fig. 5 Surface morphology of APS and laser-alloyed thermal barrier coatings after hot corrosion

表 2	执腐蚀后表面不同区域的化学成分	(at %)
1× 4	芯圈蛋白花面个的色线的化于成力	(al. /0 /

Table 2	Chemical composition of different areas on the
	face after hot corrosion (at.%)

Point	Zr	0	Y	S	Na
А	29.9	62.3	2.6	1.8	3.2
В	18.8	63.0	1.7	4.7	11.8
С	6.4	53.5	23.6	16.5	0
D	8.7	46.5	6.4	12.5	25.8
Е	5.4	53.9	16.2	24.5	0
F	25.6	58.3	4.6	0.8	10.5

图 5c、5d 是激光合金化改性热障涂层在 900 ℃ 下 25% NaCl+75% Na₂SO₄ 混合熔盐中热腐蚀 4 h 后的表面形貌。经过热腐蚀试验后,激光合金化热 障涂层表面仍保持光滑致密,网状裂纹分布更加明 显,涂层表面有较小的腐蚀坑形成,同时存在有较 大的块状晶和较小的针状颗粒,且分布分散,部分 网状裂纹处有腐蚀盐聚集,但未渗透至涂层内部。结 合图 4 的 XRD 图谱与表 2 的元素分析,区域 D 主要 存在 Na、O、S、Zr 元素,且 Na、O、S 原子比约为 2:1:4,Zr 含量较小,所以区域 D 推断为 Na₂SO₄ 与 ZrO₂ 的混合物;区域 E 主要包含 O、Y、S 元素, 根据其原子比例,可确定区域 E 物质为 Y₂(SO₄)₃;区 域 F 主要含有 Zr、O 元素,Zr 与 O 原子比约 1:2.3, 接近于 1:2,可确认该区域主要为 ZrO₂。

激光合金化热障涂层表面的未反应腐蚀盐成分 比喷涂态多,有较少的腐蚀产物生成,有较好的抗 热腐蚀性能。相比之下,合金化涂层的腐蚀坑更少, 腐蚀产物 Y₂(SO₄)₃更少,等离子喷涂涂层腐蚀盐附 着的密度远大于合金化涂层,腐蚀盐与稳定剂大量 反应会导致涂层失稳相变,产生裂纹孔隙等又会加 重腐蚀盐侵蚀程度。

通常用 m-ZrO₂ 的含量来定量比较热腐蚀过程 中涂层失稳的标准^[18]。图 6 是热腐蚀后喷涂态热障 涂层和激光合金化改性热障涂层在衍射角 20 为 27°~ 33°时的 XRD 图谱。

根据式(1)来计算 m-ZrO₂的体积分数,以表征 两种涂层的抗热腐蚀性能。

$$m \text{ vol.\%} = \frac{I_{\text{m}}(\bar{1}11) + I_{\text{m}}(111)}{I_{\text{m}}(\bar{1}11) + I_{\text{m}}(111) + I_{\text{t}}(111)} \times 100\%$$
(1)

式中, Im (-111) 和 Im (111) 分别为单斜相 (-111) 和(111)晶面的衍射强度; It(111)表示亚稳四方 相 t'-ZrO2 晶面的衍射强度, m vol.%为 m-ZrO2 的体 积分数。

通过计算后得出结果如表 3 所示,热腐蚀后喷 涂态热障涂层中 m-ZrO2 体积分数为 18.2%, 而激光 合金化改性热障涂层中m-ZrO2体积分数仅为8.1%, 激光合金化改性热障涂层相比较于喷涂态热障涂层 提升了 55.5%, 因此激光合金化改性热障涂层具备 较优的抗热腐蚀性能。

表 3 热腐蚀后喷涂态和激光合金化改性热障涂层中

的 m-ZrO₂含量

Table 3 M-ZrO₂ content of plasma-sprayed thermal barrier coatings and laser-alloyed thermal barrier

coatings after hot corrosion

Name	Content of m-ZrO ₂ / %	Improvement / %	
Plasma sprayed TBCs	18.2	-	
Laser-alloyed TBCs	8.1	55.5	

