doi: 10.11933/j.issn.1007-9289.2016.01.009

磁控溅射沉积 AI/AIN 纳米多层膜的摩擦学性能 *

王云锋¹,张广安²,吴志国³

(1. 兰州交通大学 光电技术与智能控制教育部重点实验室, 兰州 730070; 2. 中国科学院兰州化学物理研究所 固体润 滑国家重点实验室, 兰州 730000; 3. 兰州大学 物理科学与技术学院, 兰州 730000)

摘 要: 纳米多层膜因具有优异的力学性能与抗摩擦磨损性能使其在摩擦学领域具有重要的应用价值。采用磁控溅 射沉积法制备了 Al、AlN 单层薄膜与 Al/AlN 纳米多层膜,探讨了纳米多层化对薄膜的力学性能和摩擦学性能的影响。 采用纳米压痕仪和摩擦磨损试验机测量评价薄膜的纳米硬度和摩擦学性能。结果表明:Al/AlN 纳米多层膜具有良好 的周期调制结构,多层膜中的大量界面能显著提高薄膜的力学性能与摩擦学性能。多层膜的硬度为 8.8 GPa,高于采用 混合法则计算出的硬度值 6.6 GPa;多层膜具有软质 Al 层和硬质 AlN 层的交替结构,在摩擦过程中,硬质 AlN 层可以 起到良好的承载作用,软质层可以起到良好的减摩作用。相对于 Al 单层薄膜或 AlN 单层薄膜,Al/AlN 纳米多层膜具 有较低的摩擦因数(0.15)和优异的抗磨损性能。

关键词:磁控溅射; Al/AlN 多层膜;摩擦学性能

中图分类号: TG174.444; TG115.58 **文献标志码:** A **文章编号:** 1007-9289(2016)01-0058-06

Tribological Properties of Al/AlN Multilayers Prepared by Magnetron Sputtering Technique

WANG Yun-feng¹, ZHANG Guang-an², WU Zhi-guo³

(1. Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070; 2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; 3. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000)

Abstract: Multilayers have been paid extensive attention to the triblogical applications due to their excellent mechanical properties and anti-wear properties. Al, AlN single layer and Al/AlN multilayers were prepared by magnetron sputtering method. The mechanical and wear properties of the multilayer were discussed. The hardness of the Al/AlN multilayer films was determined using a nano-indentation tester. The tribological properties of the films were measured by a UMT-2MT tester in reciprocating mode. The as-deposited Al/AlN multilayers show well-defined multilayer modulation structures. The mechanical properties of the Al/AlN multilayers significantly improved, which is caused by the large content of interfaces. The hardness of the Al/AlN multilayers is 8.8 GPa, which is higher than the calculated hardness (6.6 GPa) using the rule-of-mixture with the single layer. In the Al/AlN multilayers, the hard AlN layer shows superior carrying capacity, while the soft Al layer plays a lubricant role in the wear process. Therefore, the Al/AlN multilayers show lower friction coefficient (0.15) and much better wear resistance than the single layers.

Keywords: magnetron sputtering; Al/AlN multilayers; tribological properties

- **收稿日期**:2015-05-11; **修回日期**:2015-11-10; **基金项目**:*甘肃省财政厅基本可研业务费项目(214140);甘肃省博士后择优资助项 目(26001201);兰州交通大学青年基金(2013037)
- 通讯作者:张广安(1982-),男(汉),副研究员,博士;研究方向:材料表面改性、气相沉积技术;Tel:(0931)4968117;E-mail:gazhang@licp.cas.cn
- 网络出版日期: 2016-01-30 17:44; 网络出版地址: http://www.cnki.net/kcms/detail/11.3905.tg.20160130.1744.018.html
- **引文格式**:王云锋,张广安,吴志国. 磁控溅射沉积 Al/AlN 纳米多层膜的摩擦学性能[J]. 中国表面工程,2016,29(1):58-63. WANG Y F, ZHANG G A, WU Z G. Tribological properties of Al/AlN multilayers prepared by magnetron sputtering technique[J]. China Surface Engineering, 2016, 29(1):58-63.

