en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘坤,男,1999年出生。主要研究方向为复合材料增韧增强。E-mail: liukun@nimte.ac.cn

茅东升,男,1972年出生,博士,研究员,博士研究生导师。主要研究方向为树脂基复合材料纳米增强。E-mail: maodongsheng@nimte.ac.cn

通讯作者:

茅东升,男,1972年出生,博士,研究员,博士研究生导师。主要研究方向为树脂基复合材料纳米增强。E-mail: maodongsheng@nimte.ac.cn

中图分类号:TB332

DOI:10.11933/j.issn.1007-9289.20240103001

参考文献 1
刘练,郭玉洁,刘斌,等.聚合物基复合材料分层损伤缺陷的研究现状及展望[J].材料研究与应用,2023,17(2):265-276.LIU Lian,GUO Yujie,LIU Bin,et al.Research status and prospect of delamination damage defects of polymer matrix composites[J].Materials research and application,2023,17(2):265-276.(in Chinese)
参考文献 2
杨浩坤,黎伟华.三种汽车用轻量化材料的研究进展[J].材料研究与应用,2022,16(3):471-484.YANG Haokun,LI Weihua.Research progress on three kinds of lightweight materials for vehicle applications[J].Materials Research and Application 2022,16(3):471-484.(in Chinese)
参考文献 3
姚佳伟,冯瑞瑄,牛一凡,等.纳米碳材料/热塑性树脂层间增韧热固性树脂基复合材料研究进展[J].复合材料学报,2022,39(2):528-543.YAO Jiawei,FENG Ruixuan,NIU Yifan,et al.Research progress of nanocarbon materials/interlayer toughened thermosetting resin matrix composites for thermoplastic resins[J].AMCS,2022,39(2):528-543.(in Chinese)
参考文献 4
沈欣怡,张森,王树涛,等.聚合物中空微球的合成策略[J].高等学校化学学报,2023,44(1):92-105.SHEN Xinyi,ZHANG Sen,WANG Shutao,et al.Synthesis strategy of polymer hollow microspheres[J].Chemical Journal of Chinese Universities,2023,44(1):92-105.(in Chinese)
参考文献 5
RONG H H,SHI Y,XIAN F W,et al.Fabrication of ultrafine Cl-20-based composite energetic microspheres by electrostatic spray method and study on the performance[J].Chinese Journal of Explosives & Propellants,2017,45(8):1007-1009.
参考文献 6
冀鹏翔,卢建军,刘妙青,等.聚酰亚胺纳米纤维膜的静电纺丝工艺研究[J].化工新型材料,2020,48(9):182-186.JI Pengxiang,LU Jianjun,LIU Miaoqing,et al.Study on electrospinning process of polyimide nanofiber membrane[J].New Chemical Materials,2020,48(9):182-186.(in Chinese)
参考文献 7
RUVOLO F A,BARROSA.Correlation between thermal properties and conformational changes in poly(ethylene terephthalate)/poly(ether imide)blends[J].Polymer Degradation & Stability,2001,73(3):467-470.
参考文献 8
ESKIZEYBEK V,YAR A,AVC A.CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy iaminates with improved mode I interlaminar fracture toughness[J].Composites Science and Technology,2018,32(3):157.
参考文献 9
HAMER S,LEIBOVICH H,GREEN A,et al.Mode I and Mode II fracture energy of mwcnt reinforced nanofibrilmats interleaved carbon/epoxy laminates[J].Composites Science & Technology,2014,90(10):48-56.
参考文献 10
LIU L,LV F,LI P,et al.Preparation of ultra-low dielectric constant silica/polyimide nanofiber membranes by electrospinning[J].Composites Part A Applied Science & Manufacturing,2016,47(12):292-298.
参考文献 11
ZHANG C,LING Y,ZHANG X,et al.Ultra-thin carbon fiber reinforced carbon nanotubes modified epoxy composites with superior mechanical and electrical properties for the aerospace field[J].Composites Part A:Applied Science And Manufacturing,2022,163:107197.
参考文献 12
QUAN D,BOLOGNA F,SCARSELLI G,et al.Mode-II fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils[J].Composites Science And Technology,2020,38(15):65-70.
参考文献 13
XU D M W.Synergistic Improvement of mechanical and thermal properties in epoxy composites via polyimide microspheres[J].Journal of Applied Polymer Science,2021,22(5):138.
参考文献 14
杨瑞瑞.PEI 纳米纤维层间增韧碳纤维环氧复合材料性能研究[J].材料开发与应用,2015,30(5):57-62.YANG Ruirui.Study on properties of pei nanofiber interlayer toughened carbon fiber epoxy composites[J].Materials Development and Application,2015,30(5):57-62.(in Chinese)
参考文献 15
赵泽华,孙劲松,郭颖,等.聚酰亚胺颗粒层间增韧碳纤维/邻苯二甲腈树脂复合材料[J].复合材料学报,2021,38(3):732-740.ZHAO Zehua,SUN Jinsong,GUO Ying,et al.Polyimide interlayer toughened carbon fiber/phthalonitrile resin composite[J].AMCS,2021,38(3):732-740.(in Chinese)
参考文献 16
WENG Y,WU L,OU Y,MAO D.Short carbon nanotubes:from matrix toughening to interlaminar toughening of cfrp composites[J].Composites Communications,2023,51(8):41.
参考文献 17
US-ASTM.Standard test method for Mode I interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites:ASTM D5528/D5528M21[S].West Conshohocken,PA:ASTM International,2021.
参考文献 18
ASTM D.7905.Standard test method For Mode Ⅱ interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites[S].West Conshohocken,PA:ASTM International,2013.
参考文献 19
CHAO C,ZCA B,ZHUANG H,et al.Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned pes fiber webs-sciencedirect[J].Composites Part A:Applied Science And Manufacturing,2019,51(3):129.
参考文献 20
ZHANG J,NIU H,ZHOU J,et al.Synergistic effects of pek-c/vgcnf composite nanofibres on a trifunctional epoxy resin[J].Compos Sci Technol,2011,71(8):1060-1067.
参考文献 21
KOROKHIN R A,SOLODILOV V I,ZVEREVA,et al.Epoxy Polymers modified with polyetherimide.part ii:physicomechanical properties of modified epoxy oligomers and carbon fiber reinforced plastics based on them[J].Polymer Bulletin,2020,77(4):2039-2057.
参考文献 22
SONG X,GAO J,ZHENGG N,et al.Interlaminar toughening in carbon fiber/epoxy composites interleaved with cnt-decorated polycaprolactone nanofibers.Composites Communications,2021,2(4):100-102.
参考文献 23
KHAN R.Fiber bridging in composite laminates:A literature review[J].Composite Structures,2019,10(9):111-118.
参考文献 24
MA H,ARAVAND M A,FALZON B G.Phase morphology and mechanical properties of polyetherimide modified epoxy resins:A comparative study[J].Polymer,2019,36(3):179-182.
参考文献 25
ARAVAND M,LOMOV S V,GORBATIKH L.Morphology and fracture behavior of pom modified epoxy matrices and their carbon fiber composites[J].Composites Science & Technology,2015,110(6):8-16.
参考文献 26
付璐,孟玲,刘顺强.碳纤维增强树脂基复合材料的研究探讨[J].化工时刊,2020,34(12):25-27,36.FU Lu,MENG Ling,LIU Shunqiang.Research and discussion on carbon fiber reinforced resin matrix composites[J].Chemical Industry Times,2020,34(12):25-27,36.(in Chinese)
参考文献 27
ZHANG X,SUN T,LEI Y,et al.Synergistically optimizing interlaminar behavior of cfrp composites by simultaneously applying amino-rich graphene oxide to carbon fiber and epoxy matrix[J].Composites Part A:Applied Science And Manufacturing,2021:106372.
参考文献 28
杨毕肖,宋鹏,黄太红,等.热处理对多层复合增韧涂层的微观结构及力学性能的影响[J].中国表面工程,2022,35(4):65-74.YANG Bishao,SONG Peng,HUANG Taihong,et al.Effect of heat treatment on the microstructure and mechanical properties of multilayer composite toughened coatings[J].China Surface Engineering,2022,35(4):65-74.(in Chinese)
参考文献 29
QUARESIMIN M,SCHULTE K,ZAPPALORTO M,et al.Toughening mechanisms in polymer nanocomposites:from experiments to modelling[J].Composites Science & Technology,2016,123(8):187-204.
参考文献 30
KILICOGLU M,BAT E,GUNDUZ G,et al.Fibers of thermoplastic polymer blends activate multiple interlayer toughening mechanisms[J].Composites,Part A.Applied Science And Manufacturing,2022(158):158.
参考文献 31
LANGE,F F.The interaction of a crack front with a second-phase dispersion[J].Philosophical Magazine,1970,22(179):0983-0992.
参考文献 32
RM A,MAN A,HSB C,et al.Mode-II fatigue response of as4/8552 carbon/epoxy composite laminates interleaved by electrospun nanofibers[J].Thin-Walled Structures,2020,106811:1-12.
参考文献 33
CHENG Q,FANG Z,XU Y,et al.Morphological and spatial effects on toughness and impact damage resistance of paek-toughened bmi and graphite fiber composite laminates[J].Chinese Journal of Aeronautics,2009,22(1):87-96.
目录contents