2.4 热腐蚀后截面形貌

图 7 是热腐蚀后喷涂态和激光合金化改性热障

涂层的横截面形貌及其 EDS 元素分析。从图 7a 中 可以看出,喷涂态涂层热腐蚀后截面出现明显孔洞。 由图 7b 的 EDS 元素分析,发现大孔洞处有大量 Na、 S、O 元素聚集,表明大量热腐蚀盐通过表面的裂纹 与孔洞渗透到涂层内部,与Y2O3稳定剂发生热腐蚀 反应,破坏原本的涂层结构。

图 7c、7d 为激光合金化改性热障涂层的横截面 形貌及其 EDS 元素分析,发现 Na、S 等腐蚀熔盐 元素基本没有在激光合金化改性层内富集,裂纹与 孔洞处有少量 Na、O、S 元素聚集, 仅有少量腐蚀 盐渗透至涂层内部, 致密的激光改性层能够显著抑 制腐蚀盐的渗透,避免了内部涂层与腐蚀盐的接触。 TiC 的自愈合作用也是涂层抗热腐蚀性增强的原 因,其原理如下: TiC 氧化温度为 600 ℃^[19],而热 腐蚀试验温度远高于其氧化温度,部分 TiC 在热腐 蚀过程中发生氧化反应,生成 TiO2和 CO2,氧化反 应表达式如式(2)^[20]; TiC 在氧化反应前后发生一 定的体积变化, TiC 与 TiO₂的摩尔比(物质的量比) 为1:1, TiC 的密度大致为4.93 g/cm^{3[21]},而TiO₂ 的密度为 4.26 g / cm^{3[19]},氧化反应前后的体积变化 可以用 V_{TiO2} / V_{TiC}=(M_{TiO2}×ρ_{TiC}) / (M_{TiC}×ρ_{TiO2})来表 示,通过计算可知,氧化反应前后体积增加了约 15.7%^[22]。

(c) Laser-alloyed TBC

(d) EDS analysis of Laser-alloyed TBC

图 7 热腐蚀后等离子喷涂和激光合金化改性热障涂层截面形貌

Fig. 7 Cross section morphology and EDS analysis of plasma sprayed and laser-alloyed thermal barrier coatings after hot corrosion

 $TiC + O_2 \rightarrow TiO_2 + CO_2 \uparrow$ (2)TiC 在氧化过程中生成 TiO₂,伴随着一定的体

积膨胀,随着氧化反应的进行,氧化物逐渐累积并 填充孔隙、裂纹等缺陷。利用 TiC 在高温下发生氧 化反应,生成的 TiO₂ 体积增生,使得涂层内部的孔 隙、裂纹等缺陷逐渐自愈合,减少了腐蚀盐渗透的 通道,从而提升热障涂层的抗热腐蚀性能。

另外还可以通过热腐蚀失重量来表征热障涂层的抗热腐蚀性能,如式(3)^[23]:

$$R = W_1 - W_0 \tag{3}$$

式中, R 为热腐蚀单位面积失重量, mg/cm^2 ; W_0 为热腐蚀前热障涂层单位面积重量, mg/cm^2 ; W_1 为热腐蚀后热障涂层单位面积重量, mg/cm^2 。

通过计算 *R* 值来判断热障涂层的抗热腐蚀性 能,*R* 值越小,热障涂层的抗热腐蚀性能越优异。 结果表明,热腐蚀后等离子喷涂热障涂层失重 2.532 mg/cm²,而激光合金化改性热障涂层增重 0.143 8 mg/cm²。因此,激光合金化改性热障涂层 的抗热腐蚀性能远优于等离子喷涂热障涂层。

3 结论

(1)激光合金化改性热障涂层表面更加光滑, 结构致密,分布有网状裂纹,激光合金化改性技术 明显降低了涂层的表面粗糙度,减少与腐蚀盐的接 触面积,提高耐热腐蚀性。激光合金化改性热障涂 层的物相是 t'-ZrO₂和 c-ZrO₂,未检测到有害相 m-ZrO₂。

