doi: 10.11933/j.issn.1007-9289.20190119002

不同密封副材料的表面织构设计及其润滑和密封特性

戴庆文,李思远,王秀英,黄 巍,王晓雷

(南京航空航天大学直升机传动技术重点实验室,南京210016)

摘 要:表面织构化是提升机械密封性能的有效途径,合适的密封副材料是保证机械密封长寿命、高可靠性运行的先 决条件。为获得基于不同密封副材料的表面织构设计原则,选取硬质合金/碳石墨、硬质合金/碳化硅两类密封副材 料,在硬质合金密封环端面加工不同参数的直线型、V型槽表面织构,研究其润滑和密封特性。结果表明,对于硬质 合金/碳石墨密封副,在密封端面加工面积率为4%、(θ,β)参数为(-30°,60°)的V型沟槽织构具有较优的减摩和抑制泄 漏效果;对于硬质合金/碳化硅密封副,织构化密封端面能显著降低摩擦因数和启动力矩、促进密封端面热量排散、 且不会增加泄漏,面积率为6%直槽型织构效果最优。进一步揭示了织构类型和排布形式对润滑和密封性能的作用机 理,为不同工况下密封副端面织构化设计提供了参考。

关键词: 机械密封; 表面织构; 润滑; 泄漏; 流向引导; 反向泵送 中图分类号: TG174.44; TH117 **文献标志码:** A

文章编号:1007-9289(2019)03-0021-09

Surface Texturing of Different Sealing Materials and Their Lubrication and Sealing Performances

DAI Qingwen, LI Siyuan, WANG Xiuying, HUANG Wei, WANG Xiaolei

(National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China)

Abstract: Surface texturing is an effective way to improve the mechanical seal performances, while suitable sealing material is a prerequisite for ensuring long life and high reliability operation. To obtain the surface texture design principle based on different sealing materials, two types of sealing materials of cemented carbide/carbon graphite and cemented carbide/silicon carbide were employed. Straight and V-shaped grooves with different parameters were processed on the end face of cemented carbide/carbon graphite sealing ring, and their lubrication and sealing performances were investigated. It is found that for cemented carbide/carbon graphite sealing pairs, a pattern of V-shaped grooves with an area density of 4% and (θ , β) of (-30° , 60°) has an excellent anti-friction and anti-leakage performance. For cemented carbide/silicon carbide sealing pairs, surface texturing can reduce the friction coefficient and starting torque and improve the heat dissipation capacity without additional leakage, and a pattern of straight grooves with an area density of 6% has an optimum efficiency. The influence mechanism of texture type and arrangement on the lubrication and sealing properties is revealed, and a reference for surface texturing of mechanical seals under different working conditions is proposed.

Keywords: mechanical seal; surface texture; lubrication; leakage; direction guide; reverse pumping

0 引 言

机械密封是现代旋转机械轴封中的重要部

件,其原理是依靠弹力补偿机构使动、静环紧密 贴合并相对滑动,达到防止流体泄漏的目的^[1]。这

收稿日期: 2019-01-19; 修回日期: 2019-05-11

通信作者: 王晓雷 (1963—), 男 (汉),教授,博士;研究方向:摩擦学与表面工程,机械密封; E-mail: wxl@nuaa.edu.cn

基金项目: 国家自然科学基金 (51675268, 51805252); 中国博士后科学基金 (2019M651822)

Fund: Supported by National Natural Science Foundation of China (51675268, 51805252) and China Postdoctoral Science Foundation (2019M651822) 引用格式:戴庆文,李思远,王秀英,等.不同密封副材料的表面织构设计及其润滑和密封特性[J].中国表面工程, 2019, 32(3): 21-29.

DAI Q W, LI S Y, WANG X Y, et al. Surface texturing of different sealing materials and their lubrication and sealing performances[J]. China Surface Engineering, 2019, 32(3): 21-29.

