doi: 10.3969/j.issn.1007-9289.2010.03.009

电解液中添加纳米 SiO₂对 7A52 铝合金表面 微弧氧化陶瓷层生长过程及性能的影响*

索相波,邱 骥,刘吉延

(装甲兵工程学院 装备再制造技术国防科技重点实验室,北京 100072)

摘 要:为了改善微弧氧化陶瓷层表面疏松状况,通过在电解液中添加纳米 SiO₂颗粒,在 7A52 铝合金表面制备了含 纳米 SiO₂颗粒的复合陶瓷层。添加纳米 SiO₂颗粒后,试样表面电流密度也大幅度提高,陶瓷层生长速度提高了近一 倍。采用 XRF,SEM,维氏硬度计和往复式摩擦磨损试验机对陶瓷层进行了考察。结果表明,纳米 SiO₂进入了陶瓷 层,纳米 SiO₂颗粒复合处理后,陶瓷层更加致密,显微硬度和耐磨性大幅度提高。

关键词:微弧氧化;陶瓷层;纳米SiO2颗粒;表面性能

中图分类号: TG174.451 文献标识码: A 文章编号: 1007-9289(2010)03-0042-04

Effects of SiO₂ Nanoparticles in Electrolytes on Growth Process and Surface Properties of Alumina Coatings Formed on 7A52 Aluminium Alloy by Micro-arc Oxidation

SUO Xiang-bo, QIU Ji, LIU Ji-yan

(National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072)

Abstract: In order to enhance the properties of the layers produced by micro–arc oxidation, Al_2O_3 coatings embedded with SiO_2 nanoparticles were produced on 7A52 aluminium alloy by adding SiO_2 nanoparticles into the electrolyte. With the addition of SiO_2 nanoparticles in the electrolyte, the formation rate of Al_2O_3 coating enhanced considerably and the current density through sample surface became much higher than that without SiO_2 at the same voltage. The Coatings were investigated with X–ray fluorescence spectrometry (XRF), Scanning electron microscopy (SEM), Vickers hardness test, reciprocating friction and wear test. The XRF results showed that SiO_2 nanoparticles were successfully embedded in the Al_2O_3 coatings. Compared with the Al_2O_3 coatings without SiO_2 nanoparticles, the MAO Al_2O_3 coatings with SiO_2 nanoparticles are much denser and harder, and the wear resistance is also improved significantly.

Key words: micro-arc oxidation; ceramic coatings; SiO₂ nanoparticles; surface properties

0 引 言

出于经济性和节能环保等原因,铝及其合金等 轻质结构材料在机械结构中的应用越来越多,重要 性愈显突出。在干摩擦和较苛刻的服役条件下,铝 合金材料表现出较差的耐磨性能。微弧氧化 (Micro-arc Oxidation, MAO)是一种对环境无污染的 铝合金表面处理工艺,能够在铝合金表面形成一层

收稿日期: 2010-04-27; 修回日期: 2010-05-08

厚而硬的氧化铝陶瓷层,提高抗磨损性能^[1-3]。然而 微弧氧化生成的陶瓷层往往表面疏松多孔,限制了 性能的提高和更广泛应用。为了解决这一问题,常 用的方法是调整工艺参数来改善陶瓷层表面疏松 状况^[4-6],结果表明其对孔隙率的改善作用有限。

由于微弧氧化是在电解液中进行的反应,因此,通过对电解液成分的调整可能会影响陶瓷层的结构和性能。文中研究了电解液中添加纳米 SiO₂颗粒对陶瓷层生长过程以及陶瓷层组织结构 和性能的影响。

基 金 项 目: *装 备 再 制 造 技 术 国 防 科 技 重 点 实 验 室 基 金 (9140C8504030810)

作者简介:索相波(1973—),男(汉),山东济南人,工程师,博士生。

1 试验方法

试验中所用 7A52 铝合金名义成分(质量分数/%)为: 4.0~4.8 Zn, 2.0~2.8 Mg, 0.20~0.50 Mn, 0.30 Fe, 0.25 Si, 余量 Al。将铝合金加工成为 30 mm×40 mm×10 mm 的方块试样,用砂纸打磨至 Ra=0.8,丙酮清洗。配制浓度为 14 g/L 三聚磷酸 钠的水溶液,而后将纳米 SiO₂颗粒(浓度为 3 g/L)和分散剂添加进去,经超声分散,形成纳米 SiO₂ 电解液。微弧氧化处理过程保持电压 530 V,控制 电解液温度不超过 40 ℃。

