doi: 10.3969/j.issn.1007-9289.2012.01.018

紫外光对聚合物表面微区域修饰诱导银 选择性沉积制备微米级金属图案 *

唐红肖,吴仲岿,杨 军,李少英

(武汉理工大学 材料科学与工程学院,武汉 430070)

摘 要:采用波长为172 nm 的真空紫外光刻蚀技术(VUV)对清洗后的 PET 基片表面性质直接进行微加 工,并在其表面上进行选择性无电解镀银处理。通过对紫外光照处理前后的 PET 基片进行水接触角测试、 XPS 测试,表征了 PET 基片在处理前后所具有的不同表面状态。将在真空条件下通过紫外光选择性刻蚀的 的 PET 基片放在化学镀银液中,被还原出来的金属银颗粒就会沉积在 PET 基片上的被辐射区域。利用光 学显微镜和场发射 SEM 观察镀银后 PET 基片表面的微银图案。结果表明:紫外光照可使 PET 基片表面改 性,利用真空紫外光刻蚀技术(VUV)对 PET 基片表面进行区域选择性改性,就可以实现无电解电镀银在 PET 基片上的选择性沉积,一次性制备出保真性较好的微米级镀银图案。

Fabrication of Micron Silver Patterns on Polymers Selectively Modified by UV-light

TANG Hong-xiao, WU Zhong-kui, YANG Jun, LI Shao-ying

(Wuhan University of Technology, School of Materials Science and Engineering, Wuhan 430070)

Abstract: PET surface was directly modified by ultraviolet lithography at a wavelength of 172 nm after being cleaned, on which the silver was selectively deposited by the method of eletroless silver plating. Water contact angle and XPS were performed on PET substrates before and after they were etched by vacuum ultraviolet lithography(VUV), so as to show the different morphology. By putting the PET films etched by vuv in the electroless plating silver solution, the reduced silver particles would deposite on the modified areas of the PET films. The silver patterns were observed under the optical microscope and the field emission electron microscope. The results show that VUV can be used to modify PET substrate, and by modifying the PET substrates selectively together with the subsequent electroless silver plating processing, the silver patterns can be fabricated. Finally, micron silver patterns with high-fidelity are successfully prepared via one step manufacture.

Key words: PET substrates; vacuum ultraviolet lithography(VUV); patterned; selectivety; electroless silver plating

0 引 言

当前材料领域内的一个重要发展方向是材 料表面亚微米尺度上表面性质结构的微调控和 微加工。新型微观结构的构筑或现有结构的微 型化给现代技术的发展带来了许多新的机遇,如 化学和生物微分析、微光学元件、生物芯片、微体 积反应器、微机电系统和微流道系统等^[1],微米 和纳米尺度上表面结构和性质的微加工或图案 化已经逐渐成为当代科学和技术发展的中心。

收稿日期:2011-09-29;修回日期:2011-12-08;基金项目:*国家自然科学基金(50973087/E0310)

作者简介:唐红肖(1987—),女(汉),河北石家庄人,硕士生;研究方向:高分子材料表面改性

网络出版日期: 2012-02-13 22:22; 网络出版地址: http://www.cnki.net/kcms/detail/11.3905.TG.20120213.2222.007.html 引文格式: 唐江肖, 吴仲岿, 杨军, 等. 紫外光对聚合物表面微区域修饰诱导银选择性沉积制备微米级金属图案 [J]. 中国表面工程, 2012, 25(1): 99-103.

通过在材料表面镀覆金属对材料表面性质结构进行调控和加工的报道很多,其中银以其优异的导电性、延展性、化学稳定性、催化性能^[2]及生物 医学性能^[3],而受到人们的广泛关注。若能在材 料表面构筑微银图案,使银的优异性能体现在微 观尺度上,将大大推动相关领域的技术进步。