2019年

类接触式机械密封因结构简单、制造方便,维护 成本低,被广泛应用于石油化工、航空航天、船 舶、等工业领域设备中。随着现代机械设备向大 型、高效以及高可靠性快速发展,机械密封的使 用环境正逐步向高参数化转变,要求其能在高 速、高压、高温及复杂介质等严苛的工况条件保 持可靠的工作状态^[2]。据不完全统计,约有 80% 机械密封失效是因端面直接接触的摩擦磨损引起 的,而在特殊工况下这一比例更高^[3]。现代直升机 传动系统中,部分旋转轴速度高达 20 000 r/min, 其液压系统工作压力也比正常工况大几倍甚至几 十倍,此时,密封端面会温升过高、磨损加剧, 轻者降低机械密封的使用寿命,重者导致传动系 统瘫痪^[4]。

极端工况对传统接触式机械密封的性能提出 了更高的要求,在此背景下,密封端面非接触化 应运而生^[5]。非接触式机械密封的原理是利用流体 静压或动压效应,在密封端面间形成一层润滑油 膜,使动、静环非接触,从而减小磨损、提高可 靠性。典型的非接触式密封有干气密封、上游泵 送机械密封等。此外,密封端面织构化是非接触 式机械密封的一个新的发展方向^[6]。

表面织构技术,即在摩擦副表面构筑具有一 定尺寸和排列规则的几何结构阵列(如凹坑、沟槽 等),自1966年被 Hamilton 首次提出后^[7],已被 广泛验证能有效改善表/界面的摩擦学特性^[8-9]。在 润滑特性改善方面,表面织构作用主要体现在以 下几方面:容纳磨粒,有效保护密封界面^[10];提供 额外的润滑油,产生"二次润滑"效应^[11];产生附 加流体动压效应,提升密封界面润滑性能等^[12-13]。

除润滑外,泄漏特性也是机械密封的一个重要的性能参数。研究人员普遍认为,当密封介质 形成稳定流体油膜后,表面织构在密封间隙中形 成的剪切流可有效补偿密封端面内外压差形成的 压差流,从而降低或抑制泄漏。据此,Etsion^[14]首 次提出了零泄漏特性的圆形叶槽机械密封设计理 念。研究人员从理论角度,探索了凹坑阵列^[15]、 倾斜椭圆形凹坑^[16]、倾斜沟槽^[17]、人字槽^[18]、双螺 旋槽^[19]等不同类型表面织构对密封性能的影响规 律,并以提高润滑性能、降低泄漏为目标,优化 了表面织构的几何参数^[20-21]。在试验研究方面, Kaneko^[22]早期的研究表明,织构化密封端面能够 增加流体膜刚度,提高密封界面稳定性。Etsion 等^[23]发现,织构化碳化硅密封端面能在较高压力 下维持完整的液膜,这对改善机械密封性能具有 重要意义。符永宏等^[24]利用激光表面造型技术, 在碳化硅机械密封端面上加工了跨尺度微凹坑阵 列,大幅度降低了其泄漏率。总之,表面织构化 对改善机械密封的润滑和密封性能,提升可靠性 和使用寿命具有重要价值。

然而,就表面织构化技术本身而言,不同材 料表面织构化设计的理念存在差异。在工程应用 中,根据实际工况选用合适的密封副材料是保证 机械密封性能的先决条件。尽管目前的理论和试 验研究获得了一些基于试验工况的改善润滑、抑 制泄漏的表面织构设计方法,但是,不同配副材 料表面织构化后对润滑和密封特性的影响目前仍 然未知。如何针对不同类型的密封副材料设计相 应的表面织构,提升其润滑和密封性能,是机械 密封端面织构化设计的关键之处,相关的研究工 作亟待展开。

基于此,文中选取两类典型的密封副材料: 硬质合金/碳石墨(硬对软)、硬质合金/碳化硅(硬 对硬)展开研究,设计并制备了直线型、V型槽等 多种不同类型的表面织构,探索了不同工况下, 织构形状参数和排布形式对机械密封润滑和泄漏 性能的影响规律,以期获得针对不同密封副材料 的表面织构设计原则。