采用 TT230 涡流测厚仪测试陶瓷层厚度,采用 Philips X 射线荧光光谱分析仪 (XRF)分析陶瓷层 元素含量,采用 Quant 200 扫描电子显微镜分析陶 瓷层表面形貌。采用维氏硬度计测试陶瓷层表面显 微硬度,载荷 200 g;采用 MS-T3000 往复式球盘 摩擦磨损试验机,考察陶瓷层摩擦磨损性能,干摩 擦,Φ6 mmGCr15 对磨钢球,载荷 10 N,往复频 率 5Hz,往复距离 10 mm。

2 结果与讨论

2.1 纳米 SiO₂颗粒对陶瓷层生长过程的影响 两种电解液中试样表面电流密度随时间的变 化曲线如图 1。

在恒电压条件下,试样表面电流随氧化过程 的进行逐渐减小。根据电流下降的速率,微弧氧 化过程可分为两个阶段:0~60min为第一阶段, 电流下降较快;60min~300min为第二阶段,电流 下降趋缓。两种不同电解液中的微弧氧化,其试 样表面的电流也显著不同:在含纳米 SiO₂颗粒的 电解液中进行微弧氧化时,试样表面电流提高了1 倍以上。2种电解液中试样表面陶瓷层厚度随时间 的变化曲线如图 2。与电流曲线相对应,陶瓷层生 长过程也可分为陶瓷层生长较快和陶瓷层增厚速 率降低两个阶段。在含纳米 SiO₂颗粒的电解液中 进行微弧氧化时,铝合金表面陶瓷层生长速率提 高一倍左右。

纳米SiO₂颗粒进入电解液后,其表面能比较 大,能够吸附电解液中的离子,形成胶体颗粒,对 正负电荷的不等量吸附使得胶体颗粒呈负电性,在 电解液中不同的胶体颗粒之间由于静电排斥作用 而稳定悬浮。微弧氧化过程中,由于外加电场的作 用,使电解液中的负离子向阳极(铝合金)表面移 动,带负电的纳米胶体颗粒也通过电泳的方式向阳 极表面移动。呈负电性的胶体颗粒在阳极表面的积 聚,加速了阳极表面电荷的积累过程,因此导致阳 极上的电击穿过程加速,因而试样表面电流增加, 陶瓷层生长过程加快。

43

对纳米溶液中微弧氧化180 min生成的陶瓷层 (厚度78 μm) XRF检测结果如表1。表明溶液中的 纳米SiO2通过微弧氧化过程复合到了陶瓷层中。

表1 纳米SiO2颗粒复合陶瓷层XRF检测结果

组成	Al_2O_3	SiO_2	Zn	Р	Na
质量分数/%	89	6.2	2.4	1.5	0.77

2.2 纳米 SiO₂颗粒对陶瓷层表面形貌的影响

电解液中添加纳米 SiO₂颗粒后,微弧氧化陶瓷 层表面形貌产生了很明显的改变,厚度相近的陶瓷 层纳米复合处理前后形貌比较见图 3。对比纳米颗

图 3 MAO 陶瓷层表面形貌 SEM (a) 不含纳米 SiO₂ (b) 含纳米 SiO₂ Fig.3 Surface morphology of the MAO Al₂O₃ coating (a) without n-SiO₂ (b) with n-SiO₂

粒复合处理前后陶瓷层表面形貌,可以明显的看出,相同厚度的陶瓷层,纳米复合处理后更加致密。

2.3 纳米 SiO₂颗粒对陶瓷层性能的影响

对试样表面显微硬度进行了测试,结果如表2。 结果表明,微弧氧化陶瓷层能够大幅度提高7A52 铝合金表面显微硬度,纳米SiO2颗粒的加入,进一 步提高了陶瓷层的硬度。相同厚度条件下,含纳米 SiO2颗粒的陶瓷层的硬度比普通陶瓷层的硬度提 高了50%左右。

表 2 7A52 铝合金及 MAO 陶瓷层显微硬度 Table 2 Microhardness of 7A52 Al alloy and MAO coatings

试 样 名 称	显微硬度/HV
7A52 铝合金	135
普通微弧氧化陶瓷层(25 μm)	1124
纳米复合微弧氧化陶瓷层(25 μm)	1752
普通微弧氧化陶瓷层(45 μm)	1300
纳米复合微弧氧化陶瓷层(45 μm)	1900

