doi: 10.11933/j.issn.1007-9289.20210227001

# 碳钢表面防腐超疏水 $TiO_2/PDMS$ 涂层的制备及性能\*

薛鑫宇<sup>1</sup> 尹正生<sup>1</sup> 蒋永锋<sup>1,2</sup> 包晔峰<sup>1</sup> 杨 可<sup>1</sup> (1.河海大学机电工程学院 常州 213022; 2.江苏省风电机组结构工程中心 南京 211100)

**摘要:**针对碳钢腐蚀电位相对更负、更容易发生腐蚀的特点,在 Q235 钢表面制备超疏水 TiO<sub>2</sub>/PDMS 涂层以提高其耐蚀性能。 采用表面活性剂分散纳米 TiO<sub>2</sub> 并进行改性,然后与 PDMS 混合,用溶胶凝胶法在 Q235 钢表面制备有聚二甲基硅氧烷 (PDMS)过渡层的 TiO<sub>2</sub>/PDMS 超疏水涂层。借助扫描电镜(SEM)、接触角测量仪、红外光谱(FT-IR)及 X 射线衍射仪(XRD) 表征其表面涂层的表面形貌、化学成分及疏水性能,用电化学试验和浸泡试验测试其防腐性。结果表明:TiO<sub>2</sub>/PDMS 涂层表 面具有独特的微纳结构,与水的接触角达到 154.3°;其腐蚀电位由碳钢的-0.77 mV 正移至超疏水涂层的-0.24 mV,腐蚀电流 密度则下降两个数量级,即从 5.02×10<sup>-6</sup> A·cm<sup>-2</sup>下降至 3.95×10<sup>-8</sup> A·cm<sup>-2</sup>;超疏水涂层的交流阻抗值高于碳钢基底 3 个数量 级。经过 7 d 的 3.5wt.%NaCl 溶液浸泡,超疏水涂层并未发生失重。制备的 TiO<sub>2</sub>/PDMS 超疏水涂层具有超疏水效果和良好 的长期耐腐蚀性。

关键词:超疏水表面;聚二甲基硅氧烷;溶胶凝胶法;耐腐蚀 中图分类号:TG174

## Preparation and Properties of TiO<sub>2</sub> / PDMS Anticorrosion Superhydrophobic Coating on Carbon Steel

XUE Xinyu<sup>1</sup> YIN Zhengsheng<sup>1</sup> JIANG Yongfeng<sup>1, 2</sup> BAO Yefeng<sup>1</sup> YANG Ke<sup>1</sup>
(1. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China;
2. Jiangsu Province Wind Power Structural Research Center, Nanjing 211100, China)

**Abstract:** In order to improve the corrosion resistance of Q235 steel, superhydrophobic  $TiO_2/PDMS$  coating was prepared on Q235 steel to improve its corrosion resistance. The nano- $TiO_2$  was modified by surfactant to avoid the agglomeration problem caused by its small surface energy. After the polydimethylsiloxane (PDMS) transition layer was prepared on the surface of Q235 steel, the  $TiO_2/PDMS$  superhydrophobic coating was prepared on the surface of Q235 steel by sol-gel method after mixing the modified  $TiO_2$  with PDMS. Scanning electron microscope (SEM), contact angle meter, infrared spectrum (FT-IR) and X-ray diffraction(XRD) were used for characterization. Corrosion resistance was tested by electrochemical experiment and immersion test. The results indicate that: the surface of  $TiO_2/PDMS$  coating has a unique micro/nano structure with the water contact angle of 154. 3°, which proves the coating with excellent superhydrophobic property was prepared. The electrochemistry results showed that compared to the bare Q235, the coating prepared has good corrosion resistance with a positive shifted corrosion potential (from -0.77 mV to -0.24 mV), a decline in the corrosion current density (from  $5.02 \times 10^{-6} \text{ A} \cdot \text{cm}^{-2}$  to  $3.95 \times 10^{-8} \text{ A} \cdot \text{cm}^{-2}$ , up to two orders of magnitude) and a increased alternating current impedance (three orders of magnitude). The base material protected by the coating is identified for a fine long-term corrosion resistance was after the 7 days immersion in 3.5 w. % NaCl solution.  $TiO_2/PDMS$  superhydrophobic coating resistance.

