doi: 10.11933/j.issn.1007-9289.2015.03.009

表面 Pd 膜对 LaNi4.25 Alo.75 合金贮氢性能的影响

刘丽飞,肇博涛,张平柱,叶一鸣,胡石林 (中国原子能科学研究院 特种材料工程部,北京 102413)

摘 要:为改善LaNi_{4.25} Al_{0.75} 贮氢合金表面抵抗杂质气体毒化的能力,采用化学镀对粒径 *d* 为 150~300 μm 的 La-Ni_{4.25} Al_{0.75} 颗粒进行了表面金属 Pd 的包覆。通过扫描电子显微镜(SEM)、能谱仪(EDS)、X 射线衍射仪(XRD)对化学 镀前后 LaNi_{4.25} Al_{0.75} 合金颗粒的表面形貌及结构进行表征分析;采用容量法测试材料的贮氢性能。结果表明:化学镀在 LaNi_{4.25} Al_{0.75} 颗粒表面沉积了一层晶体 Pd 单质,膜层均匀且有一定的致密性。表面金属 Pd 层能够使 LaNi_{4.25} Al_{0.75} 颗粒 在含杂质(O₂ 和 N₂)氢气中的贮氢容量的衰减幅度由 1.928%降至 0.086%,有效提升了其抵抗 O₂ 和 N₂ 毒化的能力。 关键词:LaNi_{4.25} Al_{0.75} 合金; 贮氢性能;化学镀;Pd **中图分类号:**TG174,44;TG139.7 **文献标志码:**A **文章编号:**1007-9289(2015)03-0056-07

Influences of Surface Palladium Film on Hydrogen Storage Performance of LaNi_{4.25} Al_{0.75} Alloy

LIU Li-fei, ZHAO Bo-tao, ZHANG Ping-zhu, YE Yi-ming, HU Shi-lin

(Engineering Department of Special Material, China Institute of Atomic Energy, Beijing 102413)

Abstract: The LaNi_{4, 25} Al_{0, 75} alloy particle of the size of $150 \sim 300 \ \mu$ m was coated with palladium via electroless plating process to improve its durability against surface poisoning by impurity gases. Surface morphologies and structure of La-Ni_{4, 25} Al_{0, 75} particles before and after electroless plating were characterized and analyzed by SEM, EDX and XRD, and the hydrogen storage properties were tested by the volumetric method. It is found that a uniform elemental Pd film of crystal-line structure and certain compactness is introduced by electroless plating on the surface of LaNi_{4, 25} Al_{0, 75} particles. The surface palladium layer is able to decrease the amplitude attenuation of hydrogen storage capacity of LaNi_{4, 25} Al_{0, 75} particles in hydrogen with O₂ and N₂ impurities from 1.928% to 0.086%, and thus effectively improve its resistance against O₂ and N₂ impurities.

Keywords: LaNi4.25 Alo.75 alloy; hydrogen storage property; electroless plating; palladium (Pd)

0 引 言

贮氢合金因具有较高的贮氢容量、良好的动力学性能以及较佳的安全性能^[1-3]而在氢的贮存与输运、热能一机械能转换、电池、氢的回收精制、氢同位素分离等诸多领域获得了较为广泛的应用。各种应用系统均要求贮氢合金能够在较长的使用周期内保持其良好的吸放氢性能。然而,杂质气体如 O₂,CO,N₂ 和 CO₂ 等,会造成合

金贮氢容量的下降以及吸放氢性能的减弱[4-7]。

Hchida^[8]等指出暴露于空气中的 LaNi₅ 吸 氢速度大大减慢;蒋春丽等^[9]对 LaNi₄, Al₀.3在氧 气中吸氢行为的研究发现:氧含量较低时,不会 影响合金的初始吸氢速率,但会降低合金的贮氢 容量;随着 O₂ 含量逐渐升高,合金吸氢速率变 慢,贮氢容量大大降低;Qi Wan 等^[10]发现,30 ℃ 时,LaNi₄, Al₀.3在含 CO 杂质的氢气中循环 3 次