1 试验方法

1.1 试验装置与试样制备

图 1 所示为试验所用卧式高速密封摩擦试验 机的结构示意图,其主要由加载、驱动、测量单 元等组成。采用螺旋机构调节弹簧加载,并通过 固定在螺杆一侧的压力传感器测量工作载荷;动 环与主轴相连,由电主轴驱动旋转;静环夹具上 的力矩传感器可测量运行过程中的摩擦力矩;密 封端面温度由热电偶直接测得;密封腔内润滑油 与一外置储油容器连通,用于测量泄漏。

选取两类机械密封副材料进行研究:①硬质 合金/碳石墨,②硬质合金/碳化硅。硬质合金为动 环,牌号为YG6,主要组分(质量分数)为:94% WC和6%%Co;碳石墨和碳化硅为静环。动环密 封端面内径为35.8mm,外径为46.8mm;静环密

图 1 试验装置原理图

Fig.1 Schematic diagram of the experimental apparatus

封端面内径为 36 mm, 外径为 46.5 mm。试验中 所有密封端面均打磨、抛光至表面粗糙度 Ra 50~55 nm,并采用平晶仪检测端面平面度,确保 端面干涉光谱带在 3 个以内。为便于对比,织构 均加工在硬质合金表面,具体采用光刻—电解工 艺,其加工流程为:①清洁试样表面,去除油污 杂质;②利用甩胶机在试样表面涂覆光刻胶; ③通过紫外曝光、显影工艺在金属表面制作织构 掩模;④电解去除金属材料并洗尽光刻胶,最终 制备得到织构化表面。图 2 所示为加工获得的碳 化硅静环和织构化硬质合金动环表面形貌及光学 平面度结果。

图 2 碳化硅静环和织构化动环的表面形貌及光学平面度图

Fig.2 Surface topography of cemented carbide and textured silicon carbide sealing rings and parallelism of optical flat

1.2 试验设计

为研究表面织构对润滑和密封性能的影响, 试验设计了两大类型表面织构:直线型沟槽和 V型沟槽。其中,面积率定义为沟槽面积占端面 总面积的百分比;倾斜角 θ 定义为高压侧(内 侧)沟槽与速度方向所夹锐角;展角 β 定义为 V型沟槽的展开角度;V槽的槽长定义为沟槽的 展开长度,试验中设计的表面织构详细参数如 表1所示。

试验采用 L-AN46 机械油作为密封和润滑介 质,固定载荷为 90 N,转速为 1000、2250、 3500、4750 和 6000 r/min,对应环面中位线速度 为 2.18、4.92、7.66、10.4 和 13.13 m/s,环境温度 约为 25 °C,湿度约为 60%。试验前,需对动、静 环超声清洗和烘干,以排除端面杂质的影响,动 静环安装完毕后,测量并记录储油容器中润滑油 量。考虑到研究中试验条件、织构参数均是逐渐 变化,相互之间规律可互相佐证,故下文试验数 据是在单次试验获得。 图 3(a) 为测得的光滑硬质合金/碳石墨、硬质 合金/碳化硅密封副磨合阶段摩擦因数原始曲线, 试验速度为 2.18 m/s,载荷为 90 N。可以看出, 磨合约 18 min (1000 s) 后摩擦因数变化相对稳 定,即进入稳定运行阶段。对织构化密封端面参 数初期试验探索的结果表明,在端面引入表面织 构后,摩擦因数达到平稳阶段所需时间基本相 同,部分会缩短。此外,考虑到长时间运行后密 封副表面会发生磨损,影响表面织构的作用效 果。为了综合评估表面织构对不同密封副润滑和 密封特性的影响规律,试验在 18 min 后每隔 1 s 记录摩擦力矩,运行 15 min,取此时间段内平 均值并换算获得摩擦因数。

图 3(b) 为光滑硬质合金/碳石墨、硬质合金/碳 化硅密封副在不同转速下的泄漏率,其数值通过 测量试验结束后储油容器中润滑油量的变化换算 获得。可见,硬质合金/碳石墨密封副泄漏率随着 转速的升高增大,而光滑硬质合金/碳化硅密封副 端面泄漏率极小,其数值在 0.5 mL/h 左右。 表1 动环端面表面织构的几何参数

