en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

唐福康,男,1999年出生。主要研究方向为复合材料的结构仿真模拟与优化设计。E-mail: tangfukang@nimte.ac.cn

茅东升,男,1970年出生,博士,研究员,博士研究生导师。主要研究方向为复合材料/纳米复合材料及装备设计、表界面、性能调控、制备与应用。E-mail: maodongsheng@nimte.ac.cn

通讯作者:

茅东升,男,1970年出生,博士,研究员,博士研究生导师。主要研究方向为复合材料/纳米复合材料及装备设计、表界面、性能调控、制备与应用。E-mail: maodongsheng@nimte.ac.cn

中图分类号:P751

DOI:10.11933/j.issn.1007-9289.20240102002

参考文献 1
MAGNUCKI K,JASION P,RODAK M.Strength and buckling of an untypical dished head of a cylindrical pressure vessel[J].International Journal of Pressure Vessels and Piping,2018,161:17-21.
参考文献 2
ZHANG J D,ZHANG F X,GUO L F,et al.Chronic alcohol administration affects purine nucleotide catabolism in vivo[J].Life Sciences,2017,168:58-64.
参考文献 3
SMITH C S.Design of submersible pressure hulls in composite materials[J].Marine Structures,1991,4(2):141-182.
参考文献 4
王浩杰,崔志健,王向东.深海耐压舱结构设计[J].中国科技纵横,2017,(13):48-49.WANG Haojie,CUI Zhijian,WANG Xiangdong.Deep-sea pressure chamber structural design[J].China Science and Technology Review,2017,(13):48-49.(in Chinese)
参考文献 5
BŁACHUT J.Buckling of axially compressed cylinders with imperfect length[J].Computers & Structures,2010,88(5):365-374.
参考文献 6
FATEMI S M,SHOWKATI H,MAALI M.Experiments on imperfect cylindrical shells under uniform external pressure[J].Thin-Walled Structures,2013,65:14-25.
参考文献 7
KHAMLICHI A,BEZZAZI M,LIMAM A.Buckling of elastic cylindrical shells considering the effect of localized axisymmetric imperfections[J].Thin-Walled Structures,2004,42(7):1035-1047.
参考文献 8
李军,刘甲秋,陈浩然,等.深海复合材料耐压壳体研制[J].纤维复合材料,2020,37(3):64-68.LI Jun,LIU Jiaqiu,CHEN Haoran,et al.Development of deep-sea composite material pressure hull[J].Fiber Reinforced Plastics/Composites,2020,37(3):64-68.(in Chinese)
参考文献 9
CARVELLI V,PANZERI N,POGGI C.Buckling strength of GFRP under-water vehicles[J].Composites Part B:Engineering,2001,32(2):89-101.
参考文献 10
ÖZBEK Ö.Axial and lateral buckling analysis of kevlar/epoxy fiber-reinforced composite laminates incorporating silica nanoparticles[J].Polymer Composites,2021,42(3):1109-1122.
参考文献 11
DAVIES K,GOUGH C,KING E,et al.Single best answer questions for the final FFICM[M].Cambridge University Press,2016.
参考文献 12
WEI R,PAN G,JIANG J,et al.An efficient approach for stacking sequence optimization of symmetrical laminated composite cylindrical shells based on a genetic algorithm[J].Thin-Walled Structures,2019,142:160-170.
参考文献 13
IMRAN M,SHI D,TONG L,et al.Design optimization of composite submerged cylindrical pressure hull using genetic algorithm and finite element analysis[J].Ocean Engineering,2019,190:106443.
参考文献 14
XING J,GENG P,YANG T.Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure[J].Composite Structures,2015,131:868-877.
参考文献 15
MAHDY W M,ZHAO L,LIU F,et al.Buckling and stress-competitive failure analyses of composite laminated cylindrical shell under axial compression and torsional loads[J].Composite Structures,2021,255:112977.
参考文献 16
IFAYEFUNMI O,BLACHUT J.Combined stability of unstiffened cones-theory,experiments and design codes[J].International Journal of Pressure Vessels and Piping,2012,93-94:57-68.
参考文献 17
王鹏飞,江亚彬,宋江,等.深海用复合材料耐压壳体结构设计方法研究[J].复合材料科学与工程,2020(11):49-53.WANG Pengfei,JIANG Yabin,SONG Jiang,et al.Research on structural design method of composite material pressure hull for deep-sea applications[J].Advanced Composite Materials,2020(11):49-53.(in Chinese)
参考文献 18
GRAHAM D.Composite pressure hulls for deep ocean submersibles[J].Composite Structures,1995,32(1):331-343.
参考文献 19
ZUO X,ZHANG J,TANG W,et al.Buckling behavior of steel and steel-composite cylinders under external pressure[J].Thin-Walled Structures,2022,181:110011.
参考文献 20
ZHANG X,LI Z,WANG P,et al.Experimental and numerical analyses on buckling and strength failure of composite cylindrical shells under hydrostatic pressure[J].Ocean Engineering,2022,249:110871.
参考文献 21
苏祖君,梁国忠,曾金芳,等.树脂基复合材料湿法缠绕成型研究进展[J].玻璃钢/复合材料,2005(1):46-49.SU Zujun,LIANG Guozhong,ZENG Jinfang,et al.Research progress on wet filament winding forming of resin-based composite materials[J].Fiberglass/Composites,2005,(1):46-49.(in Chinese)
参考文献 22
张洪彬,徐会希.球柱壳耐压舱体极限承载力研究[J].海洋工程,2022,40(2):154-161.ZHANG Hongbin,XU Huixi.Research on the ultimate bearing capacity of spherical shell pressure hulls[J].Ocean Engineering,2022,40(2):154-161.(in Chinese)
参考文献 23
TAN S C,PEREZ J.Progressive failure of laminated composites with a hole under compressive loading[J].Journal of Reinforced Plastics and Composites,1993,12(10):1043-1057.
参考文献 24
DONADON M V,IANNUCCI L,FALZON B G,et al.A progressive failure model for composite laminates subjected to low velocity impact damage[J].Computers & Structures,2008,86(11):1232-1252.
参考文献 25
CAMANHO P P,MATTHEWS F L.A progressive damage model for mechanically fastened joints in composite laminates[J].Journal of Composite Materials,1999,33(24):2248-2280.
目录contents