收稿日期: 2015-01-19; 修回日期: 2015-04-21

通讯作者:张平柱(1967-),男(汉),研究员,博士;研究方向:反应堆结构材料;Tel:(010)69357386;E-mail:zhpz@sohu.com

网络出版日期: 2015-05-07 17: 19; 网络出版地址: http://www.cnki.net/kcms/detail/11.3905.TG.20150507.1719.007.html

引文格式: 刘丽飞, 肇博涛, 张平柱, 等. 表面 Pd 膜对 LaNi_{4.25} Al_{0.75} 合金贮氢性能的影响 [J]. 中国表面工程, 2015, 28(3): 56-62. Liu L F, Zhao B T, Zhang P Z, et al. Influences of surface palladium film on hydrogen storage performance of LaNi_{4.25} Al_{0.75} alloy [J]. China Surface Engineering, 2015, 28(3): 56-62. 基本失去吸氢能力。实际应用过程中,来自原料 气或是系统缺陷所引入的杂质气是无法避免的。 因此,贮氢合金在系统应用之前,需采取适当的 措施以提高其抵抗杂质气体毒化的能力,来保持 其作为新型贮氢材料的性能优势。一般认为杂 质气体通过消耗贮氢合金的活性表面来影响其 贮氢性能^[45,7]。因此贮氢合金活性表面的保护 对于改善合金对杂质气体的承受能力来讲是一 个比较直接的切入点。表面包覆作为一种直观 的隔离手段,可以在不改变合金基体性质的前提 下,通过包覆元素的选择,建立起一层对 H₂ 高透 而对大分子杂质气体高度疏离的有效隔离屏障, 以减弱杂质气体对合金活性表面的侵蚀,提高其 在杂质气中的吸放氢性能,是提高贮氢合金的抗 毒化性能及循环稳定性能的较佳选择。

文中选择化学镀来实现对 LaNi_{4.25} Al_{0.75} 合金 颗粒的表面包覆处理,选取了对氢透过性极高的 金属 Pd 作为表面膜层的构成元素。设计了 La-Ni_{4.25} Al_{0.75} 贮氢合金表面 Pd 膜层的化学镀覆方 案,对所沉积的表面 Pd 膜进行了形貌及结构的 表征,并探究了化学镀前后 LaNi_{4.25} Al_{0.75} 合金贮 氢性能的变化,其中化学镀 Pd 后所得合金记为 Pd/LaNi_{4.25} Al_{0.75}。此外,由于 Pd 属贵重金属,化 学镀处理会增加 LaNi_{4.25} Al_{0.75} 合金使用时的投入 成本,实际应用时需加以考虑。

1 试验与方法

1.1 LaNi_{4.25} Al_{0.75} 基体颗粒的制备

试验以机械粉化的 LaNi_{4.25} Al_{0.75} 合金颗粒为 基底材料进行表面 Pd 的化学沉积,为保证试验的 平行性,排除 LaNi_{4.25} Al_{0.75}颗粒大小对化学镀工艺 及 Pd 镀层形成的影响,镀覆前对 LaNi_{4.25} Al_{0.75}颗 粒材料进行了严格的过筛处理,电动筛分过程持续 30 min。选择粒度分布在 150~300 μm 的合金颗 粒进行表面金属 Pd 的化学镀覆处理。

1.2 Pd/LaNi_{4.25}Al_{0.75}的制备

通过活化和化学镀 2 个步骤实现 LaNi_{4.25}-Al_{0.75}颗粒表面金属 Pd 的化学镀覆(记为 Pd/LaNi-4.25Al_{0.75})。活化工艺为传统的敏化—活化两步 法^[11-12],即先用酸性 SnCl₂ 溶液浸渍 LaNi_{4.25} Al_{0.75} 颗粒,使部分 Sn²⁺吸附在 LaNi_{4.25} Al_{0.75}颗粒表面。 再以 PdCl₂ 溶液作为活化液,利用 Sn²⁺的强还原 性将 Pd²⁺还原成单质 Pd (Sn²⁺ + Pd²⁺→Sn⁴⁺ + Pd),沉积在 LaNi4.25 Alo.75颗粒表面,作为后续化学 镀过程中还原反应所形成的金属 Pd 的成核中心。过程中敏化液及活化液组成如表 1 所示。