Keywords: superhydrophobic surface; polydimethylsiloxane (PDMS); sol-gel method; corrosion resistance.

\* 国家自然科学基金(51879089)、江苏省沿海开发与保护协同创新中心([2013]56)、江苏省研究生科研与实践创新计划(KYCX21\_0471) 资助项目。

Fund Supported by National Natural Science Foundation of China (51879089), Cooperative Innovational Center for Coastal Development & Protection for the First Group of 2011 Plan of China's Jiangsu Province ([2013] 56), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21\_0471).

20210227 收到初稿, 20210623 收到修改稿

## 0 前言

目前已经有较多常见的防护方法用于金属表面的腐蚀防护<sup>[14]</sup>,如涂层保护法<sup>[5]</sup>、缓蚀剂保护法<sup>[6]</sup>、电化学保护法<sup>[7]</sup>等。这些保护法可在一定程度上对金属起到物理或化学的防护作用,但当接触到水时,水会在表面扩散,使腐蚀离子更容易接触基底,同时会使涂层容易脱落,从而引发难以预测的腐蚀。

超疏水涂层区别于传统防护方法,具有优良的 自清洁、抗覆冰和油水分离的性能<sup>[8-9]</sup>。超疏水表 面即与水的接触角大于 150°,滚动角小于 10°的表 面<sup>[10]</sup>。其防腐蚀原理来源于自然界,许多植物叶子 和动物羽毛都具有显著的疏水特征<sup>[11-12]</sup>。

目前,制备超疏水自清洁表面的常用方法有刻 蚀修饰法<sup>[13]</sup>、电化学法<sup>[14]</sup>、溶胶凝胶法<sup>[15]</sup>、水热 法<sup>[16]</sup>等。各种方法各有优势,其中,溶胶凝胶法具 有工艺简单高效,反应条件易于控制等优点<sup>[17-18]</sup>。 无机材料因其良好的物理性能,可以改变材料的表 面粗糙度,常作为填充材料,与有机材料复合后,使 用溶胶凝胶法制备超疏水涂层。然而超疏水表面主 要是微纳米结构组成,机械耐用性差,受到机械损伤 会使其超疏水性能能变弱。因此,获得的超疏水涂 层必须具备耐腐蚀以及优良的服役可靠性。

本文以月桂酸钠和六偏磷酸钠成功改性纳米 TiO<sub>2</sub>,在 Q235 钢表面制备 PDMS 过渡层后,采用溶 胶凝胶法在表面制备出耐用的超疏水 TiO<sub>2</sub>/PDMS 涂层,并对涂层的疏水性及耐腐蚀性能进行研究。

## 1 材料与方法

### 1.1 试验材料及试剂

试验材料选用 Q235 钢为基板。尺寸为 25 mm×20 mm×2 mm。试剂使用纳米 TiO<sub>2</sub> (30 nm)、月桂酸钠、聚二甲基硅氧烷(PDMS)及相 应固化剂、六偏磷酸钠、盐酸、无水乙醇、氯化钠。

## 1.2 试验方法

## 1.2.1 改性纳米 TiO<sub>2</sub>

在 200 mL 去离子水中加入 2 g 纳米 TiO<sub>2</sub> 和 0.03 g 分散剂六偏磷酸钠,用稀盐酸溶液调至 pH 值为 5 时,加入 0.1 g 的表面活性剂月桂酸钠,保持 40 ℃恒温水浴搅拌 2 h,后放入干燥箱,于 130 ℃干燥,取出固体研磨成粉备用。