    摘要

    耐压舱因其高的空间利用率、强大的承载能力以及易于制造等特性,在深海航行器中得到广泛应用。为有效提升深海航行器的容重比,耐压舱材料的选择成为研究重点之一。采用有限元方法对钛合金和钛合金-碳纤维复合材料耐压舱在静水压作用下的失效行为进行研究。在保证耐压舱壁厚相同的情况下,研究了钛合金层及复合材料层厚度的不同比例对耐压舱结构强度的影响。计算结果表明,复合材料耐压舱的临界失稳载荷对比钛合金耐压舱最高可提升 44.8%。复合材料层的加入还能够显著提升耐压舱的爆破强度,并降低整体的重量。然而,钛合金层过薄会降低强度,而钛合金层厚度与复合材料层厚度相近时强度提升最为显著。此外,还进行了铺层优化的相关研究。通过经典层合板理论对复合材料层进行强度预测,并将计算过程通过 Matlab 程序语言进行表达,得到了铺层优化程序。将程序计算结果与有限元方法计算结果进行对比,两者结果符合得很好。通过计算证明了复合材料层的加入能显著提升耐压舱的强度,并减轻耐压舱的重量。还设计出一种复合材料铺层优化程序,可有效提升复合材料铺层优化的效率。从理论分析到实际应用,均为耐压舱的设计提供了一定的经验。