    摘要

    碳纤维增强树脂基复合材料(CFRP)因其优异的力学性能被广泛应用,但受到层状的结构特性以及树脂本体脆性的影响,其沿厚度方向的承载能力相对较差,易发生分层损伤。通过静电纺丝设备简单有效地将可溶性聚醚酰亚胺(PEI)制备为具有不同微观结构形貌(颗粒和纤维)的薄膜,并将其引入复合材料层间区域进行增韧。测试结果表明,颗粒状 PEI 试样的 I 和 II 型层间断裂韧性较基准样分别提升 18.7%和 19.2%。与之对比,纤维状 PEI 试样展现出更好的增韧效果,其 I 和 II 型层间断裂韧性较基准样分别提升 53.8%和 57.3%。最后通过对断裂面的显微观察,较为系统地研究了其内在增韧机制,探讨了相形态对增韧效果的影响。

    Abstract

    Carbon fiber reinforced polymer (CFRP) composites are widely used owing to their excellent mechanical properties. However, CFRP are affected by the structural characteristics of the ply and brittleness of the resin, and the load-bearing capacity along the thickness direction is relatively poor and susceptible to delamination damage. The delamination sensitivity of laminates remains an important issue that limits their application. Fibers and particles are commonly used as toughening materials for laminates. The high porosity of thermoplastic fiber veils and large specific surface area of the particles enables efficient toughening. Electrostatic spinning and electrostatic spraying are simple and efficient processes for the preparation of these two types of materials, and their working mechanisms are similar; therefore, the same electrostatic spinning equipment can be used to prepare toughened materials with two different morphologies and structures. In this study, polyetherimide (PEI) was selected owing to its toughness, excellent mechanical properties, and good processability. PEI is soluble in common solvents, which facilitates electrostatic spinning and ensures its incompatibility with epoxy resins to preserve the morphology of the toughened layer. In the experiment, different morphologies of toughened layers were prepared by adjusting the concentration of the PEI-DMF spinning solution, and the morphologies of toughened layers were particles and fibers when the concentration of PEI solution was 18% and 30%, respectively. Two interlayers with different morphologies were inserted into the interlayers of carbon fiber fabrics, infused with epoxy resin via the VARTM process, and cured at 80 ℃ for 2 h and 120 ℃ for 2 h under a pressure of 1 MPa to obtain CFRP. Under these conditions, the effects of different toughened layers on the interlaminar fracture properties of the composite laminates were investigated, which successfully improved the mode I and II interlaminar fracture toughness. The mode I interlaminar fracture toughness was increased by 18.7% and 53.8% for PEI 18% and PEI 30%, respectively. The same trend was observed for mode II interlaminar fracture toughness, which was increased by 19.2% and 57.3% for PEI 18% and PEI 30%, respectively. Both fiber-toughened samples maintained a better increase in interlaminar toughness. Specifically, the mode I interlaminar fracture toughness test produced more interlaminar crossovers in the delamination paths of the fiber-toughened samples, and these crossovers were critical for creating nanofiber bridging zones, which resulted in greater energy dissipation. The crack extension paths revealed that the modified materials are more zigzagged, which also suggests a greater energy dissipation for both samples. Moreover, after the addition of the toughened layer, the surface of the fractured single carbon fiber was covered with a resin matrix instead of the original smooth surface, indicating the improved bonding of the resin matrix to the carbon fiber surface after the addition of PEI. In the mode I interlaminar fracture toughness test, the particles were dispersed in the epoxy resin, and the cracks were hindered by the particles during crack propagation, leading to particle yielding, pinning, and crack deflection and thereby increasing energy dissipation. However, because the particles are discontinuous, the cracks extend along the pure resin area when they extend to the area without particles. Hence, a better toughening effect cannot be achieved. Similarly, in the mode II interlaminar fracture toughness test, because of the discontinuities in the particles, the crack extension is more biased to pass through the resin matrix between the particles as it passes through the toughened layer, and fewer particles are involved in energy dissipation, which results in less enhancement of the mode II interlaminar fracture toughness. For the continuous fiber-toughened layer, in the mode I interlaminar fracture test, crack expansion was more biased in the pure resin-filled area, which was hindered by the fiber to produce a more zigzag expansion path and therefore consumed more energy. For the mode II interlaminar fracture toughness test, owing to the continuity of the fibers, cracks in the expansion of the interlayer crossing the middle layer must destroy more fibers. The fiber breakage, pull-outs, etc., result in further energy consumption. Notably, during the mode I interlaminar fracture toughness test, the load of the fiber-toughened sample has a sudden drop and is close to the baseline. After polishing the samples, it was observed that the cracks completely deviated from the toughened zone, which affected the enhancement of the interlaminar toughness by the fiber-toughened layer. Moreover, the interlaminar fracture toughness test of the composites and analysis of the scanning electron microscopy images of the fracture surfaces revealed that toughening effects can be achieved using thermoplastic resin. PEI maintained its morphology in the epoxy, and there was some bonding between the PEI and epoxy. However, the changes in the morphology of the toughened layer led to two completely different toughening effects. Although the interlayer properties of particles and fibers have been explored in other studies, enhancing the interlayer properties of the same material under the same process requires consideration of the effects of interlayer morphology. Hence, this study adopted a systematic and scientific approach to compare the effects of the two morphologies on the interlayer toughness. The results of this study provide referential significance.