Table 1 Geometrical parameters of surface textures on the rotating sealing rings

Туре		Sketch map	heta / °	β/°	Area density, r / %	Geometrical parameter / mm
Straight groove		<i>e</i> Speed	90	NA	2%	- L
					4%	
					6%	
					8%	
			30	NA	4%	
			60			
			-30			
			-60			
V-shape groove	Positive	$+\partial \mathcal{D}\beta$	30	60	4%	Lengtn=3.5 Widtn=0.4 Deptn=0.01
			30	90		
			60	90		
			60	120		
	Negative		-30	60	4%	
			-30	90		
			-60	90		
			-60	120		

Fig.3 Friction coefficient curves at the running-in stage and the leakage rates at different speeds of the cemented carbide/carbon graphite and cemented carbide/silicon carbide sealing pairs

可见,对于硬质合金/碳石墨密封副,重点应 降低其泄漏率;而硬质合金/碳化硅密封副,则重 点应提高其减摩率。此外,由图 3(a)可知,在启 动阶段,硬质合金/碳化硅密封副的摩擦因数高达 0.36,这意味着该密封副可能会出现动静环贴合 过紧、无法正常启动的现象,而硬质合金/碳石墨 密封副启动力矩相对较小,一般不会卡死。故下 文仅对硬质合金/碳化硅密封副启动阶段摩擦因数 展开研究。

2 试验结果

2.1 硬质合金/碳石墨密封副

图 4(a) 为不同面积率直线型沟槽表面织构对 硬质合金/碳石墨密封副润滑和泄漏特性的影响规 律,其倾斜角θ均为90°。"None"表示光滑试 样,用红色点线图表示。相比于光滑表面,在硬 质合金表面引入直槽型表面织构可以显著降低动/ 静环间的摩擦因数。当速度为2.18 m/s 时,面积 率为2%的直槽型织构摩擦因数降低达30%;速 度增大到13.13 m/s 时,减摩效果略微减弱;然而 随着面积率的增大,减摩效果明显降低。另一方 面,引入直槽型织构导致密封端面的泄漏率急剧 增加;且泄漏率随着速度的增大呈明显的增大 趋势。

图 4(b) 为不同倾斜角直线型沟槽表面织构对 密封副润滑和泄漏特性的影响规律,其面积率均

图 4 直线型沟槽表面织构对硬质合金/碳石墨密封副润滑和泄漏特性的影响规律

Fig.4 Effects of straight grooves on the lubrication and leakage capacities of the cemented carbide/carbon graphite sealing pair

为4%。由图可知,动/静环之间的摩擦因数与倾 斜角θ有直接关系。在低速2.18 m/s 时,倾斜角 为-30°或-60°的织构呈现较优的减摩效果,减摩 率达到25%;倾斜角为30°或60°的织构呈现出增 摩效果,增摩率达到8%。随着速度的增加,斜槽 型织构对摩擦因数的影响逐渐减弱。在泄漏方 面,斜槽型织构的引入同样导致泄漏率的增大; 但相比于图4(a)中斜槽型织构的泄漏率明显降 低。由于在不同试验条件下,测得的织构化硬质 合金/碳石墨密封副表面温度无明显变化,故未加 以讨论。

总的来看,直槽型表面织构虽然能降低摩擦 因数,但也导致泄漏率增大,如何做到二者协调 统一,是值得深究的问题。从结构上看,V型沟 槽表面织构比直槽型表面织构多一个拐点,这或 许能阻碍密封介质在槽内的流动。于是,进一步 试验探索了V型沟槽对摩擦因数和泄漏率的影响。 图 5 为具有不同参数 V 型沟槽表面织构的硬 质合金/碳石墨密封副摩擦因数和泄漏率随着速度 的变化曲线。可以看出,正 V 和反 V 型槽表面织 构均能够有效降低摩擦因数,且没有导致过多的 泄漏。其中 (θ , β) 参数为 (±30°, 60°) 的 V 型槽表 现出较优的减摩效果,在 2.18 m/s 低速时,摩擦 因数降低可达 25%;当速度升高到 13.13 m/s 时, 摩擦因数降低约 10%。在泄漏方面,(θ , β) 参数 为 (-30°, 60°) 的 V 型槽织构化表面的泄漏率非常 低,基本和光滑表面一样;且随着速度的升高, 泄漏率几乎不变。