## 1.2.2 涂层的制备

制备前对 Q235 表面进行预处理,依次用 200~2 000 目的砂纸打磨。随后清洗除油,吹干。

将 PDMS 及固化剂,按照 10:1的质量比混合 后,均匀涂抹在 Q235 表面,在 80 ℃下干燥 2 h,获得 PDMS 涂层。

将溶解后的 PDMS 乳液加入 TiO<sub>2</sub> 的乙醇中,加 入固化剂,充分搅拌至形成混合凝胶。使用滴涂法将 混合凝胶涂敷于 PDMS 涂层上。继续在 80 ℃下固化 3 h,最终得到 TiO<sub>2</sub>/PDMS 超疏水涂层(见图 1)。



图 1 TiO<sub>2</sub>/PDMS 超疏水涂层的制备流程示意图 Fig. 1 Preparation process of TiO<sub>2</sub>/PDMS superhydrophobic coating

#### 1.3 测试与表征

采用 JC2000D1 型接触角测量仪观察 Q235 钢、 PDMS 过渡层、TiO<sub>2</sub>/PDMS 超疏水涂层和水的接触 角。通过观察接触角的现象分析其润湿性的规律。 采用 FEI inspect F50 场发射扫描电子显微镜(SEM) 观察试样表面形貌。使用 smartlab-9kW X 射线衍 射仪对改性前后 TiO<sub>2</sub> 进行 XRD 测试。使用 Nicolet iS5 傅里叶变换红外光谱仪(FT-IR)对改性前后 TiO<sub>2</sub> 及涂层进行官能团测定。

使用 CS2350 电化学工作站对试样进行电化学 测试。采用三电极体系,工作电极为不加措施的 Q235 钢板、PDMS 涂层及超疏水 TiO<sub>2</sub>/PDMS 涂层, 工作面积为1 cm<sup>2</sup>;辅助电极为铂电极;参比电极为 饱和甘汞电极,腐蚀介质为3.5% NaCl 溶液。测量 样品的极化曲线(PC),扫描电位区间为-0.3 V(vs.  $E_{corr}$ )至+0.3 V(vs.  $E_{corr}$ ),扫描速率1 mV/s。测试 样品的电化学阻抗谱(EIS),在自腐蚀电位下测量, 自腐蚀电位稳定时长 30 min,正弦波扰动电位为 5 mV,扫描频率 10<sup>5</sup> ~ 10<sup>-2</sup> Hz。将两组试样放入 3.5 wt.%的 NaCl 溶液中浸泡 7 d,通过对比各自的 失重并计算腐蚀速率,验证超疏水涂层对于基体的 保护作用。

## 2 结果与讨论

#### 2.1 表面形貌及接触角表征

用扫描电镜观察 PDMS 涂层及 TiO<sub>2</sub>/PDMS 涂 层的表面形貌,如图 2 所示,图片右上角为相应的接 触角。图 2a 可以看出,碳钢表面形成了致密的 PDMS 涂层。接触角测量仪测出的接触角达到 112.3°,表现出疏水性,这是由于 PDMS 具有较低的 表面能。然而 PDMS 涂层的表面光滑,表面粗糙度 较低,因此无法达到超疏水效果。当继续施加 TiO<sub>2</sub>/PDMS 涂层后,表面形貌如图 2b 所示,经过表 面活性剂改性后纳米 TiO<sub>2</sub> 颗粒没有发生团聚现象, 形成了大量微纳米团簇体,均匀分布于基体表面,具 有足够的表面粗糙度。经过测量,接触角达到了 154.3°,水滴与涂层的接触模式符合 Cassie 模型<sup>[19]</sup>,具有良好的超疏水性。图 2c 为 TiO<sub>2</sub>/PDMS 涂层更高倍下的表面形貌,可以清楚地观察到,高度 粗糙的 TiO<sub>2</sub> 形成了微纳米结构,其表面具有很多凹槽,有助于在涂层表面形成空气层,使液滴在粗糙界 面处于一种复合状态,形成气-固-液三相接触,而 非固-液界面<sup>[20]</sup>,认证了 TiO<sub>2</sub>/PDMS 涂层优良的超 疏水性(如图 3 所示)。