表 1 LaNi_{4.25} Al_{0.75}颗粒表面化学镀 Pd 敏化液及活化液 的组成

 $\begin{array}{ll} Table 1 & Composition \mbox{ of the sensitizing solution and activating solution in electroless plating process for Pd deposition on surface of LaNi_{4,\,25}\,Al_{0,\,75}\ particles \end{array}$

Substance	Sensitizing	Activating	
Substance	solution	solution	
$C_{HCl(36\%)}/(mL \cdot L^{-1})$	20	2.50	
$C_{SnCl_2}/(g \cdot L^{-1})$	5		
$C_{PdCl_2}/(g \cdot L^{-1})$		0.25	

化学镀以 PdCl₂ 为主盐, N₂H₄ • H₂O 为还 原剂, NH₃ • H₂O 为络合剂, NaOH 为 pH 值调 节剂, NH₄Cl 为稳定剂。为便于使用, 具体配置 过程中, 将还原剂以外的各物质配置成一种稳定 混合液。以 1(g) : 100(mL)的比例将活化后的 LaNi_{4.25}Al_{0.75}颗粒与上述混合液混合, 调节 pH 后加入还原剂, 水浴加热维持恒定温度, 磁力搅 拌(500 r/min)下化学镀覆金属 Pd。反应完成 后, 静止沉淀, 分离镀液, 去离子水清洗包覆 Pd 后的 LaNi_{4.25}Al_{0.75}颗粒 3 次, 于 60 ℃真空干燥 8 h。

化学镀过程中探究了还原剂 N₂ H₄ • H₂O 添 加量(V)、镀覆时间(t)、镀覆 pH 值、镀液温度 (T)、络合剂浓度(c)等相关参数对表面沉积膜层 特性的影响。确立了化学镀沉积金属 Pd 膜层还 原剂 N₂ H₄ • H₂O 的工艺参数为:V=0.2 mL, t=30 min, pH = 10, T = 60 °C, $C_{(NH_4 - H_2O)} =$ 320 mL/L。

1.3 表面形貌及结构表征

采用德国 Bruker 公司的 D8 Advance 型 X 射 线衍射仪测试化学镀前后样品(LaNi_{4.25} Al_{0.75} 及 Pd/LaNi_{4.25} Al_{0.75})的 XRD 图谱,铜靶(K α_1 , λ = 1.540 6 Å),扫描速度 4 °/min,考察表面镀层及 LaNi_{4.25} Al_{0.75} 合金相结构。对化学镀 Pd 前后的 合金颗粒在 JOEL-JSM-6360LV 型扫描电镜上 进行形貌观察,研究合金颗粒粒度大小及表面镀 层的形貌,考察镀层的致密性与均匀性。

1.4 吸放氢性能测试

将 LaNi4.25 Alo.75 及 Pd/LaNi4.25 Alo.75 在一定

杂质气体含量的氢气中进行吸放氢性能测试,做 出相应的动力学及压力-组成-温度(P-C-T)曲 线,考察表面镀层的存在对合金体系在杂质气氛 中的吸放氢性能及贮氢容量的影响。吸放氢性 能在自制的 Sieverts 测试设备上进行,选取 La 系 合金实际应用时最常见的杂质气体 O_2 、 N_2 作为 杂质气,杂质含量(摩尔分数)分别设定为: O_2 0.307‰, N_2 1.204‰,测试样品质量 1.5 g,压力 0.65 MPa。其中,P代表高纯氢,99.999%;M代 表混合气,0.307‰ O_2 +1.204‰ N_2 + H_2 。后续 讨论中,为方便描述,文中将 M-混合气简记为 O_2-N_2 杂质气。