    Abstract

    This study focuses on the pressure hull structures of deep-sea submersibles. These structures ensure the safety, stability, and continuous operation of vehicles in challenging underwater environments. The cylindrical pressure hull, known for its high spatial efficiency, robust load-bearing capacity, mature design theory, and ease of manufacturing, is widely adopted in deep-sea submersible applications. Given the pressing need to improve the buoyancy-to-weight ratios of underwater vehicles, the selection of materials for pressure hulls has become a critical aspect of submersible design. Pressure hull materials can be broadly categorized into metal and nonmetal materials. Titanium alloys, which are technically mature metals, are commonly used owing to their superior properties. However, metallic materials are susceptible to corrosion in seawater and can significantly increase the overall weight of underwater vehicles. Nonmetal materials, typically fiber-reinforced composite materials, offer advantages such as high specific strength, high specific modulus, corrosion resistance, and design flexibility. Hence, such materials are widely used in cylindrical pressure structures. However, the fabrication of pressure hulls using pure composite materials is challenging, and the low ductility of the composite materials is not conducive to the arrangement of internal equipment within the submersible hull. Metal–composite structures combine the strengths of both materials, as the metal layer provides excellent ductility and the external composite layer enhances safety and reduces overall weight. Thus, metal–composite structures have become a subject of extensive research. Moreover, metal-composite pressure hull structures exhibit superior strength under external pressure. This study specifically explores the structural and performance aspects of titanium alloys and composite pressure hulls. Moreover, this research employs modeling and finite element analyses to investigate the impacts of different layer thickness ratios of the metal and composite materials on the strength of the pressure hull. The finite element model incorporates three-dimensional solid modeling to simulate real loading conditions using precise boundary conditions. Additionally, this study involved the practical fabrication of composite pressure hulls using a wet winding process that was followed by underwater burst tests conducted alongside titanium alloy pressure hulls. The analysis included both buckling and strength analyses conducted using the finite element method. The buckling analysis was divided into linear and post-buckling analyses. In the linear buckling analysis, applying a pressure of 1 MPa to simulate the external surface of the pressure hull revealed that buckling primarily occurs in the cylindrical section, with both the composite and titanium alloy layers playing crucial roles. However, linear buckling analyses, which predict the theoretical buckling strengths of ideal elastic bodies, do not consider material nonlinearity or structural defects. The introduction of first-order modal displacements for the nonlinear buckling analysis indicates that the critical buckling load gradually increases with an increase in the number of composite layers. These results are attributable to the higher stiffness of the composite layers, which makes the buckling of the pressure hull more challenging. However, the critical buckling load decreases with a further increase in the number of composite layers. This decrease occurs because the large span of the two end caps makes the thickness variation significantly affect the stability, indicating that the titanium alloy layer should not be too thin. Overall, the addition of composite layers significantly enhances the critical buckling load of the pressure hull, which thereby emphasizes the importance of ensuring the appropriate thickness of the titanium alloy layer. Strength analyses utilize static/general analytical steps to simulate a 60 MPa external pressure environment. A material failure analysis employing the Hashin failure criterion indicated that composite pressure hulls exhibited higher strength and reduced weight under identical conditions. Similar to the buckling analysis results, the highest strength was achieved when the thicknesses of the composite and titanium alloy layers were comparable. However, an excessively thin metal layer reduces the overall hull strength. In underwater burst tests, the buckling results aligned well with the theoretical calculations for titanium alloy pressure hulls. However, the experimental results for the composite pressure hulls deviated significantly from the calculations, suggesting that the low bond strength between the titanium alloy and carbon fiber composite layers may lead to delamination and rapid failure under high pressure. Future studies should focus on addressing these issues. Furthermore, recognizing that pressure hulls under external pressure bear both axial and radial loads in composite layers, this study proposes the introduction of helical winding layers to replace circumferential winding layers. To fully exploit the performance advantages of carbon fiber composite materials, a MATLAB program was developed based on classical laminated plate theory. The program calculates the layer strength coefficients and optimizes the design of the helical layer angles and thickness distribution. The validation of the program’s efficiency and optimization results indicates that the layering approach achieves the highest strength within the 30°-40° angle range with a moderate ratio between the circumferential and helical layers. Finite element analysis results further validated the optimization results, thus confirming the effectiveness of introducing helical winding layers in enhancing the strength of pressure hull structures. This comprehensive study serves as a beacon in the field of deep-sea submersible technology by providing invaluable insights into the intricacies of pressure hull design. From theoretical analyses to practical applications and innovative design proposals, this research not only deepens our understanding of pressure hull behavior but also charts a course for future advancements in underwater vehicle technology.