  • 0 前言

  • 碳纤维增强树脂基复合材料(Carbon fiber reinforced resin matrix composites,CFRP)由于其轻质高强、优异的抗腐蚀及抗蠕变性等优点被广泛应用于航空航天、汽车、风能、建筑等领域[1],但受到自身层状结构以及树脂本征脆性的影响,CFRP 层合板在厚度方向受到冲击时容易出现分层破坏[2],严重限制了其在工业领域的广泛应用,因此提高 CFPR 层间断裂韧性具有重要意义。

  • 层间增韧技术是改善复合材料韧性以及分层特性的常用手段。为了满足实际生产的需要,CFRP 增韧技术已经从应用于第 2 代复合材料的热塑性塑料共混增韧树脂基体,发展成为第 3 代复合材料中的层间增强增韧技术,即将韧性材料以工程化的手段置于复合材料铺层之间以达到选择性增韧的目的[3]。主要方法包括:颗粒增韧、薄膜增韧和纤维增韧。整体上看,层间增韧技术的增韧效果较好且工艺简单,但是可能出现如颗粒层间铺设的不均匀,导致性能下降;薄膜厚度对整体制件厚度产生一定影响等情况[3-4]。试验中颗粒的制备通常采用乳液聚合、相分离等方法,工艺较为复杂,相比之下静电喷雾法制备微纳颗粒更为方便。静电喷雾是高压静电使从针头喷出的聚合物液滴带电,然后通过液滴中溶剂挥发制备聚合物微 / 纳米颗粒的一种简易方法[5]。而作为制备纤维常用的技术手段,静电纺丝的发展也越来越成熟,它是通过聚合物溶液或熔体在高压静电场作用下进行喷射拉伸而获得纤维的一种方法,二者虽然在产物上的相形态有所不同(颗粒 / 纤维),但是在工作原理上大同小异。

  • 静电纺丝技术制备纳米纤维用于层间增韧多有报道[6-10]。例如 ESKIZEYBEK 等[8]利用碳纳米管增强聚丙烯腈 Polyacrylonitrile(PAN)静电纺杂化垫作为碳纤维 / 环氧树脂层压复合材料的夹层。I 型层间断裂韧性显著提升。HAMER 等[9]使用尼龙 66 纳米纤维垫作为碳 / 环氧树脂复合层压板中的增韧层。结果表明,与基准样品相比,I 型层间断裂韧性提高了 255%~322%。研究表明,这些电纺纤维能够在层间保持其纤维形貌,并产生纤维拔出,断裂等增韧机制。这是提高复合材料层间韧性极为有效的方式。

  • 在众多的聚合物材料中,聚醚酰亚胺 (Polyetherimide)因具有良好的热稳定性和出色的力学性能等优点被广泛应用于复合材料增韧当中[11-16]。ZHANG 等[11]将 PEI 纤维纱插入到 CFRP 层间,GICCIIC分别为 310.2 J / m2 和 2.369 kJ / m2。 QUAN[12]等通过引入 PPS 和 PEI 纤维纱使层合板的混合模式断裂扩展能量分别提高了 345%和 171%。 XU 等[13]在环氧树脂中加入化学沉积法制备的聚酰亚胺 Polyimide(PI)颗粒使其产生裂纹偏转和裂纹桥接以及脱黏等效应,提高了层合板的拉伸强度和模量,同时其断裂韧性 KIC 和应变能释放率 GIC 分别增加了约 92%和 106%。杨瑞瑞[14]等通过静电纺丝制备了不同厚度的 PEI 增韧层,结果表明膜厚为 0.058±0.007 mm 时,层合板的增韧效果最好,比未增韧试件提高了 114.55%。

  • 综上所述,由于静电喷雾法制备 PEI 微纳颗粒进行层间增韧技术的研究尚不明晰并且静电喷雾法与静电纺丝技术的工作原理极为相似,本文将两种方法相结合,通过调节纺丝液浓度(质量分数),利用静电纺丝设备将 PEI 制备为两种结构(颗粒、纤维)增韧层(后统称为静电纺丝样)。与传统的颗粒撒粉方法[16]相比,静电纺丝设备喷涂的 PEI 颗粒分布更加均匀,为制备微纳颗粒应用于层间增韧提供了思路,并且制备的纤维膜多孔易分散,更利于树脂浸润同时与环氧树脂产生一定的相容提高了 PEI 与树脂基体的结合性能[17-18]。通过真空辅助树脂传递模塑(VARTM)方法制备了 CFRP 复合板,按照 ASTM 标准制备测试样,并对其层间断裂韧性进行测试。研究了碳纤维 / 环氧复合材料的增韧机理,探讨了相形态对增韧效果的影响。

  • 1 试验材料及方法

  • 1.1 试验材料

  • T300 碳织物,日本东丽公司;双酚 F 环氧树脂 (Epikote862),美国瀚森生化集团有限公司;聚醚胺类固化剂(D-230),山东迈图化工有限公司; G0926 碳布(5H Satin),赫氏公司;聚醚酰亚胺 (ULTEM 1000);N-N 二甲基甲酰胺(DMF),北京百灵威科技有限公司。

  • 1.2 试验设备

  • 万能试验机,德国 ZwickRoell GmbH &Co.KG; 冷场高分辨率扫描电镜,日立公司;超景深 3D 显微镜,基恩士有限公司;平板硫化机,湖州东方机械有限公司;数控雕刻机,济南天行健数控设备有限公司。

  • 1.3 制备增韧夹层

  • 称取可溶性的聚醚酰亚胺(ULTEM 1000)及 N-N 二甲基甲酰胺(DMF)在硅油中 80℃恒温加热 3 h,使聚醚酰亚胺完全溶解,形成透明棕黄色液体,配制得到质量分数为 18%和 30%的聚醚酰亚胺纺丝液。将所得静电纺丝液转移至静电纺丝设备注射器中,将碳布整体覆盖于接收器上,控制纺丝流速为 1 mL、温度为 24℃、湿度为 42%、纺丝电压为 15 kV,将纺丝液喷涂至碳布表面,以形成不同相形态的增韧中间层。根据纺丝液浓度分别喷涂 40 min 和 24 min 以保证含量一致。PEI 的质量大概为 0.12 g。对颗粒及纤维的直径进行测量分析,具体的分析方法是根据 Nanomeasure 软件进行统计分析。主要方法是根据电镜图片进行直径的统计。并给出对应的直径分布情况。