2 结果与讨论

2.1 表面形貌与相结构

2.1.1 表面形貌

图 1(a)(b)为基底 LaNi_{4.25} Al_{0.75} 合金颗粒的形 貌。合金颗粒基本分布于预置的粒径范围(d=

(a) Surface morphology, LaNi_{4.25}Al_{0.75}

150 ~300 μ m)内。未经任何处理的基底 LaNi_{4.25}-Al_{0.75}颗粒表面光滑、平整。该区域表面各元素的 原子数分数比大致为 n(La):n(Ni):n(Al) = 17:74:9,即 LaNi_{4.35} Al_{0.53}。这与合金颗粒整体 的元素组成 LaNi_{4.25} Al_{0.75} 相差不多,表明合金整 体构成相对比较均匀。

Pd/LaNi_{4.25} Al_{0.75}颗粒的微观形貌及表面元 素组成如图 1(c)(d)所示。对比基底 LaNi_{4.25}-Al_{0.75}颗粒,不难发现,化学镀 Pd 处理后,合金颗 粒的表面均匀地包覆上了一层由较大比表面积 的近球形小颗粒紧密团聚堆积而成的金属 Pd 膜层,膜层完整而致密。粒径对比显示,Pd/ LaNi_{4.25} Al_{0.75}颗粒仍处于预置的粒径范围($d = 150 \sim 300 \ \mu$ m)内。

2.1.2 相结构

表面化学镀处理前后样品的 XRD 谱如图 2 所示。由图可以看出:①化学镀处理后,样品的 XRD 谱中明显出现了金属 Pd 的(111)及(200)晶

Element	w/%	a!%
	2.51	0.01
La	33.37	16.62
Ni	63.12	74.37
INI	03.12	/4.3/

(b) Elements composition, LaNi_{4 25}Al_{0 75}

(c) Surface morphology, Pd/LaNi₄₂₅Al₀₇₅

(b) Elements composition, Pd/LaNi₄₂₅Al₀₇₅

图 1 沉积 Pd 前后 LaNi_{4.25} Al_{0.75} 颗粒的表面形貌及元素组成

Fig. 1 Surface morphologies and elements composition of the $LaN_{4,25}Al_{0,75}$ particles before and after depositing Pd

图 2 沉积 Pd 前后 LaNi_{4.25} Al_{0.75} 颗粒的 XRD 图谱 Fig. 2 XRD patterns of the LaNi_{4.25} Al_{0.75} particles before and after depositing Pd

面的衍射峰,峰形较为尖锐且峰强较高,属晶体结构;②基底 LaNi_{4.25} Al_{0.75} 各衍射峰均独立完整存在,表明表面 Pd 膜的引入并未对基底 LaNi_{4.25}-Al_{0.75}的结构造成明显影响。

2.2 贮氢性能

2.2.1 LaNi_{4.25} Al_{0.75} 的贮氢性能

(1) 杂质气对 LaNi_{4.25} Al_{0.75} 吸氢动力学的 影响

图 3 为不同温度下, LaNi4.25 Alo.75 颗粒在纯氢

及 $O_2 - N_2$ 杂质气中的吸氢动力学曲线。可以看 出:298 K 时,系统内的微量 O_2 、 N_2 杂质会降低 LaNi_{4.25} Al_{0.75} 颗粒的贮氢容量;而 338 K 时, O_2 、 N_2 杂质对于 LaNi_{4.25} Al_{0.75} 的贮氢容量则基本无 影响。两种温度下,LaNi_{4.25} Al_{0.75} 的饱和吸氢时 间均无明显改变。另外,动力学曲线的局部放大 图(图 3(b))显示: O_2 、 N_2 杂质对于 LaNi_{4.25} Al_{0.75} 颗粒的初始吸氢速率并无显著影响。

因此,体系内的微量 O₂、N₂ 杂质会降低 La-Ni_{4.25} Al_{0.75} 合金颗粒在 298 K 时的贮氢容量。

(2) 温度对 LaNi4.25 Alo.75 吸氢动力学的影响

图 4 为 LaNi_{4.25} Al_{0.75} 颗粒 P-C-T 曲线。由 图 4 可知: LaNi_{4.25} Al_{0.75} 颗粒在纯氢中的贮氢容 量有所降低,升温会显著提高其吸氢反应的平台 压力;而在 O_2-N_2 杂质气中,升高温度,LaNi_{4.25}-Al_{0.75}颗粒的贮氢容量变化较小,温度对其贮氢容 量的影响较为微弱。动力学曲线的局部放大图 (图 3)可以看出:升高温度,LaNi_{4.25} Al_{0.75} 颗粒初 始 20 s 的吸氢速率显著升高。