(a) PDMS coating



(c) TiO<sub>2</sub> / PDMS coating at high magnification

图 2 试样的表面 SEM 形貌

Fig. 2 SEM morphologies of different samples



(b) TiO<sub>2</sub> / PDMS coating



图 4 为不同 pH 值溶液下 TiO<sub>2</sub>/PDMS 涂层的接 触角。从曲线中可知,不同的 pH 值液体(1~14)在 涂层表面的接触角均维持在 150°以上,且随着 pH 值增加没有发生明显变化。说明溶液的酸碱性对于 涂层的接触角影响不大,涂层无论在何种 pH 值下 均具有超疏水性。上述结果证明了 TiO<sub>2</sub>/PDMS 涂 层具有良好的超疏水性,并在酸碱环境中都具有稳 定的超疏水性。



图 4 不同 pH 值溶液下 TiO<sub>2</sub>/PDMS 涂层的接触角 Fig. 4 Contact angle of TiO<sub>2</sub>/PDMS coating in different pH values

## 2.2 化学成分及物相分析

改性前后 TiO<sub>2</sub> 的 XRD 图谱如图 5 所示。可以 看出,改性前后 TiO<sub>2</sub> 的特征衍射峰在 20 为 25.38°、 38.08°、48.08°、54.56°、56.14°、62.74°、68.98°、70.45° 处,与锐钛型 TiO<sub>2</sub> 对应,验证了涂敷在 Q235 钢表面 的是 TiO<sub>2</sub>。XRD 图中并未出现其他特征峰,说明在 改性 TiO,时,改性剂只与表面的羟基反应,而改性后

(1)

的 TiO, 晶体结构并未改变, 没有反应生成新的化合 物,说明月桂酸钠对TiO2的表面结构没有影响。

56





XRD 图显示两组衍射峰的强度不同,改性后的 强度小于改性前的,这归因于改性剂的加入,月桂酸 钠为有机物,所以在 XRD 图中并未出现其衍射峰。 纳米 TiO, 容易发生团聚的问题得到解决,原理为改 性后的 TiO, 表面的羟基数量减少,并被长链烷基包 覆,使颗粒表面能降低,颗粒间斥力变大。

图 6 为改性前后 TiO<sub>2</sub> 和超疏水复合涂层的红 外光谱图。可以看出,未改性的 TiO<sub>2</sub> 的吸收峰主要 在 1 100 cm<sup>-1</sup> 和 500~1 000 cm<sup>-1</sup>,分别是 Ti-O-Ti 伸缩振动和 C-H 弯曲振动峰。550~1 000 cm<sup>-1</sup> 之 间是由 C-H 面外弯曲振动、(-C-H<sub>2</sub>-), 平面摆 动和结晶振动共同作用产生的吸收峰。经表面活性 剂改性后的 TiO, 在 2 958 cm<sup>-1</sup>、2 921 cm<sup>-1</sup> 和 2 853 cm<sup>-1</sup> 处有明显的吸收峰,分别对应-CH,伸 缩振动吸收峰、一CH2中C一H键的对称伸缩振动、 不对称伸缩振动峰,结果表明改性后 TiO2 表面出现



and superhydrophobic coating

甲基。改性后 TiO, 在1565 cm<sup>-1</sup> 和1466 cm<sup>-1</sup> 出 现特征峰,这是由羧酸盐中的羧酸根(-COO)振动 引起的,引入的月桂酸钠中的羧酸与 TiO, 表面的羟 基发生脱水反应。3 500 cm<sup>-1</sup> 左右为一OH 的吸收 峰。可以看出,改性后强度减弱,羟基数量减少,说 明表面活性剂月桂酸钠与 TiO, 表面羟基发生反应, 达到了 TiO<sub>2</sub> 改性的目的。