图 5 V 型沟槽表面织构对硬质合金/碳石墨密封副的润滑和泄漏特性的影响规律

Fig.5 Effects of V-shape grooves on the lubrication and leakage capacities of cemented carbide/carbon graphite seal pair

2.2 硬质合金/碳化硅密封副

图 6(a) 为不同面积率直线型沟槽织构对硬质 合金/碳化硅密封副表面摩擦因数和温度的影响规 律,其倾斜角 θ 为 90°。可以看出,在硬质合金表 面引入直槽表面织构可以显著降低动/静环之间的

图 6 直线型沟槽表面织构对硬质合金/碳化硅密封副的润滑和 散热特性的影响规律

Fig.6 Effects of straight grooves on the lubrication and heat transfer capacities of cemented carbide/silicon carbide sealing pair

摩擦因数,面积率为6%的直槽织构表现出最佳 的减摩效果,减摩率达到35%。另一方面,直槽 织构能够有效降低密封端面的温度,且面积率越 大,降温效果越明显;在速度13.13 m/s 时,面积 率为6%的直槽织构能将端面温度降低约17%。 图6(b)为具有不同倾斜角度直线型沟槽织构表面 摩擦因数和泄漏率的影响规律,其面积率均为 4%。相比于直槽型表面织构,斜槽型织构也能够 大幅度降低动/静环之间的摩擦因数,但端面散热 特性略差于直槽型织构。

图 7 为直槽型表面织构对硬质合金/碳化硅密 封副启动阶段摩擦因数的影响规律,红色柱状图 为光滑试样,摩擦因数是在启动后 1、3、5 和 15 min 时测得。可以看出,在端面引入直槽型表 面织构能够显著降低启动阶段摩擦因数。如图 7(a)所示,对于直槽型表面织构,织构化表面能 使磨合阶段摩擦因数降低约 30%,且面积率越

图 7 直线型沟槽表面织构对硬质合金/碳化硅密封副启动阶段 摩擦因数的影响规律

Fig.7 Effects of straight grooves on the friction coefficient of cemented carbide/silicon carbide sealing pair at the running-in stage

高,降低效果越明显。而倾斜角也会影响磨合阶 段摩擦因数,当倾斜角 θ 为-30°或-60°时,织构 化表面减摩效果较好,如图 7(b)所示。

图 8 为具有不同参数 V 型槽织构表面的硬质 合金/碳化硅密封副摩擦因数和温度随着速度的变 化曲线。在硬质合金表面加工正 V 型或反 V 型槽 织构后,其摩擦因数和温度均有不同程度的下 降。如图 8(a)所示,在 2.18 m/s 低速度时,(θ, β) 参数为(60°,90°)的 V 槽表现出较优的减摩效 果,减摩率达到 32%;当速度上升到 13.13 m/s 时,其减摩率约为 22%。正 V 型槽在低速时散热 效果一般,高速时能降低端面温度约 8%。对于 反 V 槽型织构,如图 8(b)所示,在低速时,其平 均减摩率达到 18% 左右;随着速度升高,减摩效 果逐渐变弱。各种不同参数的反 V 槽型表面织构 能够降低温度约 8%。

图 9 为 V 型沟槽表面织构对硬质合金/碳化硅 密封副磨合阶段摩擦因数的影响规律,红色柱状 图为光滑试样。由图可知,正 V 型或反 V 型沟槽 表面织构均够显著降低磨合阶段的摩擦因数,且

图 8 V 型沟槽表面织构对硬质合金/碳化硅密封副的润滑和散热特性的影响

Fig.8 Effects of V-shape grooves on lubrication and heat transfer capacities of the cemented carbide/silicon carbide sealing pair

图 9 V 型沟槽表面织构对硬质合金/碳化硅密封副启动阶段摩擦因数的影响规律

Fig.9 Effects of V-shape grooves on the friction coefficient of cemented carbide/silicon carbide sealing pair at the running-in stage