0 引 言

与单层薄膜相比,纳米多层膜的硬度、断裂 韧性、抗摩擦性能、抗氧化性能及耐腐蚀性能等 明显较优[1-3]。在薄膜材料的设计和制备中,采用 多层结构有利于减少薄膜表面和层间开裂倾向, 在达到提高硬度的同时也能改善薄膜的韧性和 耐磨性^[4-6]。Holmberge等指出,交替沉积高剪 切模量与低剪切模量亚层的多层膜体系的力学 性能会有显著提高,因为在软硬交替多层体系 中,软层(低剪切模量)将起到剪切带的作用,使 得与硬层(高剪切模量)之间可以在保持低应力 水平的情况下,产生一定的"相对滑动"[7],从而 改善整个多层膜体系的力学性能和摩擦学性能。 在摩擦过程中,金属薄膜由于硬度较低而容易出 现严重的粘着磨损与较高的摩擦因数,而陶瓷薄 膜最突出的弱点就是其固有的脆性容易在摩擦 过程中产生灾难性的非塑性破坏[8-9],使得摩擦因 数和磨损率都比较高。

通过将金属的韧性与陶瓷的高硬度优点相结合,构筑软硬交替叠合的金属/陶瓷多层结构并引入大量的界面可使得薄膜兼具高硬度与高韧性,能显著提高薄膜的抗疲劳磨损能力^[10-12]。对 Cr/CrN 多层薄膜的摩擦磨损性能研究表明^[12]:多层膜的抗磨损性能均优于 Cr 与 CrN 单层薄膜,但未观察到摩擦因数的显著降低。

因此,文中研究了 Al、AlN 单层薄膜与 Al/ AlN 纳米多层膜的力学性能与摩擦学性能,探讨 了纳米多层化对薄膜的力学性能和摩擦学性能 的影响。

1 试验与方法

1.1 试样制备

用柱状靶直流磁控溅射系统制备 Al、AlN 单 层薄膜与 Al/AlN 纳米多层膜。图 1 为沉积设备 的示意图,该设备使用柱状磁控溅射靶,靶直径 60 mm,长 370 mm,靶内放有 8 个磁芯,可同时刻 蚀柱状靶的 8 个区域保证沉积薄膜的均匀性^[13]。

将(111)单晶硅片用丙酮和乙醇超声清洗后 置于真空室中距靶 150 mm 的竖直基板上,工业 纯 Al(纯度> 99.0%)金属靶安装于阴极上,溅 射前将真空室气压抽至低于 3×10⁻³ Pa。

薄膜制备过程中,首先将基体温度加热至 150℃,并采用氩离子轰击清洗基底10min,然后

图 1 柱状靶直流磁控溅射装置示意图[13]

Fig. 1 Schematic diagram of magnetron sputtering system with a columnar target $\ensuremath{^{[13]}}$

通过周期性地改变沉积条件制备沉积 Al/AlN 纳 米多层膜,即每个周期内,镀 Al 层 60 s,镀 AlN 层 60 s,交替沉积 100 周期,获得设计周期为 4 nm的 Al/AlN 纳米多层膜,Al 层和 AlN 层的 具体沉积参数见表 1。为了改善膜-基界面结合 力和表面的抗氧化性能,在硅基片上保证最先沉 积 Al 层作为多层膜与硅基底的结合层,最外层 沉积 AlN 层以防止多层膜表面的氧化。

为了进行对比,采用相同的制备条件制备厚 度为 400 nm 的 Al 单层薄膜和厚度为 300 nm 的 AlN 单层薄膜用于性能比较。

表 1 Al/AlN 纳米多层膜的沉积参数

Table 1 Deposition parameters of the Al/AlN multilayer

Parameters	Al layer	AlN layer
Working pressure/Pa	0.5	0.75
Flow rate of $Ar/(cm^3 \cdot min^{-1})$	40	
Flow rate of $N_2/(cm^3 \cdot min^{-1})$		50
Power/W	450	750
Time/s	60	60
Thickness/nm	2.9	1.1
Layer number	100	100

1.2 表征与分析

纳米多层膜的周期性调制结构在满足 Bragg 条件时可对 X 射线产生相干衍射,对于纳米多层 膜,由于其调制周期远大于晶体的晶面间距,其 XRD 衍射峰一般能在 0°~10°的低角度范围内观 察到,因此采用低角度 X 射线衍射法测定多层膜 的调制结构,所用仪器为日本 Rigaku D/max – 2500 型 X 射线衍射仪,X 射线源为 Cu K α (λ = 0.154 nm),步进方式扫描,步长 0.01°,扫描速率 为 2°/min,扫描范围为 0.5°~10°。

采用 MTS 公司研制的纳米压痕仪系统 (Nano Indenter XP System)测量 Al 单层薄膜、 AlN 单层薄膜与 Al/AlN 多层膜的硬度,压入深 度为 50 nm,取 5 次测量的平均值作为最后的 硬度。