关于在无机材料表面镀银的报道有很多,但 无机材料作为镀银基材,具有加工温度高、硬度 大、屈服强度大、生物相容性差等缺点,因而,人 们将目光转向了性能优异的功能高分子材料。 近几年来也有文献报道在高分子材料比如 PET^[2], PI^[4], PS^[5], P(AN-GMA)和 PGMA^[6]等 基材上实现化学镀银。但由于银的氧化电位比 较高(银的氧化电位为 0.799 V,而常用的镀铜、 镀镍的氧化电位分别为 0.34 V、-0.246 V),这 就使得化学镀银的选择性很难控制,因此有关在 材料表面大面积镀银的报道有很多,而在材料表 面实现镀银图案化的报道却很少见;另一方面, 为了使银沉积到基材表面,文献中所报道的方法 或者是对基体材料进行复杂的改性,然后在改性 的材料表面接枝单分子膜[7],或者是在镀银之 前,对基体材料进行敏化和活化处理[8-9],这些处 理使镀银工艺过程复杂。所以寻找一种能够在 聚合物表面直接选择性制备微银图案的工艺具 有重要意义。

文中采用波长为 172 nm 的紫外光直接对 PET 基片表面进行官能图案化,之后直接利用图 案化区域内外表面性质的差异控制无电解镀银 在 PET 基片上的选择性沉积,制备出微米级的 镀银图案,为后续的加工提供了可能性。

1 试 验

1.1 PET 基片表面选择性无电解镀银

PET 基片表面选择性无电解镀银的基本步骤为:PET 基片表面性质的微调控→选择性无电 解镀银。图 1 说明选择性无电解镀在 PET 基片 上构筑微米级银图案的主要步骤。

1.1.1 PET 基片表面性质的微调控

PET 基片表面性质微调控的基本步骤如下。

(1) 将 PET 基片(市售 PET 包装膜)制备成 大小约1 cm×1 cm 的片状,先于 65 ℃下,将制 备好的 PET 基片在碱性溶液中浸泡5 min,以除

图 1 在 PET 表面选择性无电解镀银的主要步骤 Fig. 1 Schematic illustration of selective electroless silver plating on PET films

去表面的油脂,之后在索式提取器中用丙酮抽提 24 h,然后分别用甲苯、丙酮、乙醇和蒸馏水各超 声清洗 10 min,再用 N₂ 吹干,保存在干燥箱中 备用。

(2) 将上述清洗好的基片置于波长为 172 nm 的 UER20-172 V 真空紫外光照射器(日本 Ushio Electric 有限公司)下照射 10 min,光照时,将光掩 膜(38 μm 铜网,线宽 20 μm)覆盖在基片上,以得 到表面官能图案化的 PET 基片。

1.1.2 表面性质图案化后 PET 基片表面进行 无电解镀银

无电解镀银的基本步骤如下,所用药品均为 分析纯。

(1) 电镀液的配制。电镀液分为 A,B 液,常 温分开保存,即配即用,使用时 A,B 液按体积比 1:1 混合。A 液是将 0.55 g AgNO₃,0.25 g NaOH分别溶于 10 mL 去离子水中,待完全溶解 后,混合,混合液变浑浊,之后缓缓滴入氨水(质 量分数为 37%),直至溶液刚好澄清;B 液是将 0.35 g葡萄糖,0.1 g 酒石酸钾钠,混合后溶于 20 mL去离子水中。

(2) PET 基片表面微米级银图案的制作。 将表面改性的 PET 基片浸入混合好的电镀液中, 观察 PET 基片表面的变化,当看到 PET 基片表面 有明显的光亮的银沉积后,取出基片,用去离子水 冲洗干净,N₂ 气吹干,保存在真空干燥箱中。

1.2 分析与表征方法

水接触角测试:利用水接触角仪(C201,上海 梭伦科技)分别测试经不同真空紫外光照时间光 照后 PET 基片膜表面的亲水性变化情况,从而找 到最适宜的光照时间。即将 PET 基片分别在真空 紫外光下照射 0 min、1 min、2 min、3 min,照射 后分别测量其表面水接触角。每组水接触角数据 为平行测试5组数据然后取平均值得到。

表面元素分析:采用 Multilab 2000 型 X 射 线光电子能谱仪(VG),分析紫外光照处理前后 PET 样片表面元素的种类。

利用 XSP-3CA 生物显微镜(电光源)和场 发射 SEM(S4800, Hitachi)观察 PET 膜片表面 无电解镀银后的图案和表面形貌。

2 结果与讨论

2.1 表面水接触角分析

采用水接触角仪对不同光照时间对 PET 基 片的水接触角进行检测,检测结果如图 2 所示。

Fig. 2 The change of the surface water contact angle along with the time

从图中可以看出,随着紫外光照时间增加, 其表面的水接触角呈现下降的趋势,即由约72° 变到了18°左右,但当光照时间到5min后,继续 增加光照时间,PET基片的水接触角的值几乎不 再变化,这与相关文献的报道是相一致的^[10]。