倾斜角 θ 越大,其减摩效果越明显;而展角 β 不同,减摩效果略有差别。整体来看,相比于光滑试样,V型沟槽表面织构 (θ , β)参数为 (±60°, 90°)时减摩效果较优,摩擦因数降低约 25%。

3 分析与讨论

3.1 表面织构的流向引导效应

由图 3~9 所示试验结果可知,在端面加工微 沟槽均能够显著降低摩擦因数,其最主要原因是 表面织构为密封端面提供了润滑油。传统接触式 机械密封在运行过程中,两光滑密封端面紧密贴 合,介质不易浸润密封界面,动静环之间近乎为 干摩擦状态,摩擦因数相对较高。密封端面加工 织构后为密封介质提供了流动通道,在内外压差 和毛细力作用下,微沟槽能够引导润滑介质沿槽 内部由高压侧向密封界面流动,持续不断地为界 面提供润滑介质,从而降低动静环之间的摩擦因 数。此外,密封端面相对转动时,沟槽在速度方 向的入口处和出口处存在一个收敛楔和一个发散 楔,密封介质在收敛楔处会产生流体动压效应, 在发散楔处存在"气穴"现象,抑制负压的产生, 形成局部流体动压力^[25],进一步改善密封副的润 滑状态。

在实际工程应用中,针对不同类型密封副材 料要合理设计表面织构的面积率。对于硬质合金 /碳石墨(硬对软)密封副,其减摩效果随着面积率 的增大而明显降低(图 4),这主要是因为硬材料对 软材料有一定的切割作用,增大面积率会加剧织 构的切割效应,反而不利于减摩。对于硬质合金 /碳化硅(硬对硬)密封副,这种切割效应较弱,增 大面积率能够有效降低摩擦因数;而且,面积率 越大,进入密封端面的润滑油越多,散热效果越 好,这与图 6 中结果一致。此外,对于硬质合金/ 碳化硅密封副贴合非常紧密的工况,在端面加工 表面织构引入润滑油,将大幅度降低启动阶段的 摩擦因数,防止密封副"咬死"(图 7、9)。

3.2 表面织构的反向泵送效应

表面织构为密封端面提供润滑介质的同时, 不可避免地增加了密封端面的泄漏率,密封界面 存在微通道是泄漏发生的前提。尽管试验所用碳 化硅环、碳石墨环均由热压烧结而成,但其表面 特性却大不相同。烧结成型的碳化硅环经打磨抛 光后表面致密性和平整度较高,而碳石墨环组织 结构不够致密,表面不够光滑,密封端面泄漏量 本身就很大;长时间运行后,碳石墨表面容易磨 损,产生不规则表面微粗糙结构,形成贯穿整个 密封端面的微流道,在毛细力作用下润滑油会沿 着这些表面微泄漏通道流失,致使碳石墨环具有 较高的泄漏率^[26];而碳化硅表面相对致密、平 整,其表面的微通道并未达到泄漏的临界尺度, 所以硬质合金/碳化硅密封副几乎不泄漏。

对于端面泄漏率较高的硬质合金/碳石墨密封 副,在密封端面加工倾斜角为 90°的直线型微沟槽 织构时,沟槽将碳石墨环表面的微泄漏通道直接 连接,加剧端面泄漏率,这与图 4(a)中试验结果 吻合。当倾斜角为钝角时(θ为负),微沟槽会促使 密封腔内介质沿着沟槽向外侧流动,此时泄漏率 升高,摩擦因数下降;而当倾斜角为锐角时,微 沟槽会将端面密封介质反向泵送回内侧,进而回 流到密封腔内,此时泄漏率下降,而摩擦因数反 而上升,该规律与图 4(b)中试验结果吻合。这一 反向泵送特性在 V 型沟槽中表现的尤为突出,当 V 型沟槽外侧与速度方向夹角为锐角时,如图 5 所示,外侧槽能将端面密封介质反向泵送到内侧 槽中并回流到密封腔内,且夹角越小,反向泵送 效果就越明显,泄漏率就越低。

对于硬质合金/碳化硅密封副,其泄漏率本身 就很低,相比于直槽,在端面加工 V 型槽并不能 产生明显的泵送效果,且 V 型槽减小了润滑油浸 润密封端面的有效区域(直径方向有效长度较 短),不利于润滑和散热,对比图 6 与图 8 结果, 可验证这一点。