在美国 CETR 公司产的 UMT-2MT 型微摩 擦磨损试验机上评价了薄膜的摩擦学性能,采用 往复滑动方式,频率为 5 Hz,单次滑动行程 6 mm,环境温度 25 ℃,湿度为 25%,摩擦副为 GCr15 钢球(硬度 6.1 GPa)。

采用 JSM-5600LV 型电子显微镜(SEM), 加速电压为 20 kV,使用二次电子图像模式观测 分析磨痕的表面形貌。

2 结果与讨论

2.1 AI/AIN 纳米多层膜的结构表征

具有成分调制结构的多层膜调制界面与晶体晶面一样,会对 X 射线产生衍射,根据 Bragg 公式可以测得纳米多层膜的调制周期:

 $2\Lambda\sin\theta = n\lambda$

其中, Λ 为调制周期, nm; λ 为入射 X 射线的 波长, nm。图 2 为调制周期设计值为 4 nm 的 Al/AlN 纳米多层膜小角度 XRD 图谱, 在 2.1° 附近出现了多层膜界面的衍射峰, 说明本工艺

所制备的多层膜出现成分调制结构,计算得到多 层膜的调制周期为4.2 nm,与设计值较为符合。

2.2 薄膜的硬度

Al、AlN单层薄膜、Al/AlN纳米多层膜的硬 度测量结果如表 2 所示。AlN单层薄膜的硬度 较高,约为12.9 GPa;Al单层薄膜的硬度较低, 约为4.2 GPa左右,但高于铸造铝的硬度(167~ 245 MPa),主要是由于溅射沉积的Al薄膜中的 晶粒比较小,存在大量的晶界,起到明显的强化, 又由于纳米压痕的压入深度仅仅是在几十个纳 米,所以薄膜表面的轻微氧化也将导致Al单层 薄膜的硬度升高。Al/AlN纳米多层膜的硬度为 8.8 GPa,高于采用混合法则^[14]计算出的硬度值 6.6 GPa,这说明 Al/AlN 纳米多层膜中大量的 界面能显著提高薄膜的整体硬度。

表 2 Al、AIN 单层薄膜、Al/AIN 纳米多层膜的硬度 Table 2 Hardness of the Al, AlN single layer and Al/ AlN multilayer (GPa)

Samples	Al single	AlN single	Al/AlN
	layer	layer	multilayer
Hardness	4.2	12.9	8.8

2.3 薄膜的摩擦磨损性能

图 3 为 Al 与 AlN 单层薄膜在 1 N 载荷,滑 动频率 5 Hz,与 GCr15 钢球对磨的摩擦因数随 摩擦测试时间的变化曲线。从图中可以看出:Al 单层薄膜初始阶段的摩擦因数较低,在 0.2~0.3 之间;摩擦测试 120 s 时摩擦因数开始升高;摩擦 测试 200 s 时薄膜的摩擦因数增大至 0.7~0.8 之间。这是由于 Al 单层薄膜的硬度低于 GCr15 对偶钢球,在法向载荷和剪切力(摩擦力)作用下 薄膜发生变形、剥落,Al 薄膜被迅速磨穿,对偶钢 球直接与硅基体接触而使得摩擦因数在较短的 时间内升高。

从 Al 单层薄膜的磨痕形貌(图 4(a))也可以 看出薄膜表面的磨痕很宽,磨痕内有大量变形的 磨屑以及很深的犁沟,呈现出磨粒磨损和粘着磨 损特征。而 AlN 单层薄膜的摩擦因数在摩擦测 试 20 s 时迅速升高至 0.5~0.6,这说明对于硬度 较高的 AlN 单层薄膜,摩擦测试时间的增加累积 的应力使得脆性陶瓷薄膜表面破裂,摩擦因数剧

图 3 Al、AlN 单层薄膜与 Al/AlN 纳米多层膜在 1 N 载 荷下与 GCr15 钢球对磨的摩擦因数曲线

Fig. 3 Friction coefficient of the Al, AlN single layer and Al/AlN multilayer sliding against GCr15 steel ball under the load of 1 N

烈波动;摩擦测试 200 s 时摩擦因数升高至 0.6~ 0.7 之间,说明已磨穿到硅基底。图 4(b)为 AlN 单层薄膜的磨痕形貌,可观察到 AlN 单层薄膜表 面发生了灾难性的破坏而磨痕表面产生大量的 磨屑,同时磨屑在摩擦过程中起到磨料的作用, 加剧了薄膜的磨损。