  • 1.4 制备层合板

  • 取碳纤维双向布,裁剪为 25 cm×25 cm 的布块,碳布的面密度为 198 g / m2,厚度为 0.23 mm,用手工叠层方式铺设纤维预制体。具体而言,将 16 层碳布按[0°]16的序列堆叠排布,其中第 8 层的表面有(1.3)中制备的 PEI 颗粒 / 纤维增韧层,并在第 8 层和第 9 层之间铺入 50 mm 长的聚四氟乙烯膜(厚度为 30 μm)作为预裂膜。通过 VARTM 方法制备复合材料板:对铺设好的纤维预制体使用双层导流网,导流网和纤维预制体之间用脱模布分隔开,最后用真空袋密封。通过真空泵的负压作用将提前配置好的树脂基浆料均匀引入到纤维预制体中。待树脂基浆料完全灌注,将 VARTM 平台整体移入平板硫化机中,在 1 MPa、80℃的压力和温度条件下固化 2 h,后升温至 120℃,继续固化 2 h 后冷却脱模,得到复合材料板。板材的质量大概为 400 g。

  • 1.5 表征

  • 1.5.1 层间断裂韧性测试

  • 采用双悬臂梁(DCB)试验,按照 ASTM D5528-01 进行 I 型层间断裂韧性表征,初始分层长度为 50 mm[19]。为了观察裂纹的扩展,在试样边缘涂上白色的校正液,并在涂层上画上符号线。符号线的断裂可以确定裂纹扩展过程中裂纹尖端的位置。采用万能试验机的拉伸模式进行测试,拉伸速率为 1 mm / min。测试过程观察裂纹扩展并记录裂纹长度变化及对应加载的时间,裂纹长度由 50 mm 扩展至 100 mm 后卸载。依据 ASTM D7905 标准测试方法,在室温下进行端分层挠曲(ENF)测试复合层压板的 II 型层间断裂韧性[20]

  • 1.5.2 形态学观察

  • 通过冷场高分辨率扫描电镜研究了 PEI 的直径和形态以及复合材料的分层断口表面。在扫描电镜测量之前,对样品表面作溅射喷金处理。

  • 2 结果与讨论

  • 2.1 PEI 颗粒及 PEI 纤维增韧夹层的微观结构

  • 通过简单的静电纺丝液浓度调节,能够使用同种PEI原料制备具有不同微观结构的PEI增韧材料。如图所示,PEI 质量分数为 18wt.%和 30wt.%的静电纺丝样品分别呈现出微球颗粒形貌和纤维形貌,均处于微纳尺度,且表面较为光滑,无明显缺陷。此外,由图1a 可知,通过静电纺丝设备得到的 PEI 微球均匀地喷覆在碳布表面,有效避免了常用的撒粉法存在的颗粒团聚的问题[17]。此外,PEI 纤维无序且蓬松多孔的结构(图1b)能够让树脂更充分地浸润,有望达到更好的增韧效果[18-24]。从图1c、1d 可以发现不同形态中间层(颗粒、纤维)的直径分布,两者均为 1~2 μm。

  • 图1 不同浓度 PEI 静电纺丝膜的微观形貌及其直径分布

  • Fig.1 Micro-morphology of PEI electrospun membranes with different concentrations and their diameter distributions

  • 2.2 层间断裂韧性测试

  • Ⅰ型断裂韧性的结果如图2 所示,从图2a 的载荷-位移图看到,裂纹张开位移从 0 mm 增加到 10 mm 左右时,基准样品和增韧样的载荷都呈线性增长趋势,且线性曲线的斜率较为一致,说明测试前预裂纹长度一致。当裂纹尖端达到临界载荷时,裂纹扩展,载荷下降。PEI 颗粒增韧样品的载荷稳定性高于基准样品,且曲线无明显波动,说明整个增韧过程中裂纹能够稳定扩展。PEI 纤维增韧的样品断裂过程明显波动,较不稳定,但是其裂纹扩展所需时间比基准样以及颗粒增韧更长。从图2c 断裂韧性平均值中能够看到,无论是颗粒还是纤维结构, PEI 均对材料有增韧的效果,且纤维结构 PEI 的增韧效果更好:PEI 颗粒增韧样品的断裂韧性较基准样品提高了 18.7%,纤维增韧层提高了 53.8%。图3 展示了样品的Ⅱ型断裂韧性结果,增韧效果与Ⅰ型断裂韧性保持一致。球状 PEI 增韧层的Ⅱ型断裂韧性相对于未增韧的基准样提高 19.2%,而纤维状 PEI 增韧样品提高 57.3%。

  • 图2 DCB 测试结果

  • Fig.2 DCB test result

  • 图3 ENF 测试结果

  • Fig.3 ENF test results

  • 2.3 层间断裂模式分析

  • 图4 是不同样品层间韧性测试裂纹扩展图,在裂纹向前扩展的过程中,增韧样品相比于基准样存在明显的 Z 向起伏,表明裂纹在传递时并非沿平面扩展,而是时刻随增韧介质的阻碍改变扩展方向,从而断裂路径增加,断裂时间延长,以此消耗更多能量。对比颗粒增韧样,纤维增韧样裂纹扩展时,尖端处易形成更多微裂纹,随着应力的蓄积,多个微裂纹汇集形成主裂纹。而微裂纹在向前扩展时,纤维增韧层对裂纹的抑制作用导致裂纹向无增韧层的方向发展,因此形成了较多锯齿状的裂纹。

  • 图4 不同样品的 DCB 测试裂纹扩展图(a)基准样;(b)PEI 颗粒增韧样;(c)PEI 纤维增韧样

  • Fig.4 Crack extension images of DCB test for different samples: (a) baseline; (b) PEI particle toughened sample; (c) PEI fiber toughened sample

  • 图5 为不同样品断裂表面的 SEM 图,由图5a 可观察到,未引入增韧层的基准样树脂层表面光滑,断裂面呈河道状,是典型的脆性断裂模式,而 PEI 增韧的样品表面均较为粗糙,图5c 中可明显观察到 PEI 微球颗粒的存在。相比之下,图5e 中纤维增韧样品存在更加粗糙的断裂表面,裂纹在增韧层的扩展路径不断偏移,断裂表面起伏不平的微观形貌与图5 和图4 的裂纹宏观表现一致。裂纹的非平面扩展,使其消耗更多的能量,提高了材料的层间断裂韧性。其中,图5a、5c、5e 展示了各样品的增韧层断面形貌,图5b、5d、5f 展示了各样品断面中的碳纤维状态。从图6b 中可以看到,基准样品断裂后的碳纤维表面光滑,而经过 PEI 增韧的样品(图5d,5f) 可以明显观察到断裂碳纤维表面存在包覆有颗粒及纤维 PEI 的环氧树脂,表明 PEI 的加入能够改善环氧树脂与碳纤维之间的结合[25]

  • 根据微球增韧界面层的电镜图(图6),PEI 能够在环氧树脂中保持原有形貌,这使得两种物质在增韧层间形成了两相结构。多相结构可能会导致裂纹的扩展路径发生变化,继而耗散能量。受到力的作用时,作为层间增韧层的介质又会产生剪切形变,使得耗能增加,以此增加材料的层间断裂韧性[26]

  • 对于颗粒层间增韧,在之前的相关研究中[1525-26] 发现,裂纹尖端钝化,脱粘,剪切屈服以及裂纹桥接等都会提高材料的断裂韧性,以下将通过观察 PEI 颗粒增韧样品的断裂面 SEM 图,对其增韧机理进行分析。