因此,升高温度会降低 LaNi_{4.25} Al_{0.75} 合金颗 粒在纯氢中的贮氢容量,但能够提高其对 O₂、N₂ 杂质的耐受度。另外,升高温度有助于提高 La-Ni_{4.25} Al_{0.75}颗粒的初始(20 s)吸氢速率。

Fig. 3 Absorption kinetics and its partial enlargement of the $LaNi_{4,25}Al_{0,75}$ particles in pure hydrogen and O_2-N_2 impurities

(3) O₂、N₂ 杂质、温度对 LaNi_{4.25} Al_{0.75} 吸放
 氢 P-C-T 曲线的影响

由图 4 可知:当温度为 338 K 时,LaNi_{4.25}-Al_{0.75}颗粒内所吸收贮存的氢原子并未被完全释 放出来,表现为 *P*-*C*-*T* 曲线并未完全闭合,这可 能是由于先行的吸氢及放氢过程在合金内部产生 了部分应力及缺陷区域,这些区域对氢原子的扩散 能量要求较高,阻碍了氢原子由内向外的转移。另 外,提高反应温度和引入杂质气均会造成 LaNi_{4.25}-Al_{0.75}吸氢反应平台压力的升高,导致 338 K 温度 下 $,O_2$ 、 N_2 杂质气中 LaNi_{4.25} Al_{0.75} 颗粒的滞后效应 要大于纯氢中的。

2.2.2 Pd/LaNi_{4.25} Al_{0.75} 的贮氢性能

(1) 杂质气对 Pd/LaNi_{4.25} Al_{0.75} 吸氢动力学 的影响

图 5(a)为不同温度下,Pd/LaNi_{4.25} Al_{0.75}颗 粒在纯氢及 O₂-N₂ 杂质气中的吸氢动力学曲线 (图中 Pd/S 代表 Pd/LaNi_{4.25} Al_{0.75})。可以看出: 两种温度下,Pd/LaNi_{4.25} Al_{0.75}颗粒在纯氢及 O₂-N₂ 杂质气中的吸氢动力学曲线基本重合,表明系 统内微量 O₂-N₂ 杂质的存在对 Pd/LaNi_{4.25} Al_{0.75} 的贮氢容量基本没有影响。

而对比图 5(b)中 Pd/LaNi_{4.25} Al_{0.75} 初始吸氢 150 s 的动力学曲线可以发现:体系中的 O_2 、 N_2 杂质会导致 Pd/LaNi_{4.25} Al_{0.75} 颗粒在初始 150 s 内吸氢速率的略微下降,但随着时间的增长,影 响越来越微弱,直至消失。因此,体系内的微量 O_2 、 N_2 杂质并不会对 Pd/LaNi_{4.25} Al_{0.75} 合金颗粒 的贮氢容量产生显著影响,但会略微降低其初始 吸氢速率。

(2) 温度对 Pd/LaNi_{4.25} Al_{0.75} 吸氢动力学的 影响

图 5(a)显示,不同于 LaNi_{4.25} Al_{0.75} 颗粒,温 度由 298 K升至 338 K,Pd/LaNi_{4.25} Al_{0.75} 颗粒的 贮氢容量下降明显。对于 Pd/LaNi_{4.25} Al_{0.75} 而 言,平台压升高对其贮氢容量的影响要远胜于杂 质气体的入侵。同样,动力学曲线的局部放大图 (图 5(b))可以看出,温度对于 Pd/LaNi_{4.25} Al_{0.75} 的 初始吸氢速率有着较大影响:升高温度,Pd/La-Ni_{4.25} Al_{0.75} 颗粒初始 150 s 的吸氢速率显著下降。