图 5 为 Al/AlN 纳米多层膜与 GCr15 钢球 对磨的摩擦因数随摩擦测试时间变化的曲线。 由图可知:在1N的法向载荷下,Al/AlN纳米多 层膜的摩擦因数很低,无明显的波动,且在 3 600 s的摩擦测试过程中摩擦因数均保持在 0.15左右;当法向载荷增大到3N时,摩擦测试 初始阶段的摩擦因数比较稳定,保持在 0.15 左 右,无明显的波动,1700s时摩擦因数逐渐增大, 3 000 s 时摩擦因数达到 0.7 左右,即纳米多层膜 在摩擦过程中是逐渐被摩擦损失直至被磨穿的,

(a) Al single layer

不同载荷下 Al/AlN 纳米多层膜与 GCr15 钢球对 图 5 磨的摩擦因数曲线

Fig. 5 Friction coefficient of the Al/AlN multilayer against GCr15 steel ball under different loads

摩擦因数随摩擦测试时间的延长呈现出较长时 间的渐变增大过程,这与多层膜的结构特点有密 切的关系。

Al/AlN 纳米多层膜与 GCr15 钢球对磨时显 示出了奇特的减摩效应,即纳米多层膜的摩擦因 数低于单层金属或陶瓷薄膜的摩擦因数,分析认 为是由纳米多层薄膜的结构决定的。Al/AlN 纳 米多层膜具有软质的金属 Al 层和硬质的陶瓷 AlN 层交替结构,其中硬质的 AlN 层起到良好的 承载作用,软质 Al 层易于屈服,同时具有很好的 延展性,从而使摩擦过程中的接触面积增加,降 低了接触应力和摩擦因数,起到一定的润滑减摩 作用。

同时纳米多层膜具有很好的韧性,在整个摩

擦测试过程中主要是薄膜受到 GCr15 钢球对偶接触应力的挤压变形而逐渐摩擦损失,磨痕内未出现明显的薄膜的破裂以及薄膜剥落的迹象(图 6(a)),从而纳米多层膜能避免金属薄膜的粘着磨损与陶瓷薄膜由于脆性断裂导致的磨粒磨损而造成的灾难性的破坏失效。

纳米多层膜的抗磨损性能的增加也与多层 膜中的界面有关,裂纹在通过多层膜界面区域时 会被阻止和反射,从而使断裂的能量在层间消 失,不易出现由于脆性断裂或剥落而导致失效, 有利于降低磨损。同时多层膜的高硬度也在一 定程度上提高了薄膜的耐磨损性能。

(a) 1 N

(b) 3 N

图 6 Al/AlN 多层膜在不同载荷下与 GCr15 钢球对磨后的磨痕形貌 Fig. 6 Worn morphologies of the Al/AlN multilayer sliding against GCr15 steel ball under different loads

3 结 论

(1) 采用磁控溅射法成功制备出调制周期为 4 nm 的 Al/AlN 纳米多层薄膜,多层膜具有明显 的多层调制结构,其硬度为 8.8 GPa 显著高于采 用混合法则计算出的硬度值(6.6 GPa)。

(2) 由于 Al/AlN 纳米多层膜具有软质 Al 层和硬质 AlN 层的交替结构,在摩擦过程中,硬 质 AlN 层可以起到良好的承载作用,软质层可以 起到良好的减摩作用,有效的降低了 Al/AlN 纳 米多层膜的摩擦磨损,使其具有较低的摩擦因数 (0.15)和优异的耐磨特性。

参考文献

[1] 吴莹,赵文济,孔明,等. A1N/SiO₂ 纳米多层膜的超硬效应与高温抗氧化性[J].无机材料学报,2008,23(3):562-566.

WU Y, ZHAO W J, KONG M, et al. Superhardness

effect and high temperature oxidation resistance of AlN/ SiO₂ nano-multilayers[J]. Journal of Inorganic Materials, 2008, 23(3): 562-566 (in Chinese).

- [2] LI J L, WANG Y X, WANG L P. Structure and protective effect of AlN/Al multilayered coatings on NdFeB by magnetron sputtering[J]. Thin Solid Films, 2014, 568(4): 87–93.
- [3] ZHANG G A, WU Z G, WANG M X, et al. Structure evolution and mechanical properties enhancement of Al/AlN multilayer[J]. Applied Surface Science, 2007, 253(22): 8835-8840.
- [4] BEMPORAD E, SEBASTIANI M, PECCHIO C, et al. High thickness Ti/TiN multilayer thin coatings for wear resistant applications[J]. Surface & Coatings Technology, 2006, 201(6): 2155-2165.
- [5] 金杰,王丽叶,黄晓林,等. 复合离子束制备氮化物多层膜的抗冲蚀性能[J]. 中国表面工程,2014,27(5):32-38.
 JIN J, WANG L Y, HUANG X L, et al. Erosion resistance performance of different nitride films deposited by composite ion beam[J]. China Surface Engineering, 2014, 27(5):32-38 (in Chinese).
- [6] WIECINSKI P, SMOLIK J, GARBACZ H, et al. Failure

and deformation mechanisms during indentation in nanostructured Cr/CrN multilayer coatings [J]. Surface & Coatings Technology, 2014, 240(7): 23-31.