紫外光照后 PET 基片表面水接触角大幅下降表明其表面的亲水性增大,可能是由于紫外光波长短,能量高,使得 PET 基片表面的聚合物链断裂并与臭氧发生反应产生了亲水性基团。

2.2 XPS 测试

为了表征 PET 基片改性前后表面化学成分 和性质的变化,对空白 PET 基片和改性后的 PET 基片分别做 XPS 测试,测试结果如图 3 所 示。曲线 1、曲线 2 分别代表空白 PET 基片和改 性后 PET 基片的 XPS 测试结果。

Fig. 3 XPS spectra of control PET flims and photoetched PET flims

曲线1中284 eV、398 eV、532 eV分别对应 空白PET 基片中Cls、Nls、Ols的特征吸收峰。 氮元素特征吸收峰的存在,是由于实验中使用的 PET 基片为市售PET包装膜,在生产过程中引 入了含氮元素的杂质。

表 1 光照前后 PET 基片表面元素质量分数的变化 Table 1 The relative changes in the percentage of elements before and after photoetching

	C/ %	O/%	$N/\frac{0}{0}$	C:O/mol
PET control	67.42	18.38	14.19	3.7:1
VUV PET	61.05	35.43	3.51	1.7:1

2.3 在光学显微镜下观察 PET 基片表面的镀银 图案

将无电解镀银微图案的 PET 基片放置在光 学显微镜下观察。图 4(a)为光学显微镜下(约 320 倍)直接观察光掩膜(铜网)所得到的照片,图 4(b) 为光学显微镜下(约 320 倍)观察到的镀银图案。

(b) Silver pattern

图 4 光学显微镜下观察光掩膜和镀银图案 Fig. 4 The mask and silver pattern under optical microscope

图 4(a)中的黑色网格线即为光掩膜铜网中 的铜线,因为该铜网格线在光学显微镜下不能透 光,而明亮的方格状区域则是透光区域。图 4(b) 的镀银图案与图 4(a)是互补的,即图 4(b)中明 亮的网格区域为可以透光的基材本身,而较暗的 方格区域由于沉积了金属银,使得光线不能透 过。这是因为在紫外光照射过程中,被铜网的网 格线覆盖的部分因未受到紫外光照射的作用,而 保留了 PET 基片本身的性质;而铜网的方格状 区域因为受到紫外光的作用,使得该区域基材表 面的化学性质发生变化,在后续的无电解镀银过 程中可沉积一层银。 图 4(a)中的黑色网格线即为光掩膜铜网中的铜线,因为该铜网格线在光学显微镜下不能透 光,而明亮的方格状区域则是透光区域。图 4(b) 的镀银图案与图 4(a)是互补的,即图 4(b)中明 亮的网格区域为可以透光的基材本身,而较暗的 方格区域由于沉积了金属银,使得光线不能透 过。这是因为:在紫外光照射过程中,被铜网的 网格线覆盖的部分因未受到紫外光照射的作用, 而保留了 PET 基片本身的性质;而铜网的方格 状区域因为受到紫外光的作用,使得该区域基材 表面的化学性质发生变化,在后续的无电解镀银 过程中可沉积一层银。

2.4 PET 基片表面的镀银图案的 SEM 场发射 测试

为了精确测量 PET 基片表面的镀银微图案的尺寸,对 PET 基片表面的镀银微图案进行场 发射 SEM 测试。图 5 为 PET 基片表面的镀银 图案的场发射 SEM 图片。

图 5 场发射显微镜观察镀银图案 Fig. 5 FESEM image of silver pattern

由于银的电子发射强度高,图中较明亮的方 格状区域则为镀上的银,较暗的网格线区域则为 PET 基片本身,这与图 4(b)的在光学显微镜下 观察到的图案是一致的。此外,从图中可以看到 这些方格的边长约为 37 µm,方格与方格之间的 网格线宽约为 20 µm,这与铜网掩膜中 20 µm 的 铜网线宽相吻合,说明图案的保真性好。