  • 图5 DCB 测试样品断裂表面的 SEM 图像(a)基准样断裂面形貌;(b)基准样碳纤维断裂情况;(c)颗粒增韧样断裂面形貌;(d)颗粒增韧样碳纤维断裂情况;(e)纤维增韧样断裂形貌;(f)纤维增韧样碳纤维断裂情况

  • Fig.5 SEM images of fracture surfaces of DCB test samples: (a) Fracture surface morphology of baseline; (b) Carbon fiber breakageof baseline (c) Fracture surface morphology of particle toughened samples; (d) Carbon fiber breakage of particle toughened samples; (e) Fracture surface morphology of fiber toughened samples; (f) Carbon fiber breakage of fiber toughened samples

  • 颗粒增韧机理如图6 所示。

  • (1)裂纹钉扎:如图6(红色箭头),当裂纹扩展到刚性且结合性能较好的 PEI 颗粒时,裂纹尖端无法往前发展并扩展为更多的裂纹,因此颗粒在阻碍裂纹发展的同时能够吸收能量[27]

  • (2)裂纹偏转:如图6(紫色箭头)PEI 颗粒与环氧树脂基体模量的差异导致增韧层产生不均匀的受力,裂纹前一相的环氧树脂和第二相 PEI 颗粒异质相之间的机械相互作用使裂纹路径发生扰动,从而导致非平面裂纹扩展,产生裂纹偏转[28],裂纹偏转会吸收能量,从而增加材料韧性。

  • (3)裂纹桥接:如图6(黑色箭头)PEI 颗粒会连接两个相邻裂纹的表面,使得裂纹尖端应力强度减小达到增韧效果[29]

  • (4)产生微裂纹:在整个断裂过程中 PEI 颗粒可能会承当应力集中器,并因此产生大量的微裂纹延缓主裂纹的发展[30],见图6e(棕色箭头)。

  • 图6 PEI 颗粒增韧样品的断裂面 SEM 图(a)颗粒脱粘;(b)裂纹桥接;(c)颗粒屈服;(d)裂纹偏转;(e)微裂纹;(f)剪切屈服

  • Fig.6 SEM images of fracture surfaces of PEI particle toughed samples; (a) particle debonding; (b) crack bridging; (c) particle yielding; (d) crack deflection; (e) microcrack; (f) shear yielding

  • (5)颗粒脱粘、屈服断裂:在颗粒增韧中,颗粒脱粘如图6(蓝色箭头)以及颗粒屈服如图6(白色箭头)是裂纹发生时重要的耗能机制。如图7, PEI 颗粒在初始塑性变形后发生脱粘以及颗粒的断裂,在平面应变条件下,颗粒空化和塑性变形可以显著降低基体中前进裂纹的应力三轴性[31]。由此产生的不均匀应力使得脆性环氧基体中产生了剪切屈服(如图6 绿色箭头),产生能量消耗。图6 中观察到的断裂表面的褶皱纹理表明存在剪切带。这很可能是由于这些共混物中颗粒的塑性变形和屈服程度较高,裂纹尖端前方的应力分布进一步不均匀,从而导致剪切增加。相比于 SiO2 这样的刚性粒子,热塑性颗粒的屈服断裂是其突出的增韧方式[28]

  • 图7 伴随塑性变形的 PEI 颗粒增韧模式示意图:(a)颗粒脱粘;(b)和(c)颗粒屈服、断裂

  • Fig.7 Schematic diagram of three toughening pattern of PEI particles with plastic deformation: (a) debonding; (b) and (c) particle yield and fracture

  • 对于纤维增韧,由图8 断裂面的 SEM 图,可以发现较多的 PEI 断裂纤维尖端以及尖端周围超出纤维直径的树脂空腔(图8,白色箭头)。由于 PEI 纤维在增韧层中是杂乱无序的,裂纹前端增韧 PEI 纤维的取向和长度各异,在相同的应力作用下将以不同的形式发生断裂。因此在图8 中可以观察到不同断裂形式的纤维形貌,这种无序结构也使得裂纹扩展路径更加曲折,引发更多的纤维桥接。增韧层周围的环氧树脂表面更加粗糙,能够产生更高的初始断裂韧性,见图2(a 载荷-位移图)。在受力过程中纤维脱粘并占据其桥接位置,但其结构依旧完整,主要是由于断裂纤维尖端能够耗散能量,并且垂直于受力方向的纤维在树脂中产生剪切破坏并带动周围的树脂发生形变,这种破坏使得冲击能量大幅耗散从而增强复合板韧性。其次如图8(红色圆圈) PEI 纤维在断裂过程中充当了应力集中器的作用,在自身受力发生剪切破坏的同时,周围的树脂产生微裂纹,增加了能量耗散,同样提高了纤维的增韧效果[32]

  • 图9 是不同取向的 PEI 纤维在层间的几种增韧模式。在断裂表面仍能看到较多的脱粘槽(图8 白色圆圈),并且表面较为光滑,说明 PEI 纤维与树脂间的结合并不紧密。当纤维方向与裂纹方向一致时,就可能出现纤维脱粘的情况,在一定程度上会影响材料的韧性,这是其载荷-位移曲线发生较小下降的原因。此外,曲线还存在较为严重的突变,通过分析断裂面以及横截面金相,发现 PEI 层插于中间层,随着测试的进行,裂纹在中间层扩展,并引发周围碳纤维层产生裂纹从而影响断裂韧性。

  • 图8 PEI 纤维增韧样品断裂面的 SEM 图(a)纤维断裂、纤维脱粘(b)和(c)纤维断裂(d)应力集中

  • Fig.8 SEM images of fracture surfaces of PEI fiber toughened samples (a) fiber breaks、fiber debonding; (b) and (c) fiber breaks (d) stress concentration

  • 图9 纤维增韧样品层间增韧模式示意图  1:纤维拔出 2:纤维桥接 3:剪切屈服 4:脱粘 5:微裂纹

  • Fig.9 Schematic diagram of the interlaminar toughening patterns of fiber toughened samples   1: fiber pull-out 2: fiber bridging 3: shear yielding 4: debonding 5: microcracking

  • 值得注意的是,裂纹在中间层是不断偏移的,如图10 在粗糙的中间层观察到光滑的碳纤维,由此推测,裂纹发生了较为严重的偏转,并扩展到不含 PEI 纤维的其他层间。进一步观察层合板不同裂纹位置的截面抛光图(图11),图11a 裂纹未扩展的样品中,能够明显观察到中间层的 PEI 纤维,其中图11b、11c 为裂纹扩展后的截面图像,10 mm 时,裂纹位于 PEI 增韧层内(图11b);然而当其扩展至30 mm 时,观察到完好的增韧层(图11c),证实存在部分裂纹在增韧层与非增韧层间的偏转,从而影响材料原本的断裂韧性。PEI 纤维与 PEI 颗粒的不同增韧形式导致裂纹在层间发生不同的偏转情况。对于纤维来说,他相对于颗粒在层间具有更复杂的无序结构。这意味着更加曲折的裂纹扩展路径和更多的能量耗散,导致裂纹更容易向非增韧层偏转,从而激发纤维桥接。相比之下,如图7 所示,颗粒增韧样的断面更为光滑,这意味着更少的裂纹扩展路径和更少的能量耗散,裂纹更易在增韧层扩展而不会发生较大偏转。这也解释了载荷-裂纹位移图 (图2a)中 PEI 纤维增韧样载荷急剧下降,而颗粒增韧样载荷能够稳定下降的现象。