- [7] HOLMBERG K, MATTHEWS A, RONKAINEN H.
 Coating tribology contact mechanisms and surface design
 [J]. Tribology International, 1998, 31(1/2/3): 107-120.
- [8] WANG L P, GAO Y, XUE Q J, et al. Microstructure and tribological properties of electrodeposited Ni-Co alloy deposits
 [J]. Applied Surface Science, 2005, 242(3): 326-332.
- [9] ZHANG G A, YAN P X, WANG P, et al. The structure and tribological behaviors of CrN and Cr - Ti - N coatings [J]. Applied Surface Science, 2007, 253(18): 7353-7359.
- [10] 卿涛, 邵天敏, 温诗铸. Ti/TiN 和 Ni/TiN 多层膜的制备
 和小载荷下摩擦性能研究[J]. 中国表面工程, 2006, 19
 (5): 32-37.

QIN T, SHAO T M, WEN S Z. Preparation and friction

properties of Ti/TiN and Ni/TiN multilayered films[J]. China Surface Engineering, 2006, 19(5): 32-37 (in Chinese).

- [11] ALI R, SEBASTIANI M, BEMPORAD E. Influence of Ti

 TiN multilayer PVD-coatings design on residual stresses
 and adhesion[J]. Materials & Design, 2015, 75: 47-56.
- [12] MARTMEZ E, ROMERO J, LOUSA A. Wear behavior of nanometric CrN/Cr multilayers[J]. Surface & Coatings Technology, 2003, 163-164: 571-577.
- [13] 吴志国,张伟伟,白利峰,等.纳米 Cu₃N 薄膜的制备与性能[J].物理学报,2005,54 (4):1885-1889.
 WU Z G, ZHANG W W, BAI L F, et al. Preparation and properties of nano structure Cu₃N thin films[J]. Acta Physica Sinica, 2005, 54 (4): 1885-1889 (in Chinese).
- [14] KIM H S. On the rule of mixtures for the hardness of particle reinforced composites[J]. Materials Science and Engineering A, 2000, 289(1/2), 30-33.

(责任编辑:黄艳斐)

本刊关于参考文献著录的要求

本刊参考文献符合国标 GB/T7714-2015,采用顺序编码著录,依照其在文中出现的先后顺序用阿 拉伯数字标出,并将序号至于方括号内,排列于文后。参考文献应尽量引用国内外正式公开发表的引 文且各项信息齐全,作者的英文名采用姓前名后格式,姓用全称且全部字母大写,名用缩写且保留大写 的首字母,作者在3名以上只列前3名,后加",等";题名后应标注文献标识类型;期刊名称(包括英文 期刊)采用全称;著录期刊的年、卷、期信息应齐全。具体格式如下:

① 期刊:[序号]作者. 文名[J]. 刊名, 出版年, 卷(期): 起止页码.

② 论文集:[序号]作者.题名[C].编者.文集名,出版地:出版者,出版年.

③ 学位论文:[序号]作者. 题名[D]. 保存地:学位授予单位, 授予年份.

④ 专著:[序号]著者.书名[M].版本.出版地:出版者,出版年:起止页码.

⑤ 报告:[序号]作者. 报告题名[R]. 出版地:出版者,出版年.

⑥ 标准:「序号]著者. 标准名:标准顺序号一发布年[S]. 出版地:出版者,出版年,起止页码.

⑦ 专利:[序号]专利所有者. 专利题名: 专利号[P]. 公告日期或公开日期.

⑧ 报纸:[序号]作者.题名[N].报纸名,出版日期(版次).

⑨ 电子文献:[序号]作者名. 题名[J/OL] ([EB/OL]或[DB/OL]). 发表或更新日期[引用日期]. 获取和访问路径.

另为适应国际数据库的要求,从 2014(6)期开始,本刊要求原属中文的参考文献需同时标出其对应 的英文格式。例如:

[1] 何家文. 追溯历史评表面形变纳米化[J]. 中国表面工程, 2014, 27(5): 1-13.

HE J W. Comments on nano-treatment of surface attrition via historical review[J]. China Surface Engineering, 2014, 27(5): 1-13 (in Chinese).

(本刊编辑部 供稿)