因此升高温度不仅会造成 Pd/LaNi_{4.25} Al_{0.75} 颗 粒在两种体系中贮氢容量的显著降低,还会降低其 初始吸氢速率。

图 5 纯氢及 O₂-N₂ 杂质气中 Pd/LaNi_{4.25} Al_{0.75} 颗粒的吸氢动力学曲线及其局部放大图

Fig. 5 Absorption kinetics and its partial enlargement of the $Pd/LaNi_{4.25}Al_{0.75}$ particles in pure hydrogen and O_2-N_2 impurities

(3) O₂、N₂ 杂质、温度对 Pd/LaNi_{4.25} Al_{0.75} 吸 放氢 P-C-T 曲线的影响

图 6 为不同温度下 Pd/LaNi_{4.25} Al_{0.75} 颗粒在 高纯氢及 O₂-N₂ 杂质气中吸/放氢过程的 P-C-T 曲线。不难看出:提高反应温度会造成 Pd/LaNi_{4.25} Al_{0.75} 吸/放氢反应平台压力的升高; 298 K 时,体系中引入杂质气也会显著增加 Pd/LaNi_{4.25}-Al_{0.75} 吸氢反应的平台压。但 338 K 时, O₂-N₂ 杂 质气中 Pd/LaNi_{4.25} Al_{0.75} 颗粒的 *P*-*C*-*T* 曲线则 基本与纯氢中一致。

图 6 Pd/LaNi_{4.25} Al_{0.75} 颗粒的 P-C-T 曲线 Fig. 6 P-C-T curves of the Pd/LaNi_{4.25} Al_{0.75} particles

2.3 Pd/LaNi_{4.25} Al_{0.75} 的抗毒化性能

在基底 LaNi_{4.25} Al_{0.75} 及 Pd/LaNi_{4.25} Al_{0.75} 样 品充分吸氢的前提下,统一选取吸氢动力学曲线 上吸氢时间 t = 600 s 的吸氢容量值进行样品饱 和贮氢容量的比较,结果见表 2。 由表 2 可以看出:①同基底 LaNi_{4.25} Al_{0.75} 类 似,降低温度,Pd/LaNi_{4.25} Al_{0.75} 样品的贮氢容量 有所提升,且幅度更为显著。②298 K及 338 K 温度下,基底 LaNi_{4.25} Al_{0.75} 颗粒在 $O_2 - N_2$ 杂质气 中的贮氢容量有所下降,分别为 - 1.928% 及 - 0.556%;而同等条件下,Pd/LaNi_{4.25} Al_{0.75} 样品 在 $O_2 - N_2$ 杂质气中贮氢容量的下降幅度则大为 降低,分别为- 0.086% 及- 0.190%。③相比于 基底 LaNi_{4.25} Al_{0.75} 合金颗粒,在 298 K 时,Pd/ LaNi_{4.25} Al_{0.75} 样品在高纯氢及 $O_2 - N_2$ 杂质气中的 贮氢容量均有所提高,分别提高了 + 1.578% 及 + 3.485%;但在 338 K 时,Pd/LaNi_{4.25} Al_{0.75} 颗粒 低,分别为- 2.407%及- 2.048%。

综上,表面化学镀包覆一层金属 Pd 膜层能够 提高 LaNi_{4.25} Al_{0.75} 合金颗粒在较低温度(298 K)下 对体系内微量 O_2 、 N_2 杂质的耐受能力,也能提高 其在纯氢中的贮氢容量。

表 2 包覆 Pd 前后样品的吸氢容量对比

Table 2 Comparison of the hydrogen absorption capacity of samples before and after depositing Pd coating (w/%)

	298 K			338 K		
Samples	H_2	$H_2 + (O_2 - N_2)$	Variation after	H_2	$H_2 + (O_2 - N_2)$	Variation after
			impurities			impurities
$LaNi_{4.25}Al_{0.75}$	1.141	1.119	-1.928%	1.080	1.074	-0.556%
$Pd/LaNi_{\rm 4.25}Al_{\rm 0.75}$	1.159	1.158	-0.086%	1.054	1.052	-0.190%
Variation after depositing Pd	1.578%	3.485%		-2.407%	-2.048%	

3 Pd/LaNi_{4.25} Al_{0.75} 表面 Pd 膜层的作用机制

一般,单纯贮氢合金在含有 O₂、N₂ 杂质的氢气 中贮氢性能的下降主要来自于以下两个方面^[4, 8]:

(1) O₂、N₂ 分子在合金表面的物理吸附占据 了部分 H₂ 分子解离反应的活性位点,使得合金 颗粒表面的游离氢原子浓度降低,扩散变慢,合 金吸氢速率下降。

(2)氧的化学腐蚀消耗了 LaNi_{4.25} Al_{0.75}表面的部分活性金属,致其丧失催化解离及贮氢性能。

在贮氢合金的表面微包覆修饰中,表面镀覆 元素的选择十分重要^[13]。金属 Pd 作为 H₂ 解离 为氢原子的高效催化介质,以及高效的 H 输运、 存储介质,存在于 LaNi_{4.25} Al_{0.75} 合金表面有助于 氢分子的解离及氢原子向合金体相的扩散转移, 能够有效提高合金的贮氢性能^[14-17]。

经过表面化学镀处理后,体系内的微量 O_2 、 N₂ 杂质并不会对 Pd/LaNi_{4.25} Al_{0.75} 合金颗粒的贮 氢容量产生显著影响,这得益于金属 Pd 对 O_2 有 反应惰性的特点。表面 Pd 层在保护内部合金表 面活性元素不被氧化的同时,自身亦不受到损 伤,十分有利于保持合金的表面活性。

另外,经过化学镀覆金属 Pd 后,原本十分光 滑的合金表面铺展了一层球形颗粒堆积扩展连 接而成的相对粗糙表面,该新生成的表面不仅具 有着更大的面积,而且有着适宜的粒子沉积间 距,增加了合金与 H₂ 作用的有效活性表面。

物理吸附是放热过程,升高温度将不利于 O₂、N₂杂质分子在合金表面层的吸附,减弱了其 物理吸附所致的活性表面流失而产生的贮氢速 率以及贮氢容量的损失。虽然 LaNi_{4.25} Al_{0.75} 合金 颗粒表面有了金属 Pd 膜层的保护,但是金属 Pd 并不能阻止 O_2 、 N_2 的物理吸附过程,因此初始吸 氢速率受到影响。同时,由于 Pd/LaNi_{4.25} Al_{0.75} 合金表面基本不会受到来自 O_2 、 N_2 杂质气的化 学腐蚀,仅仅是微弱的物理吸附决定着合金性能 的损伤程度,对于 Pd/LaNi_{4.25} Al_{0.75} 体系,升高温 度只存在 O_2 、 N_2 物理吸附的逆向移动。因此,升 高温度有利于提高 LaNi_{4.25} Al_{0.75} 合金在含 O_2 - N_2 杂质的 H₂ 中的吸氢性能,但该温度效应对于 Pd/LaNi_{4.25} Al_{0.75} 样品并不十分明显。

4 结 论

(1)通过化学镀在 LaNi_{4.25} Al_{0.75} 合金颗粒表 面沉积了一层晶体 Pd 膜;表面 Pd 膜的引入并未 对 LaNi_{4.25} Al_{0.75}结构造成影响。

(2)提高吸氢温度有利于提高 LaNi_{4.25} Al_{0.75} 合金在含 O₂-N₂ 杂质的 H₂ 中的吸氢性能;但该 温度效应对于 Pd/LaNi_{4.25} Al_{0.75}样品并不明显。

(3) 表面化学镀包覆一层金属 Pd 膜层能够 显著改善 LaNi_{4.25} Al_{0.75} 合金颗粒对 O₂、N₂ 杂质 的耐受能力,同时提高其在纯氢中的贮氢容量。

参考文献

- Züttel A. Hydrogen storage methods [J]. Naturwissenschaften, 2004, 91(4): 157-172.
- [2] 胡子龙. 储氢材料 [M]. 北京: 化学工业出版社, 2002: 49-50.

Hu Z L. Hydrogen storage materials [M]. Beijing: Chemistry Industry Press, 2002: 49-50 (in Chinese).