(2)喷涂态热障涂层的热腐蚀产物主要是 Y₂(SO₄)₃和m-ZrO₂,激光合金化改性热障涂层的热 腐蚀产物主要是针状颗粒Y₂(SO₄)₃、TiO₂和m-ZrO₂, 较少的热腐蚀盐渗透至涂层内部,TiC 的氧化产生 体积增生而对裂纹实现愈合,从而提升热障涂层的 抗熔盐腐蚀性能。

(3) 热腐蚀后喷涂态热障涂层中 m-ZrO₂ 体积 分数为 18.2%, 而激光合金化改性热障涂层中 m-ZrO₂ 体积分数仅为 8.1%,激光合金化改性热障 涂层相较于喷涂态热障涂层提升了 55.5%。

(4)揭示了激光合金化改性热障涂层的抗热腐蚀 强化机制:一方面利用自愈合颗粒 TiC 发生氧化反应 生成氧化物填补裂纹,实现裂纹的部分自愈合,另一 方面利用激光合金化改性层的致密结构,显著抑制腐 蚀盐向涂层内的渗透,减少热腐蚀反应的发生。

参考文献

- [1] GUO Y H WANG H J, LIAN J J. Review of integrated installation technologies for offshore wind turbines: current progress and future development trends[J]. Energy Conversion and Management, 2022, 255: 115319.
- [2] CALLAWAY J, BAEYER H V. Effect of point

imperfections on lattice thermal conductivity[J]. Physical Review, 1960, 120(4): 1149-1154.

- [3] LOGHMAN-ESTARKI M R, MEHRDAD N, HOSSEIN E, et al. Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured thermal barrier coatings in the presence of molten sulfate and vanadate salt[J]. Journal of the European Ceramic Society, 2015, 35(2): 693-702.
- [4] SHIFLER D. Meeting materials needs in extreme naval corrosive and oxidative environments[J]. High Temperature Technology, 2015, 32(1-2): 148-159.
- [5] PARK J H, BRAUN P V. Coaxial electrospinning of self-healing coatings[J]. Advanced Materials, 2010, 22(4): 496-499.
- [6] DERELIOGLU Z, CARABAT A L, SONG G M, et al. On the use of B-alloyed MoSi₂ particles as crack healing agents in yttria stabilized zirconia thermal barrier coatings[J]. Journal of the European Ceramic Society, 2015, 35(16): 4507-4511.
- [7] OUYANG Taoyuan, SUO Jinping. TiC-self-healing thermal barrier coating structures and oxidation resistance[J]. Surface & Coatings Technology, 2021, 412(7): 127065.
- [8] 虞礼嘉,梁文萍,林浩,等. 激光重熔 YSZ 热障涂层 950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
 YU Lijia, LIANG Wenping, LIN Hao, et al. Evaluation of hot corrosion behavior of laser as-remelted YSZ thermal

barrier coatings at 950 °C[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(1): 77-82. (in Chinese)

- [9] GU J J, JOSHI S S, HO Y S, et al. Oxidation-induced healing in laser-processed thermal barrier coatings[J]. Thin Solid Films, 2019, 688: 137481.
- [10] GUO Lie, XIN Hui, ZHANG Zhao, et al. Microstructure modification of Y₂O₃ stabilized ZrO₂ thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance[J]. Journal of Advanced Ceramics, 2020, 9(2): 232-242.
- [11] 孙磊,郭雨嘉,张盼盼,等.激光合金化改性 8YSZ 热 障涂层的热腐蚀性能研究[J].中国激光,2023,50(4): 0402002.

SUN Lei, GUO Yujia, ZHANG Panpan, et al. Hot corrosion resistance of 8YSZ thermal barrier coatings modified by laser alloying[J]. Chinese Journal of Lasers, 2023, 50(4): 0402002. (in Chinese)

[12] LEE C H, KIM H K, CHOI H S, et al. Phase transformation

and bond oxidation behavior of phase-sprayed zirconia thermal barrier coatings[J]. Surface & Coatings Technology, 2000, 124(1): 1-12.

[13] 邓世均. 热障陶瓷涂层的最新发展[J]. 材料保护, 2003, 36(3): 5-7.