  • 图10 纤维增韧样的断面(裂纹偏转区)SEM 图

  • Fig.10 SEM image of fracture surface (crack deflection zone) of fiber toughened sample

  • 图12 为Ⅱ型层间断裂面的微观形貌,可以看到,不同层合板受到剪切形变的作用均表现出典型的梯状Ⅱ型断裂模式[33],不同的是,图12a 中基准样品表现出典型的脆性断裂模式,环氧树脂受到横向载荷影响,在碳纤维之间形成方向一致的光滑界面破坏,这主要是由于碳纤维和环氧之间的结合性较差。观察 PEI 颗粒增韧样品,如图12b、12c,裂纹路径更加复杂,不再简单地朝着同一方向发展,断裂面更加粗糙,使得样品在发生剪切变形的过程中需要消耗更多的能量。同时,如图12b 中 PEI 颗粒的加入将引发钉扎、裂纹偏转、颗粒屈服、脱粘等多种增韧模式,有效抑制了裂纹的产生和发展,提高了样品的层间断裂韧性。在纤维增韧样品的Ⅱ 型断裂面中见图12c,PEI 纤维几乎覆盖整个断裂面,并发展出更多的裂纹,且裂纹偏转更加明显。 PEI 纤维增韧过程发生桥接,断裂,并发挥充当应力集中器的作用。与Ⅰ型断裂模式不同的是,由于受力形式存在差异,Ⅱ型断裂过程中,推测由于 PEI 纤维更多地参与到剪切形变中,因此比Ⅰ型的韧性提高更多。

  • 图11 裂纹扩展至不同区域的纤维增韧样品 DCB 测试后的截面抛光图:(a)裂纹未扩展区域;(b)裂纹扩展 10 mm 处;(c)裂纹扩展 30 mm 处

  • Fig.11 Polished cross-section images of fiber toughened samples after DCB testing with cracks extended to different regions: (a) cracks unexpanded region; (b) cracks extended at 10 mm; (c) cracks extended at 30 mm

  • 图12 ENF 测试断裂面的 SEM 图:(a)基准样;(b)PEI 颗粒增韧样;(c)PEI 纤维增韧样

  • Fig.12 SEM images of ENF-tested fracture surface (a) baseline; (b) PEI particle toughened sample; (c) PEI fiber toughened sample

  • 3 结论

  • (1) 通过静电纺丝方法简单高效地引入了 PEI 颗粒与纤维两种具有不同形貌的增韧材料作为中间增韧层,两种结构均处于微纳尺度,且能在环氧树脂中保持初始状态,与之前的研究相比,本文实现了不同结构增韧材料的增韧效果对比。结果表明,颗粒和纤维结构的增韧材料均对 CFRP 的层间断裂韧性有较大影响,微球颗粒及纤维增韧样品的Ⅰ型层间断裂韧性分别提高了 18.7%以及 53.8%,Ⅱ型层间断裂韧性分别提高 19.2%以及 57.3%。

  • (2)纤维增韧与颗粒增韧相比,具有更好的层间增韧效果。纤维增韧样品表现出更为粗糙的断裂面,在受力过程中,会产生纤维拔出 / 桥接、剪切屈服、纤维脱粘等效果,裂纹在纤维增韧层间的扩展更加复杂,因此需要耗散更多的能量。值得一提的是,纤维增韧样在 I 型开裂过程中,裂纹尖端逐渐从含有增韧层的层间区域偏转到无增韧纤维的层内区域,使得 R 曲线呈下降趋势,其真实的增韧潜力可能被严重低估。

  • (3)PEI 的加入能够改善碳纤维与树脂基体的结合,对于双向碳纤维来说,由于碳纤维桥接的情况减少,中间层与树脂基体的结合是影响该复合材料Ⅰ型和Ⅱ型断裂韧性的重要因素。而且由于增韧材料形式的不同会产生不同的增韧效果。本文通过引入单一热塑性树脂实现提高层间断裂韧性,对复合材料的层间断裂韧性研究提供试验依据,具有一定意义。

  • 参考文献

    • [1] 刘练,郭玉洁,刘斌,等.聚合物基复合材料分层损伤缺陷的研究现状及展望[J].材料研究与应用,2023,17(2):265-276.LIU Lian,GUO Yujie,LIU Bin,et al.Research status and prospect of delamination damage defects of polymer matrix composites[J].Materials research and application,2023,17(2):265-276.(in Chinese)

    • [2] 杨浩坤,黎伟华.三种汽车用轻量化材料的研究进展[J].材料研究与应用,2022,16(3):471-484.YANG Haokun,LI Weihua.Research progress on three kinds of lightweight materials for vehicle applications[J].Materials Research and Application 2022,16(3):471-484.(in Chinese)

    • [3] 姚佳伟,冯瑞瑄,牛一凡,等.纳米碳材料/热塑性树脂层间增韧热固性树脂基复合材料研究进展[J].复合材料学报,2022,39(2):528-543.YAO Jiawei,FENG Ruixuan,NIU Yifan,et al.Research progress of nanocarbon materials/interlayer toughened thermosetting resin matrix composites for thermoplastic resins[J].AMCS,2022,39(2):528-543.(in Chinese)

    • [4] 沈欣怡,张森,王树涛,等.聚合物中空微球的合成策略[J].高等学校化学学报,2023,44(1):92-105.SHEN Xinyi,ZHANG Sen,WANG Shutao,et al.Synthesis strategy of polymer hollow microspheres[J].Chemical Journal of Chinese Universities,2023,44(1):92-105.(in Chinese)

    • [5] RONG H H,SHI Y,XIAN F W,et al.Fabrication of ultrafine Cl-20-based composite energetic microspheres by electrostatic spray method and study on the performance[J].Chinese Journal of Explosives & Propellants,2017,45(8):1007-1009.

    • [6] 冀鹏翔,卢建军,刘妙青,等.聚酰亚胺纳米纤维膜的静电纺丝工艺研究[J].化工新型材料,2020,48(9):182-186.JI Pengxiang,LU Jianjun,LIU Miaoqing,et al.Study on electrospinning process of polyimide nanofiber membrane[J].New Chemical Materials,2020,48(9):182-186.(in Chinese)

    • [7] RUVOLO F A,BARROSA.Correlation between thermal properties and conformational changes in poly(ethylene terephthalate)/poly(ether imide)blends[J].Polymer Degradation & Stability,2001,73(3):467-470.

    • [8] ESKIZEYBEK V,YAR A,AVC A.CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy iaminates with improved mode I interlaminar fracture toughness[J].Composites Science and Technology,2018,32(3):157.

    • [9] HAMER S,LEIBOVICH H,GREEN A,et al.Mode I and Mode II fracture energy of mwcnt reinforced nanofibrilmats interleaved carbon/epoxy laminates[J].Composites Science & Technology,2014,90(10):48-56.