3.3 表面织构的散热特性

对于硬质合金/碳石墨密封副,密封端面加工 表面织构后泄漏率急剧增大,此时,密封介质为 端面持续提供润滑的同时也将热量快速排散,所 以试验中测得硬质合金/碳石墨密封副端面温度几 乎没有变化。对于硬质合金/碳化硅密封副,由于 本身泄漏率小,在密封端面引入表面织构后,少 量密封介质进入密封端面后充当润滑剂,能一定 程度降低密封端面摩擦因数和温度。

总的来说,根据实际工况,合理设计沟槽形 状、排布形式等参数,可以实现对机械密封端面 润滑、泄漏以及散热性能的有效控制。

4 结 论

为获得基于不同密封副材料的表面织构设计 原则,文中选取了硬质合金/碳石墨(硬对软)、硬 质合金/碳化硅(硬对硬)两类典型的密封副,在硬 质合金表面制备了直/倾斜沟槽、V型槽等多种不 同排布形式的表面织构,探索了不同工况下织构 化表面对机械密封润滑和泄漏性能的影响,得到 如下结论:

(1) 对于硬质合金/碳石墨组成的密封副 (硬对 软):相比于无织构密封端面,织构化密封端面能 够显著降低摩擦因数,但同时也会增加泄漏量; 在工程应用中,针对容易磨损但无泄漏要求的场 合,可在密封端面加工直槽型表面织构,且面积 率越小,减摩效果更好;针对容易磨损、泄漏的 场合,可在密封端面加工 V 型沟槽织构,且 V 型 槽的开口方向与速度方向一致时,既可保证良好 的减摩效果,又不会导致过多的泄漏,V 型槽 (θ, β) 参数为 (-30°, 60°)、面积率为 4% 的减摩和抑制 泄漏效果较优。

(2)对于硬质合金/碳化硅组成的密封副(硬对硬):无织构密封副泄漏量本身就极小,但其启动力矩较大;织构化密封端面能显著降低摩擦因数、促进密封端面热量排散、且不会增加泄漏;此外,织构化密封端面可以明显降低启动阶段的摩擦因数,减小启动力矩;直槽织构比斜槽、 V形槽织构,具有较好的减摩和散热效果,且面积率为6%直槽型织构效果最优;上述特性对于扩大该密封副应用范围、提高其可靠性以及降低维护成本具有积极作用。

参考文献

[1] 顾永泉. 机械密封实用技术[M]. 北京: 机械工业出版社, 2001.

GU Y Q. Practical technology of mechanical seal[M]. Beijing: China Machine Press, 2001 (in Chinese).

[2] 林基恕, 张振波. 21 世纪航空发动机动力传输系统的展望

[J]. 航空动力学报, 2001, 16(2): 108-114, 118.

LIN J N, ZHANG Z B. Prospects of aeroengine power transmission system in the 21st century[J]. Journal of Aerospace Power, 2001, 16(2): 108-114, 118 (in Chinese).

[3] 郝木明, 李振涛, 任宝杰, 等. 机械密封技术及应用[M]. 北京: 中国石化出版社.

HAO M M, LI Z T, REN B J, et al. Mechanical seal technology and application[M]. Beijing: China Petrochemical Press (in Chinese).

[4] 王莹. 直升机传动系统圆周密封技术研究[J]. 机械工程师, 2018(2): 118-120, 123.

WANG Y. Research on circumferential sealing technique of helicopter drive system[J]. Mechanical Engineer, 2018(2): 118-120, 123 (in Chinese).