相较改性的 TiO<sub>2</sub>,超疏水涂层在 1 093 cm<sup>-1</sup> 和 1 262 cm<sup>-1</sup> 处出现了明显的吸收峰,分别对应 PDMS 中 的 Si-O-Si 的不对称伸缩振动峰和 Si-CH, 的伸缩 振动吸收峰。这说明 PDMS 成功组装到涂层表面,为 涂层达到超疏水效果提供了低表面能的成分保证。

#### 2.3 超疏水涂层耐腐蚀性能

分别将 Q235 钢、施加 PDMS 涂层的试样及 TiO,/PDMS 超疏水涂层的试样放入质量分数为 3.5wt.%的 NaCl 溶液中 24 h 后,得到如图 7 所示的 极化曲线。腐蚀电位  $E_{corr}$  及腐蚀电流密度  $J_{corr}$  的拟 合结果如表 1 所示。保护效率为 $\eta$ ,计算公式<sup>[20]</sup>为:



图 7 不同试样在 3.5wt. %NaCl 溶液中的 Tafel 曲线 Fig. 7 Tafel curves of different samples in 3. 5wt. % NaCl solution

|        | 表1   | 同试样的 Tafel 曲线拟合结果                       |
|--------|------|-----------------------------------------|
| able 1 | əfel | curve fitting results of different same |

|                             |                        | 8                                        | r         |
|-----------------------------|------------------------|------------------------------------------|-----------|
| Samples                     | $E_{\rm corr}/{\rm V}$ | $J_{\rm corr}/({ m A}\cdot{ m cm}^{-2})$ | $\eta/\%$ |
| Bare Q235                   | -0.77                  | 5.02×10 <sup>-6</sup>                    | _         |
| Q235-PDMS                   | -0.46                  | 5. 19×10 <sup>-7</sup>                   | 89.66     |
| Q235-TiO <sub>2</sub> /PDMS | -0.24                  | 3. $95 \times 10^{-8}$                   | 99.21     |

从表 1 可以看出,碳钢、PDMS 涂层、TiO<sub>2</sub>/ PDMS 超疏水涂层三种试样的腐蚀电位依次正移, 同时腐蚀电流密度下降明显,说明超疏水涂层的耐 腐蚀性能高于碳钢基体和 PDMS 涂层,其中碳钢基 体耐腐蚀性能最差。特别是 TiO<sub>2</sub>/PDMS 超疏水涂

层,腐蚀电流密度相较碳钢基体降低达到两个多数 量级,达到 3.95×10<sup>-8</sup> A·cm<sup>-2</sup>。经计算,PDMS 涂层 的保护效率达到 89.66%,超疏水涂层表面保护效 率达到 99.21%。

相较于单一的 PDMS 涂层, TiO<sub>2</sub>/PDMS 超疏水 涂层中的 TiO<sub>2</sub> 和 PDMS 协同作用, 同时提供表面粗 糙度和低表面能, 在试样表面形成致密涂层, 并达到 超疏水效果, 从而具有更优良的耐腐蚀性。

三组试样在质量分数为 3.5wt.%的 NaCl 溶液 中 EIS 图如图 8 所示。从图 8a 可以看出,每个样品





的奈奎斯特图都只有一个电容弧。容抗弧的半径大 小代表腐蚀过程中电荷传递的阻力和溶液电阻大 小,容抗弧的直径与试样的耐腐蚀性能成正比,直径 越大,耐腐蚀性能越好。从图中可以看出,TiO<sub>2</sub>/ PDMS 超疏水涂层的容抗弧半径远远大于 PDMS 涂 层及碳钢基板。这说明 TiO<sub>2</sub>/PDMS 超疏水涂层的 耐蚀性能最好,PDMS 涂层次之,碳钢基底最差。