  • 0 前言

  • 随着人类对海洋的不断开发,水下航行器在海洋勘探和海底作业等方面起着越来越重要的作用[1]。耐压舱可为深海航行器提供干燥密闭的空间,保障其能够安全、稳定和持续地工作,是深海航行器必不可少的承压部件[2-4]。圆柱形耐压舱结构因其高空间利用率、出色的承载能力、成熟的设计理论以及易于制造等优点而被广泛采用。

  • 耐压舱材料的选择与水下航行器的容重比等关键性能紧密相关,随着下潜深度需求的增加,耐压舱结构强度也需随之提升,相应地,深海航行器的质量也在不断增加。因此,为提高水下航行器的容重比,轻质、高强的耐压舱结构体是需要实现的关键目标。耐压舱材料的选择可分为金属材料和非金属材料。金属材料一般为技术相对成熟的钛合金,但钛合金不耐海水腐蚀,且会明显提升深海航行器的整体重量[5-7]。非金属材料一般为纤维增强复合材料,复合材料具有高的比强度和比刚度[8-10]、耐腐蚀[11-12]、设计灵活[13]等优点,被广泛用于圆柱承压结构中[14-15]。然而,纯复合材料的耐压舱制备难度高,且复合材料的延展性差[16],这不利于深海航行器筒体内部的设备布置。

  • 金属-复合材料耐压舱结构由于同时具备两者的优点,可以较好地解决上述问题。外部的复合材料层可以提高结构的安全性和耐腐蚀性,同时降低整体重量[17];金属层的良好延展性则有利于内部设备的布置。GRAHAM[18]对不同厚度的碳纤维增强环氧树脂基复合材料进行了一系列的试验和有限元分析,发现薄壁圆柱体的屈曲压力可通过有限元分析准确预测;ZUO 等[19]研究了金属-复合材料耐压舱在外压作用下的屈曲行为,结果表明,通过在金属耐压舱上包覆复合材料显著提升了耐压舱的强度,且试验数据和数值分析结果吻合较好;ZHANG 等[20] 对三种不同铺层顺序的复合材料耐压舱进行了屈曲和破坏强度的研究,并建立了有限元模型来预测屈曲和破坏强度,有限元结果与试验吻合的较好。结果表明,铺层角度和铺层顺序对临界失稳载荷和破坏压力影响较大。

  • 有限元方法虽能准确预测复合材料的失效行为以及结构强度,但在参数化研究和结构优化方面效率很低。因此,若能使用理论计算的方法进行强度预测,并运用编程语言将其表达,则能够显著提升结构优化设计的效率。

  • 本文通过有限元方法研究了钛合金以及钛合金-碳纤维复合材料耐压舱在外压作用下的屈曲行为以及 60 MPa 外压下的结构强度。结果表明,在同样的筒身直径和壁厚的情况下,钛合金-碳纤维复合材料耐压舱的强度要显著高于钛合金耐压舱,且重量更小。此外,还通过数值计算的方法,实现了对复合材料铺层的高效率优化。