- [5] 王玉明, 刘伟, 刘莹. 非接触式机械密封基础研究现状与展望[J]. 液压气动与密封, 2011, 31(2): 29-33.
 WANG Y M, LIU W, LIU Y. Current research and developing trends on non-contacting mechanical seals[J]. Hydraulics Pneumatics & Seals, 2011, 31(2): 29-33 (in Chinese).
- [6] ETSION I, KLIGERMAN Y, HALPERIN G. Analytical and experimental investigation of laser-textured mechanical seal faces[J]. Tribology Transactions, 1999, 42(3): 511-516.
- [7] HAMILTON D B, WALOWIT J A, ALLEN C M. A theory of lubrication by microirregularities[J]. Journal of Basic Engineering, 1966, 88(1): 177-185.
- [8] WANG X L, KATO K, ADACHI K, et al. Loads carrying capacity map for the surface texture design of sic thrust bearing sliding in water[J]. Tribology International, 2003, 36(3): 189-197.
- [9] 王静秋, 王晓雷. 表面织构创新设计的研究回顾及展望[J].
 2015, 51(23): 84-95.
 WANG J Q, WANG X L. State of the art in innovative design of surface texture[J]. Journal of Mechanical Engineering, 2015, 51(23): 84-95(in Chinese).
- [10] SUH N P, MOSLEH M, HOWARD P S. Control of friction[J]. Wear, 1994, 175(1): 151-158.
- [11] WANG X L, KATO K. Improving the anti-seizure ability of sic seal in water with rie texturing[J]. Tribology Letters, 2003, 14(4): 275-280.
- [12] ETSION I, HALPERIN G. A laser surface textured hydrostatic mechanical seal[J]. Tribology Transactions, 2002, 45(3): 430-434.
- [13] 赵帅, 王晓雷. 高分子材料机械密封磨损特性及表面织构的影响[J]. 摩擦学学报, 2015, 35(6): 761-767.
 ZHAO S, WANG X L. The effects of surface texture on the wear properties of mechanical seals made of metal and polymers[J]. Tribology, 2015, 35(6): 761-767 (in Chinese).

- [14] ETSION I. A new concept of zero-leakage noncontacting mechanical face seal[J]. Journal of Tribology, 1984, 106(3): 338-343.
- [15] FELDMAN Y, KLIGERMAN Y, ETSION I. A hydrostatic laser surface textured gas seal[J]. Tribology Letters, 2006, 22(1): 21-28.
- [16] NAU B S. Mechanical seal face materials[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1997, 211(3): 165-183.
- [17] SHI L P, WANG X Y, SU X, et al. Comparison of the loadcarrying performance of mechanical gas seals textured with microgrooves and microdimples[J]. Journal of Tribology, 2016, 138(2): 021701.
- [18] WANG Y M, YANG H X, WANG J L, et al. Theoretical analyses and field applications of gas-film lubricated mechanical face seals with herringbone spiral grooves[J]. Tribology Transactions, 2009, 52(6): 800-806.
- [19] ETSION I. State of the art in laser surface texturing[J]. Journal of Tribology, 2005, 127(1): 248-253.
- [20] WANG X Y, SHI L P, DAI Q W, et al. Multi-objective optimization on dimple shapes for gas face seals[J]. Tribology International, 2018, 123: 216-223.
- [21] SUN J J, MA C B, YU Q P, et al. Numerical analysis on a new pump-out hydrodynamic mechanical seal[J]. Tribology International, 2017, 106: 62-70.
- [22] NAU B S. Research in mechanical seals[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1990, 204(6): 349-376.
- [23] ETSION I. Improving tribological performance of mechanical components by laser surface texturing[J]. Tribology Letters, 2004, 17(4): 733-737.
- [24] 符永宏, 纪敬虎, 杨超君, 等. 新型零泄漏非接触式机械密封及其激光表面微造型跨尺度加工工艺研究[J]. 润滑与密封, 2008, 33(1): 27-32, 38.
 FUYH, JIJH, YANGCJ, et al. The study of a new type of

zero-leakage and non-contact mechanical seal and the laser surface texturing with crossing domension processing[J]. Lubrication Engineering, 2008, 33(1): 27-32, 38 (in Chinese).

[25] 温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008.
WEN S Z, HUANG P. Principles of tribology[M]. Beijing:

Tsinghua University Press,2008 (in Chinese).

 BOTTIGLIONE F, CARBONE G, MANTRIOTA G. Fluid leakage in seals: An approach based on percolation theory[J].
 Tribology International, 2009, 42(5): 731-737.