DENG Shijun. Evolution of thermal barrier ceramic coatings[J]. Materials Protection, 2003, 36(3): 5-7. (in Chinese)

[14] 吴锦杨. 自愈合热障涂层的制备和研究[D]. 武汉: 华中 科技大学, 2012.

WU Jinyang. Fabrication and research of self-healing thermal barrier coatings[D]. Wuhan: Huazhong University of Science & Technology, 2012. (in Chinese)

[15] 郭磊,辛会,张馨木,等.激光表面改性对熔盐环境下 热障涂层相稳定性和微观结构的影响[J].表面技术, 2020,49(1):41-48.

GUO Lei, XIN Hui, ZHANG Xinmu, et al. Effects of laser surface modification on phase stability and microstructures of thermal barrier coatings in V_2O_5 molten salt[J]. Surface Technolohy, 2020, 49(1): 41-48. (in Chinese)

[16] 俞泽新,于景业,吴良敏,等.无冷却喷涂工艺对其制备的热障涂层的裂纹系统和寿命的影响[J]. 焊接学报,2016,37(10):55-58,132.

YU Zexin, YU Jingye, WU Liangmin, et al. Effect of thermal spraying parameters on cracking and thermal cycling life of thermal barrier coatings[J]. Transactions of the China Welding Institution, 2016, 37(10): 55-58, 132. (in Chinese)

- [17] CHENG Bo, YANG Ning, ZHANG Qiang, et al. Sintering induced the failure behavior of dense vertically crack and lamellar structured TBCs with equivalent thermal insulation performance[J]. Ceramics International, 2017, 43(17): 15459-15465.
- [18] ZHONG X H, WANG Y M, XU Z H, et al. Hot-corrosion behaviors of overlay-clad yttria-stabilized zirconia coatings in contact with vanadate-sulfate salts[J]. Journal

of the European Ceramic Society, 2010, 30(6): 1401-1408.

- [19] 欧阳韬源. 自愈合抗氧化热障涂层的制备、性能及其应用研究[D]. 武汉: 华中科技大学, 2016.
 OUYANG Taoyuan. Preparation, properties and application of the self-healing oxidation resisting TBC[D].
 Wuhan: Huazhong University of Science and Technology, 2016. (in Chinese)
- [20] BASHA G M T, SRIKANTH A, VENKATESHWARLU B. A critical review on nano structured coatings for alumina-titania (Al₂O₃-TiO₂) deposited by air plasma spraying process (APS)[J]. Materials Today: Proceedings, 2020, 22(4): 1554-1562.
- [21] 刘耀龙. TiC 陶瓷颗粒增强 Mo 基复合材料的制备工艺 及性能研究[D]. 哈尔滨:哈尔滨工程大学,2020.
 LIU Yaolong. Study on preparation technology and properties of TiC ceramic particles reinforced molybdenum composites[D]. Harbin: Harbin Engineering University, 2020. (in Chinese)
- [22] 陈宏飞,张弛,杨光,等. YSZ-Ti₃SiC₂热障涂层及其高 温自愈合机制[J]. 航空制造技术, 2019, 62(18): 90-96.
 CHEN Hongfei, ZHANG Chi, YANG Guang, et al. YSZ-Ti₃SiC₂ Thermal barrier coating and its self-healing mechanism under high temperatures[J]. Aeronautical Manufacturing Technology, 2019, 62(18): 90-96. (in Chinese)
- [23] 丁柳柳,廖文俊,张艳梅,等. 熔融盐对蓄热系统部件 材料腐蚀行为的研究[J]. 装备机械, 2015(1): 41-46. DING Liuliu, LIAO Wenjun, ZHANG Yanmei, et al. An examination on the corrosion behavior of molten salt to the component materials in heat storage system[J]. The Magazine on Equipment Machinery, 2015(1): 41-46. (in Chinese)

作者简介: 张盼盼, 女, 1991 年出生, 博士, 助理研究员, 硕士研究 生导师。主要研究方向为热防护涂层的表面改性。 E-mail: panpanzhang166@163.com