    • [10] LIU L,LV F,LI P,et al.Preparation of ultra-low dielectric constant silica/polyimide nanofiber membranes by electrospinning[J].Composites Part A Applied Science & Manufacturing,2016,47(12):292-298.

    • [11] ZHANG C,LING Y,ZHANG X,et al.Ultra-thin carbon fiber reinforced carbon nanotubes modified epoxy composites with superior mechanical and electrical properties for the aerospace field[J].Composites Part A:Applied Science And Manufacturing,2022,163:107197.

    • [12] QUAN D,BOLOGNA F,SCARSELLI G,et al.Mode-II fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils[J].Composites Science And Technology,2020,38(15):65-70.

    • [13] XU D M W.Synergistic Improvement of mechanical and thermal properties in epoxy composites via polyimide microspheres[J].Journal of Applied Polymer Science,2021,22(5):138.

    • [14] 杨瑞瑞.PEI 纳米纤维层间增韧碳纤维环氧复合材料性能研究[J].材料开发与应用,2015,30(5):57-62.YANG Ruirui.Study on properties of pei nanofiber interlayer toughened carbon fiber epoxy composites[J].Materials Development and Application,2015,30(5):57-62.(in Chinese)

    • [15] 赵泽华,孙劲松,郭颖,等.聚酰亚胺颗粒层间增韧碳纤维/邻苯二甲腈树脂复合材料[J].复合材料学报,2021,38(3):732-740.ZHAO Zehua,SUN Jinsong,GUO Ying,et al.Polyimide interlayer toughened carbon fiber/phthalonitrile resin composite[J].AMCS,2021,38(3):732-740.(in Chinese)

    • [16] WENG Y,WU L,OU Y,MAO D.Short carbon nanotubes:from matrix toughening to interlaminar toughening of cfrp composites[J].Composites Communications,2023,51(8):41.

    • [17] US-ASTM.Standard test method for Mode I interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites:ASTM D5528/D5528M21[S].West Conshohocken,PA:ASTM International,2021.

    • [18] ASTM D.7905.Standard test method For Mode Ⅱ interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites[S].West Conshohocken,PA:ASTM International,2013.

    • [19] CHAO C,ZCA B,ZHUANG H,et al.Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned pes fiber webs-sciencedirect[J].Composites Part A:Applied Science And Manufacturing,2019,51(3):129.

    • [20] ZHANG J,NIU H,ZHOU J,et al.Synergistic effects of pek-c/vgcnf composite nanofibres on a trifunctional epoxy resin[J].Compos Sci Technol,2011,71(8):1060-1067.

    • [21] KOROKHIN R A,SOLODILOV V I,ZVEREVA,et al.Epoxy Polymers modified with polyetherimide.part ii:physicomechanical properties of modified epoxy oligomers and carbon fiber reinforced plastics based on them[J].Polymer Bulletin,2020,77(4):2039-2057.

    • [22] SONG X,GAO J,ZHENGG N,et al.Interlaminar toughening in carbon fiber/epoxy composites interleaved with cnt-decorated polycaprolactone nanofibers.Composites Communications,2021,2(4):100-102.

    • [23] KHAN R.Fiber bridging in composite laminates:A literature review[J].Composite Structures,2019,10(9):111-118.

    • [24] MA H,ARAVAND M A,FALZON B G.Phase morphology and mechanical properties of polyetherimide modified epoxy resins:A comparative study[J].Polymer,2019,36(3):179-182.

    • [25] ARAVAND M,LOMOV S V,GORBATIKH L.Morphology and fracture behavior of pom modified epoxy matrices and their carbon fiber composites[J].Composites Science & Technology,2015,110(6):8-16.

    • [26] 付璐,孟玲,刘顺强.碳纤维增强树脂基复合材料的研究探讨[J].化工时刊,2020,34(12):25-27,36.FU Lu,MENG Ling,LIU Shunqiang.Research and discussion on carbon fiber reinforced resin matrix composites[J].Chemical Industry Times,2020,34(12):25-27,36.(in Chinese)

    • [27] ZHANG X,SUN T,LEI Y,et al.Synergistically optimizing interlaminar behavior of cfrp composites by simultaneously applying amino-rich graphene oxide to carbon fiber and epoxy matrix[J].Composites Part A:Applied Science And Manufacturing,2021:106372.

    • [28] 杨毕肖,宋鹏,黄太红,等.热处理对多层复合增韧涂层的微观结构及力学性能的影响[J].中国表面工程,2022,35(4):65-74.YANG Bishao,SONG Peng,HUANG Taihong,et al.Effect of heat treatment on the microstructure and mechanical properties of multilayer composite toughened coatings[J].China Surface Engineering,2022,35(4):65-74.(in Chinese)

    • [29] QUARESIMIN M,SCHULTE K,ZAPPALORTO M,et al.Toughening mechanisms in polymer nanocomposites:from experiments to modelling[J].Composites Science & Technology,2016,123(8):187-204.

    • [30] KILICOGLU M,BAT E,GUNDUZ G,et al.Fibers of thermoplastic polymer blends activate multiple interlayer toughening mechanisms[J].Composites,Part A.Applied Science And Manufacturing,2022(158):158.

    • [31] LANGE,F F.The interaction of a crack front with a second-phase dispersion[J].Philosophical Magazine,1970,22(179):0983-0992.

    • [32] RM A,MAN A,HSB C,et al.Mode-II fatigue response of as4/8552 carbon/epoxy composite laminates interleaved by electrospun nanofibers[J].Thin-Walled Structures,2020,106811:1-12.

    • [33] CHENG Q,FANG Z,XU Y,et al.Morphological and spatial effects on toughness and impact damage resistance of paek-toughened bmi and graphite fiber composite laminates[J].Chinese Journal of Aeronautics,2009,22(1):87-96.

  • 参考文献

    • [1] 刘练,郭玉洁,刘斌,等.聚合物基复合材料分层损伤缺陷的研究现状及展望[J].材料研究与应用,2023,17(2):265-276.LIU Lian,GUO Yujie,LIU Bin,et al.Research status and prospect of delamination damage defects of polymer matrix composites[J].Materials research and application,2023,17(2):265-276.(in Chinese)

    • [2] 杨浩坤,黎伟华.三种汽车用轻量化材料的研究进展[J].材料研究与应用,2022,16(3):471-484.YANG Haokun,LI Weihua.Research progress on three kinds of lightweight materials for vehicle applications[J].Materials Research and Application 2022,16(3):471-484.(in Chinese)

    • [3] 姚佳伟,冯瑞瑄,牛一凡,等.纳米碳材料/热塑性树脂层间增韧热固性树脂基复合材料研究进展[J].复合材料学报,2022,39(2):528-543.YAO Jiawei,FENG Ruixuan,NIU Yifan,et al.Research progress of nanocarbon materials/interlayer toughened thermosetting resin matrix composites for thermoplastic resins[J].AMCS,2022,39(2):528-543.(in Chinese)

    • [4] 沈欣怡,张森,王树涛,等.聚合物中空微球的合成策略[J].高等学校化学学报,2023,44(1):92-105.SHEN Xinyi,ZHANG Sen,WANG Shutao,et al.Synthesis strategy of polymer hollow microspheres[J].Chemical Journal of Chinese Universities,2023,44(1):92-105.(in Chinese)

    • [5] RONG H H,SHI Y,XIAN F W,et al.Fabrication of ultrafine Cl-20-based composite energetic microspheres by electrostatic spray method and study on the performance[J].Chinese Journal of Explosives & Propellants,2017,45(8):1007-1009.