图 8b、8c 为三组试样的波特图,通常情况下,涂 层和碳钢界面的腐蚀发生在低频区域,因此研究低 频下阻抗模量是评价涂层耐腐蚀性能的主要指标。 从图 8b 中可以看出,在低频下 PDMS 涂层的阻抗值 比碳钢基底高1个数量级,说明 PDMS 涂层对基底 具有一定的保护作用;TiO<sub>2</sub>/PDMS 超疏水涂层低频 下的阻抗值则比碳钢基底高4个数量级,这说明 TiO<sub>2</sub>/PDMS 超疏水涂层具有更有效的耐腐蚀效果。

从图 8c 中可以观察到,低碳钢的波特图中有一个时间常数,大约在 35 Hz,这与碳钢浸泡到腐蚀介质中的电化学活性有关,主要是固体/电解质界面的电双层的电容。而两种涂层都有两个时间常数,低频处在 0.1 Hz 左右,超疏水涂层在低频处的时间常数比低碳钢的更低,是因为超疏水涂层表面更好的隔离性能,从而抑制腐蚀介质与基板接触,具有优良的耐腐蚀性能。

为了检测 TiO<sub>2</sub>/PDMS 超疏水涂层对于 Q235 低 碳钢的防护作用,将两组试样放入 3.5 wt.%的 NaCl 溶液中浸泡 7 d 的结果如图 8 所示,通过对比各自 的失重并计算腐蚀速率,验证超疏水涂层对于基板 的保护作用。计算腐蚀速率的公式如下:

$$R = \frac{8.76 \times 10^7 \cdot (M - M_1)}{S \cdot T \cdot D}$$
(2)

从图 9 和表 2 可以观察出,随着时间的变化,不加处理的 Q235 钢失重严重,达到 0.017 7 g,经计



算,腐蚀速率 R 达到 0.235 2 mm/a。而超疏水涂层 试样的质量并未发生改变,腐蚀速率为 0 mm/a,仍 能保持良好的疏水性,验证了良好的耐腐蚀性。

## 表 2 不同试样在 3.5wt.%的 NaCl 溶液中浸泡 7 d 后的失重情况

Table 2Weight loss of two groups of samples afterimmersion in 3. 5wt. % NaCl solution for 7 days

| Samples                | Quality before<br>immersion/g | Quality after<br>immersion/g | Weight<br>loss∕g |
|------------------------|-------------------------------|------------------------------|------------------|
| Q235                   | 12.613 2                      | 12.595 5                     | 0.0177           |
| PDMS                   | 12.791 2                      | 12.789 8                     | 0.001 4          |
| TiO <sub>2</sub> /PDMS | 12.8235                       | 12.823 5                     | 0                |

#### 2.4 防腐蚀机理分析

对不同样品的交流阻抗进行拟合,得到如图 10 所示的拟合电路。其中, $R_s$ 表示溶液电阻, $R_{et}$ 和 $C_{at}$ 分别是界面(涂层或基板)的电荷转移电阻和双电 层电容。 $C_e$ 和 $R_e$ 是超疏水涂层的电容及电阻。拟 合结果如表 3 所示。



图 10 不同试样 3.5wt. %NaCl 溶液中的等效电路 Fig. 10 Equivalent circuit of different samples in 3.5wt.% NaCl solution

|         | 表 3      | 不同试样的等效电路拟合结果                                    |
|---------|----------|--------------------------------------------------|
| Table 3 | Equivale | ent circuit fitting results of different samples |

| Samples                | $C_{\rm c}/(\rm F\cdot cm^{-2})$ | $R_{\rm e}/(\Omega \cdot {\rm cm}^2)$ | $C_{\rm dl}/(\mathbf{F}\cdot\mathbf{cm}^{-2})$ | $R_{\rm ct}/(\Omega \cdot {\rm cm}^2)$ |
|------------------------|----------------------------------|---------------------------------------|------------------------------------------------|----------------------------------------|
| Q235                   | —                                | —                                     | 7. 8×10 <sup>-4</sup>                          | 2. $3 \times 10^3$                     |
| TiO <sub>2</sub> /PDMS | $3.2 \times 10^{-10}$            | $1.8 \times 10^4$                     | 2. $4 \times 10^{-7}$                          | 9. 8×10 <sup>6</sup>                   |