- [3] Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review [J]. International Journal of Hydrogen Energy, 2007, 32(9): 1121-40.
- [4] Goodell P D. Cycling hydriding response of lanthanum nickel (LaNi₅) in hydrogen containing oxygen as a minor impurity [J]. Less-Common Metal, 1983, 89(1): 45-54.
- [5] 桑革,涂铭旌,闫康平,等.氢中杂质 CO 对 LaNis, La-Ni4.7 Al_{0.3}, MlNi4.5 Al_{0.5}合金 PCT 特性的影响 [J].中国稀土学报,2000,18(2):124-126.

Sang G, Tu M J, Yan K P, et al. Effect of CO inpurity in hydrogen on PCT properties of LaNi₅, LaNi_{4.7} Al_{0.3}, MlNi_{4.5} Al_{0.5} alloy [J]. Journal of the Chinese Rare Earth Societ, 2000, 18(2): 124-126 (in Chinese).

- [6] Yu X B, Wu Z, Huang T Z, et al. Effect of surface oxide layer on activation performance of hydrogen storage alloy TiMn_{1,25}Cr_{0.25} [J]. International Journal of Hydrogen Energy, 2004, 29(1): 81-86.
- [7] Prigent J, Latroche M, Leoni E, et al. Hydrogen trapping properties of Zr-based intermetallic compounds in the presence of CO contaminant gas [J]. Journal of Alloys and Compounds, 2011, 509(S2): 801-803.
- [8] Hchida H U, Chtani Y, Kawahata T, et al. Reaction kinetics of H₂ absorption by lanthanum with and without surface oxide layers [J]. Less-Common Metal, 1991, 172-174: 832-840.
- [9] 蒋春丽,白斌,李嵘,等. LaNi_{4.7} Al_{0.3}型贮氢合金氧化前 后吸放氢性能研究 [J]. 稀有金属,2005,29(1):43-46. Jiang C L, Bai B, Li R, et al. Studies on hydrogen absorption and desorbtion properties of LaNi_{4.7} Al_{0.3} hydrogen storage alloy before and after oxidation [J]. Chinese Journal of Rare Metals, 2005, 29(1): 43-46(in Chinese).
- [10] Qi W, Li P, Li Y L, et al. CO impurities effect on LaNi_{1.7}-Al_{0.3} hydrogen storage alloy hydrogenation/dehydrogenation properties [J]. Bulletin of Materials Science, 2014, 37(4): 837-842.
- [11] Ambrosio R C, Ticianelli Edson A. Studies on the influence of palladium coatings on the electrochemical and structural properties of a metal hydride alloy [J]. Surface & Coatings Technology, 2005, 197(2/3): 215-222.
- [12] 郭为民,金丽华,涂加万. 包覆钯对储氢合金粉末性能的 影响 [J]. 材料开发与应用,2000,15(2):5-7.
 Guo W M, Jin L H, Tu J W. Effect of Pd coating on properties of hydrogen storage alloy particles [J]. Development and Application of Materials, 2000, 15(2):5-7 (in Chinses).
- [13] Parimala R, Ananth M V, Ramaprabhu S, et al. Effect of electroless coating of Cu, Ni and Pd on ZrMn_{0.2} V_{0.2} Fe_{0.8} Ni_{0.8} alloy used as anodes in Ni – MH batteries [J]. International Journal of Hydrogen Energy, 2004, 29(5): 509–513.
- [14] Kong X C, Du J L, Wang K, et al. Electrocatalysis induced by surface – modification with Pd through sol – gel method for Ti₃₃ V₂₀Cr₄₇ alloy [J]. International Journal of Hydrogen Energy, 2010, 35(15): 8088-91.
- [15] Shan X, Payer J H, Jennings W D. Mechanism of increased performance and durability of Pd-treated metal hydriding alloys [J]. International Journal of Hydrogen Energy, 2009, 34(1): 363-369.
- [16] Lototsky M V, Williams M, Yartys V A, et al. Surfacemodified advanced hydrogen storage alloys for hydrogen separation and purification [J]. Journal of Alloys and Compounds, 2011, 509(S2): 555-561.
- [17] Janota R, Rougiera A, Aymarda L, et al. Enhancement of hydrogen storage in MgNi by Pd-coating [J]. Journal of Alloys and Compounds, 2003, 356-357: 438-441.