图4给出了7A52铝合金基体及微弧氧化陶瓷 层与GCr15对磨球的摩擦系数随摩擦试验时间的 变化。可以看出,微弧氧化陶瓷层的摩擦系数明 显降低,而且比较稳定。在该试验条件下,7A52 铝合金发生严重的粘着破坏,不能产生稳定的磨 损阶段,因而摩擦系数较大而且跳跃,而微弧氧 化陶瓷层耐磨性较好,能够产生较稳定的磨损阶 段。复合有纳米SiO2颗粒的陶瓷层摩擦系数略低于 不含纳米SiO2颗粒陶瓷层。3种试样的质量磨损率 如图 5,可以看出,纳米电解液中生成的陶瓷层有 更好的耐磨性。

(a) 7A52 铝合金(b) 普通 MAO 陶瓷层(c) 纳米复合MAO 陶瓷层

图 5 7A52 铝合金及 MAO 陶瓷层质量磨损率

Fig.5 Weight loss wear rate of (a) 7A52 Al alloy (b) MAO coating without $n-SiO_2$ (c) MAO coating with $n-SiO_2$

图 6 微弧氧化陶瓷层磨痕形貌 (a) 不含纳米 SiO₂ (b) 含纳米 SiO₂ Fig.6 SEM photograph of wear surface of MAO coating (a) without n–SiO₂ (b) with n–SiO₂

图6给出了两种陶瓷层表面磨痕SEM形貌。其 中图6(a)是未添加纳米SiO2的陶瓷层,图6(b)是添加 纳米SiO2的陶瓷层。未添加纳米SiO2的陶瓷层由于 表面孔隙和缺陷较多,因而在摩擦过程中容易产生 破损,导致摩擦系数较高,磨损量大。而添加纳米 SiO2的陶瓷层致密度高,表面质量优于未添加纳米 SiO2的陶瓷层,因而摩擦过程较稳定,摩擦系数低, 磨损量小。

3 结 论

第3期

(1)在电解液中添加纳米 SiO₂颗粒,促进了 铝合金微弧氧化陶瓷层的生长过程,生长速率和表 面电流密度提高约1倍,XRF 结果表明,纳米 SiO₂ 颗粒能够通过微弧氧化过程复合于陶瓷层中。

(2)相同厚度条件下,纳米 SiO₂颗粒复合处 理后,微弧氧化陶瓷层孔径尺寸减小,孔隙率降低, 含纳米 SiO₂颗粒的微弧氧化陶瓷层的显微硬度比 普通微弧氧化陶瓷层的硬度提高了 50 %左右。

(3)纳米 SiO₂颗粒复合处理后,微弧氧化陶 瓷层摩擦系数由 0.49 左右下降到 0.39 左右,相对 应的质量磨损率由 2.9×10⁻³ mg/min 下降到 1.9× 10⁻³ mg/min。

参考文献:

 Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering [J]. Surf. Coat. Techno. 1999, 122(6): 73-93.

- [2] Wu Hanhua, Wei Jianbo, Long Beiyu, et al. Ultra-hard ceramic coatings fabricated through miacoarc oxidation on aluminium alloy [J]. Appl. Surf. Sci. 2005, 252 (11): 1545-1552.
- [3] Gong Weichao, Liu Guohua, Mater. Characterization of ceramic coatings produced by plasma electrolytic oxidation of aluminium alloy [J]. Sci. Eng. A Struct. Mater. 2007, 477 (5): 158-162.
- [4] Xin Shigang, Sun Lixin, Zhou Ronggen, et al. Influence of cathodic current on composition, structure and properties of Al₂O₃ coatings on aluminium alloy prepared by micro-arc oxidation process [J]. Thin Solid Films, 2006, 515(9): 326-332.
- [5] Xue Wenbin. Effect of microarc discharge surface treatment on the tensile properties of Al–Cu–Mg alloy [J]. J. Mater. Sci. Lett. 2002, 56 (7): 737-743.
- [6] Guangliang Y, Xianyi L, Yizhen B, et al. The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating [J]. J. Alloys. Compd. 2002, 345(3): 196-200.

作者地址:北京市丰台区杜家坎 21 号 100072 装甲兵工程学院表面工程研究所 Tel: (010) 66718 873 E-mail: sxb2020s@sina.com.cn

45