从电路图(图 11)中,可以进一步分析超疏水涂 层防腐蚀的机理。*R*。表示超疏水涂层的电阻,*R*。越 大,说明离子越不容易渗透。从表 3 中观察到, TiO<sub>2</sub>/PDMS 超疏水涂层具有很大的 *R*。及 *R*<sub>et</sub>,这是 由于超疏水涂层的微纳结构增加了与腐蚀介质的空 气层。而空气层可以被看成接触角 180°的绝对超 疏水材料,这减少了腐蚀介质与基体的接触,从而阻 止腐蚀的发生<sup>[21]</sup>。然而碳钢表面制备的涂层虽然 比较致密,涂层内部却存在着纳米的孔隙,孔隙之间 联接,形成通道。在长期浸泡中,腐蚀介质中的小分



图 11 超疏水涂层防腐蚀机理原理图 Fig. 11 Schematic diagram of anti-corrosion mechanism of superhydrophobic coating

子可以通过这些通道达到内部受保护的基体,造成 腐蚀坑。腐蚀坑会向试样内部扩散,导致腐蚀程度 变重,腐蚀面积增大。TiO<sub>2</sub>/PDMS 超疏水涂层的防 腐蚀理论主要有两条:一是空气层理论,Cassie 状态 下表面粗糙的微纳结构填充了大量空气,阻止了腐 蚀离子接触基体形成腐蚀。二是毛细效应,由于超 疏水表面的表面能极低,因此表面的腐蚀液体会被 拉普拉斯压力挤出,不能润湿表面,从而对基底提供 有效的保护。

## 3 结论

(1)选择 TiO<sub>2</sub>构造粗糙表面,聚二甲基硅氧烷 (PDMS)作为低表面能物质,采用溶胶-凝胶法在碳 钢表面制备了 TiO<sub>2</sub>/PDMS 超疏水涂层。其接触角 达到最佳的 154.3°,具有良好的疏水性。

(2) 针对超疏水涂层长期耐腐蚀性较差的缺 点。选择高粘度的弹性体 PDMS 作为过渡层,既可 以发挥粘结剂的作用,增加与基底的结合力,又可充 当弹性基底,保持疏水性。

(3) 制备的 TiO<sub>2</sub>/PDMS 超疏水涂层在 3.5
wt.%的 NaCl 溶液中,相较 Q235 钢基体保护效率达到 99.21%。经过 7 d 的 3.5wt.%的 NaCl 溶液浸

泡,制备的超疏水涂层并未发生失重。说明超疏水 涂层具有长期良好的耐腐蚀性能。

#### 参考文献

[1] 张宁,孙立娟,刘栓,等. Q235 钢在不同 Cl<sup>-</sup>浓度滨海滩涂
 土壤中的电化学腐蚀行为[J]. 材料保护,2015(48):
 44-46.

ZHANG N, SUN L J, LIU S, et al. Electrochemical corrosion behavior of Q235 steel in simulated soil solutions of coastal tidal flats with different concentration of chlorideion [J]. Material Protection, 2015(48): 44-46. (in Chinese)