为了观察银的聚集态,又对单个方格的银的 表面进行了场发射 SEM 测试。图 6 为单个方格 的银的表面形貌的场发射图片。从图中,可以看 到,沉积的银颗粒大小比较均匀,平均粒径大约 为 50 nm。镀银颗粒的粒径大小表明还可以制作 尺寸更小的微图案。

图 6 场发射显微镜观察镀银聚集态

Fig. 6 The aggregation state of the deposited silver under the FESEM

3 结 论

(1)从水接触角和 XPS 测试结果得知,直接 利用波长为 172 nm 的紫外光对 PET 基片进行 照射,可实现 PET 基片表面的化学改性,使 PET 基片表面生成-COOH、-OH 等官能团。

(2)场发射 SEM 结果表明,在无电解化学镀 银过程中,金属银选择性沉积在 PET 基片的被 光照区域,而在未光照区域则没有银的沉积,实 现了 PET 基片表面镀银的图案化,且图案的保 真性好。

(3)场发射 SEM 结果表明,沉积的银颗粒的 平均粒径大约为 50 nm,这说明,在 PET 基片上 还可以做出尺寸更小的微银图案。

(4)文中研究的 PET 基片表面微米级银图 案的构筑方法,大大简化了传统镀银工艺的复杂 步骤,且该工艺在微电子、电路领域,化学和生物 微分析、生物芯片,以及制备微光学元件,生物芯 片等微型器材领域具有非常广阔的应用前景。

参考文献

[1] Fairland F Amos, Stephen A Morin, Jeremy A Streifer, et al. Photodetect or arrays directly assembled onto polymer substrates from aqueous solution [J]. Journal of the American Chemical Society, 2007, 129(46): 14296-14302.

- [2] Lu Yinxiang, Xue Longlong, Li Feng. Silver nanoparticle catalyst for electroless Ni deposition and the promotion of its adsorption onto PET substrate [J]. Surface & Coatings Technology, 2010, 205(2): 519-524.
- [3] Liao Yuan, Cao Bing, Wang Wen Cai, et al. A facile method for preparing highly conductive and reflective surface-silvered polyimide films [J]. Applied Surface Science, 2009, 25 5(19): 8207-8208.
- [4] Wu Dezhen, Zhang Tao, Wang Wen Cai, et al. Reflective and conductive surface – silvered polyimide films prepared by surface graft copolymerization and electroless plating [J]. Polymers for Advanced Technologies, 2008, 19(5): 335-341.
- [5] Zhao Wen, Zhang Qiuyu, Zhang Hepeng, et al. Preparation of PS/Ag microspheres and its application in microwave absorbing coating [J]. Journal of Alloys and Compounds, 2009, 473(1): 206-211.
- [6] Demir Mustafa M, Ugur Goekce, Gulgun Mehmet Ali, et al. Glycidyl-methacrylate-based electrospun mats and catalytic silver nanoparticles [J]. Macromolecular Chemistry and Physics, 2008, 209(5): 508-515.
- [7] 刘正春,贺全国,肖鹏峰,等.自组装化学镀银[J].化学 学报,2002,60(4):627-632.
- [8] Malvadkar Niranjan A, Demirel Gokhan, Poss Mary, et al. Fabrication and use of electroless plated polymer surface-enhanced raman spectroscopy substrates for viral gene detection [J]. Journal of Physical Chemistry, 2010, 114 (24): 10730-10738.
- [9] Kobayashi Y, Salgueirino-Maceira V, Liz-Marzan L M. Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating [J]. Chemistry of Materials, 2001,13(5): 1630-1633.
- [10] 姚树寅.聚合物表面微图案的构造及蛋白质的区域选择性 固定 [D]. 武汉理工大学,2010:1-50.
- [11] Zhu Zhengmao, Michael J. Kelley. Effect of deep UV (172 nm) irradiation on PET: ToF/SIMS analysis [J]. Applied Surface Science, 2004, 231: 302-308.

作者地址:武汉市珞狮南路 122 号 430070 武汉理工大学东院复材楼 Tel: (027) 8765 3405

E-mail: hongxiaotangshan@163.com