    • [6] 冀鹏翔,卢建军,刘妙青,等.聚酰亚胺纳米纤维膜的静电纺丝工艺研究[J].化工新型材料,2020,48(9):182-186.JI Pengxiang,LU Jianjun,LIU Miaoqing,et al.Study on electrospinning process of polyimide nanofiber membrane[J].New Chemical Materials,2020,48(9):182-186.(in Chinese)

    • [7] RUVOLO F A,BARROSA.Correlation between thermal properties and conformational changes in poly(ethylene terephthalate)/poly(ether imide)blends[J].Polymer Degradation & Stability,2001,73(3):467-470.

    • [8] ESKIZEYBEK V,YAR A,AVC A.CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy iaminates with improved mode I interlaminar fracture toughness[J].Composites Science and Technology,2018,32(3):157.

    • [9] HAMER S,LEIBOVICH H,GREEN A,et al.Mode I and Mode II fracture energy of mwcnt reinforced nanofibrilmats interleaved carbon/epoxy laminates[J].Composites Science & Technology,2014,90(10):48-56.

    • [10] LIU L,LV F,LI P,et al.Preparation of ultra-low dielectric constant silica/polyimide nanofiber membranes by electrospinning[J].Composites Part A Applied Science & Manufacturing,2016,47(12):292-298.

    • [11] ZHANG C,LING Y,ZHANG X,et al.Ultra-thin carbon fiber reinforced carbon nanotubes modified epoxy composites with superior mechanical and electrical properties for the aerospace field[J].Composites Part A:Applied Science And Manufacturing,2022,163:107197.

    • [12] QUAN D,BOLOGNA F,SCARSELLI G,et al.Mode-II fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils[J].Composites Science And Technology,2020,38(15):65-70.

    • [13] XU D M W.Synergistic Improvement of mechanical and thermal properties in epoxy composites via polyimide microspheres[J].Journal of Applied Polymer Science,2021,22(5):138.

    • [14] 杨瑞瑞.PEI 纳米纤维层间增韧碳纤维环氧复合材料性能研究[J].材料开发与应用,2015,30(5):57-62.YANG Ruirui.Study on properties of pei nanofiber interlayer toughened carbon fiber epoxy composites[J].Materials Development and Application,2015,30(5):57-62.(in Chinese)

    • [15] 赵泽华,孙劲松,郭颖,等.聚酰亚胺颗粒层间增韧碳纤维/邻苯二甲腈树脂复合材料[J].复合材料学报,2021,38(3):732-740.ZHAO Zehua,SUN Jinsong,GUO Ying,et al.Polyimide interlayer toughened carbon fiber/phthalonitrile resin composite[J].AMCS,2021,38(3):732-740.(in Chinese)

    • [16] WENG Y,WU L,OU Y,MAO D.Short carbon nanotubes:from matrix toughening to interlaminar toughening of cfrp composites[J].Composites Communications,2023,51(8):41.

    • [17] US-ASTM.Standard test method for Mode I interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites:ASTM D5528/D5528M21[S].West Conshohocken,PA:ASTM International,2021.

    • [18] ASTM D.7905.Standard test method For Mode Ⅱ interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites[S].West Conshohocken,PA:ASTM International,2013.

    • [19] CHAO C,ZCA B,ZHUANG H,et al.Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned pes fiber webs-sciencedirect[J].Composites Part A:Applied Science And Manufacturing,2019,51(3):129.

    • [20] ZHANG J,NIU H,ZHOU J,et al.Synergistic effects of pek-c/vgcnf composite nanofibres on a trifunctional epoxy resin[J].Compos Sci Technol,2011,71(8):1060-1067.

    • [21] KOROKHIN R A,SOLODILOV V I,ZVEREVA,et al.Epoxy Polymers modified with polyetherimide.part ii:physicomechanical properties of modified epoxy oligomers and carbon fiber reinforced plastics based on them[J].Polymer Bulletin,2020,77(4):2039-2057.

    • [22] SONG X,GAO J,ZHENGG N,et al.Interlaminar toughening in carbon fiber/epoxy composites interleaved with cnt-decorated polycaprolactone nanofibers.Composites Communications,2021,2(4):100-102.

    • [23] KHAN R.Fiber bridging in composite laminates:A literature review[J].Composite Structures,2019,10(9):111-118.

    • [24] MA H,ARAVAND M A,FALZON B G.Phase morphology and mechanical properties of polyetherimide modified epoxy resins:A comparative study[J].Polymer,2019,36(3):179-182.

    • [25] ARAVAND M,LOMOV S V,GORBATIKH L.Morphology and fracture behavior of pom modified epoxy matrices and their carbon fiber composites[J].Composites Science & Technology,2015,110(6):8-16.

    • [26] 付璐,孟玲,刘顺强.碳纤维增强树脂基复合材料的研究探讨[J].化工时刊,2020,34(12):25-27,36.FU Lu,MENG Ling,LIU Shunqiang.Research and discussion on carbon fiber reinforced resin matrix composites[J].Chemical Industry Times,2020,34(12):25-27,36.(in Chinese)

    • [27] ZHANG X,SUN T,LEI Y,et al.Synergistically optimizing interlaminar behavior of cfrp composites by simultaneously applying amino-rich graphene oxide to carbon fiber and epoxy matrix[J].Composites Part A:Applied Science And Manufacturing,2021:106372.

    • [28] 杨毕肖,宋鹏,黄太红,等.热处理对多层复合增韧涂层的微观结构及力学性能的影响[J].中国表面工程,2022,35(4):65-74.YANG Bishao,SONG Peng,HUANG Taihong,et al.Effect of heat treatment on the microstructure and mechanical properties of multilayer composite toughened coatings[J].China Surface Engineering,2022,35(4):65-74.(in Chinese)

    • [29] QUARESIMIN M,SCHULTE K,ZAPPALORTO M,et al.Toughening mechanisms in polymer nanocomposites:from experiments to modelling[J].Composites Science & Technology,2016,123(8):187-204.

    • [30] KILICOGLU M,BAT E,GUNDUZ G,et al.Fibers of thermoplastic polymer blends activate multiple interlayer toughening mechanisms[J].Composites,Part A.Applied Science And Manufacturing,2022(158):158.

    • [31] LANGE,F F.The interaction of a crack front with a second-phase dispersion[J].Philosophical Magazine,1970,22(179):0983-0992.

    • [32] RM A,MAN A,HSB C,et al.Mode-II fatigue response of as4/8552 carbon/epoxy composite laminates interleaved by electrospun nanofibers[J].Thin-Walled Structures,2020,106811:1-12.

    • [33] CHENG Q,FANG Z,XU Y,et al.Morphological and spatial effects on toughness and impact damage resistance of paek-toughened bmi and graphite fiber composite laminates[J].Chinese Journal of Aeronautics,2009,22(1):87-96.

  • 手机扫一扫看