- [2] WEI W, WU X Q, KE W, et al. Electrochemical corrosion behavior of thermal-sprayed stainless steel-coated Q235 steel in simulated soil solutions[J]. Journal of Materials Engineering & Performance, 2016, 25(2): 518-529.
- [3] NASCIMENTO A R C, GATEMAN S M, MAUZEROLL J, et al. Electrochemical behavior, microstructure, and surface chemistry of thermal-sprayed stainless-steel coatings [J]. Coatings, 2019, 9(12): 835.
- LIU Q, MA R, DU A, et al. Investigation of the anticorrosion properties of graphene oxide doped thin organic anticorrosion films for hot-dip galvanized steel[J]. Applied Surface Science, 2019, 480: 646-654.
- [5] XU W, RAJAN K, CHEN X G, et al. Facile electrodeposition of superhydrophobic aluminum stearate thin films on copper substrates for active corrosion protection [J]. Surface and Coatings Technology, 2019, 364: 406-415.
- [6] SINGH, KUMAR A. Inhibition of mild steel corrosion in hydrochloric acid solution by 3-(4-((Z)-Indolin-3ylideneamino) phenylimino) indolin-2-one [J]. Industrial & Engineering Chemistry Research, 2016, 51(8): 3215-3223.
- GLOVER C F, CAIN T W, SCULLY J R. Performance of Mg-Sn surface alloys for the sacrificial cathodic protection of Mg alloy AZ31B-H24[J]. Corrosion Science, 2019, 149: 195-206.
- [8] ALJUMAILY M M, ALSAADI M A, DAS R, et al. Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition [J]. Scientific Reports, 2018, 8(1): 2778.
- [9] THONGROM S, TIRAWANICHAKUL Y, MUNSIT N, et al. One-step microwave plasma enhanced chemical vapor deposition (MW-PECVD) for transparent superhydrophobic surface [J]. Iop Conference, 2018, 311: 012015.
- [10] LIU H, HUANG J, CHEN Z, et al. Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation [J]. Chemical Engineering Journal, 2017, 330: 26-35.
- [11] ZHANG X F, CHEN Y Q, HU J M. Robust superhydrophobic

 ${\rm SiO_2/polydimethylsiloxane}$  films coated on mild steel for corrosion protection [J]. Corrosion Science, 2020, 166: 108452.

- [12] LIU J, FANG X, ZHU C, et al. Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: a comprehensive review [J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 607: 125498.
- [13] NANDA D, SAHOO A, KUMAR A, et al. Facile approach to develop durable and reusable superhydrophobic/superoleophilic coatings for steel mesh surfaces [J]. Journal of Colloid and Interface Science, 2018, 535: 50-57.
- [14] KHORSAND S, RAEISSI K, ASHRAFIZADEH F, et al. Corrosion behaviour of super-hydrophobic electrodeposited nickelcobalt alloy film [J]. Applied Surface Science, 2016, 364: 349-357.
- [15] YANG M P, LIU W Q, JIANG C, et al. Fabrication of superhydrophobic cotton fabric with fluorinated TiO<sub>2</sub> sol by a green and one-step sol-gel process[J]. Carbohydrate Polymers, 2018, 197: 75-82.
- [16] OU J, HU W, XUE M, et al. One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys[J].
   Acs Applied Materials & Interfaces, 2013, 5(20): 9867-9871.
- [17] LIU X, ZHANG T C, HE H, et al. A stearic Acid/CeO<sub>2</sub> bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition [J]. Journal of Alloys and Compounds, 2020, 834: 155210.
- [18] XIA B, LIU H, FAN Y, et al. Preparation of robust CuO/TiO<sub>2</sub> superamphiphobic steel surface through chemical deposition and Sol-Gel Methods [J]. Advanced Engineering Materials, 2017, 19(2): 1-10.
- [19] HOODA A, GOYAT M S, PANDEY J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings [J]. Progress in Organic Coatings, 2020, 142: 105557.
- [20] JIANG D, ZHOU H, WAN S, et al. Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly [J]. Surface & Coatings Technology, 2018, 339: 155-166.
- [21] YAO W, LIANG W, HUANG G, et al. Superhydrophobic coatings for corrosion protection of magnesium alloys[J]. Journal of Materials Science & Technology, 2020, 52: 100-118.

作者简介: 薛鑫宇, 男, 1996年出生, 硕士研究生。主要研究方向为 超疏水涂层。

E-mail:xxy961117@163.com

蒋永锋(通信作者),男,1974年出生,2004年于上海交通大学获得博士学位,现为河海大学机电工程学院教授,博士生导师。主要研究 方向为等离子体电化学表面处理、材料表面腐蚀与防护等。

E-mail:jiangyf@hhuc.edu.cn