  • 1 耐压舱结构与建模

  • 1.1 耐压舱结构

  • 复合材料耐压舱(Composite material pressure hull,CPH)结构以金属和复合材料结合的方式进行设计,外部复合材料层为碳纤维增强聚合物,内层为钛合金。为研究复合材料层对耐压舱承载能力的影响,以钛合金耐压舱(Titanium alloy pressure hull,TPH)为对比对象,在保证两种类型的耐压舱的筒身内径和总壁厚相同的情况下进行失效分析。除此之外,CPH 中复合材料层和钛合金层厚度的比例对其强度的影响,也是本文的关注对象。耐压舱结构与设计参数如图1 所示,筒身长 L=360 mm,筒身半径 R=75 mm,法兰直径 D=200 mm,法兰厚度 h=20 mm。其中 tm为 TPH 金属层厚度,tmc为 CPH 的金属层厚度,tc 为复合材料层厚度,具体数据见表1。

  • 图1 耐压舱结构及参数

  • Fig.1 Pressure hull structural parameters

  • 表1 各耐压舱的壁厚参数

  • Table1 Wall thickness parameters of each pressure hull

  • CPH 的制备过程需用到纤维缠绕技术中的湿法缠绕技术,该方法简单易行,能以较高的效率在筒体上缠绕一定厚度的纤维[21]。在缠绕开始之前,先对钛合金内胆筒身的外表面进行打磨,再用丙酮清洗掉杂质。缠绕纤维选用 T700 碳纤维,基体材料为环氧树脂。纤维的缠绕角度与筒身轴向呈近 90°的夹角,这种缠绕方式称为环向缠绕。根据复合材料层厚度需求,缠绕不同层数的纤维。缠绕进程结束后,舱体维持转动,使树脂浸润均匀,随后用真空袋包住舱体,通过真空泵抽出复合材料层内部的空气,得到更好的结合性能。最终,CPH 在真空烘箱中固化成型,固化后的复合材料层的力学性能如表2 所示,其中 XtXcYtYcZtZc 分别为复合材料层三个方向上的拉伸强度极限和压缩强度极限,S 为剪切强度极限,E 为弹性模量,G 为剪切模量。

  • 表2 T700 碳纤维复合材料性能参数

  • Table2 Performance parameters of T700 carbon fiber composite material

  • 1.2 有限元模型

  • 采用有限元方法对耐压舱的临界失稳载荷和 60 MPa 外压的受载情况进行分析,有限元模型在商用软件 ABAQUS 中构建。为保证结果更接近实际,对耐压舱进行 1∶1 三维实体建模,复合材料层同样使用三维实体单元而非壳单元。在定义复合材料层性质时,认为每层的厚度为 0.125 mm,纤维方向与轴向呈 90°夹角。网格模型均使用 C3D8R 单元,并保证筒身段有较大的网格密度,纤维铺层方式与有限元模型如图2 所示。

  • 图2 复合材料层铺层方式

  • Fig.2 Composite material layer laying method

  • 进行屈曲分析和强度分析时,模型的边界条件和加载方式一致,均为一端盖固支,外表面施加均匀压强,区别仅在于施加压强的值不同。耐压舱的有限元模型如图3 所示,模型的边界条件和加载方式见图4。

  • 图3 耐压舱有限元模型

  • Fig.3 Finite element model of the pressure hull

  • 图4 模型的边界条件及加载方式

  • Fig.4 Boundary conditions and loading configuration of the model

  • 2 失效分析

  • 2.1 屈曲分析

  • 屈曲是指结构件在承受逐渐增大的载荷的过程中出现位移徒增而载荷基本不变的现象,当载荷达到某一临界点时,结构形态将突然跳至另一平衡态,材料未发生破坏却失去了承载能力。

  • ABAQUS 中屈曲分析包括线性和非线性屈曲分析。线性屈曲分析用于预测理想弹性体的理论屈曲强度,未考虑材料的非线性和结构缺陷,计算时间短,主要用于大致预测屈曲形态,也可用于对结构的缺陷敏感性进行前期准备。非线性屈曲分析则考虑了材料的塑性和大挠度等情况,计算结果更加接近实际[22]

  • 线性屈曲分析情况下,临界失稳载荷等于计算所得的一阶特征值乘以设定的载荷,因此载荷的设定不会影响临界失稳载荷的计算。在线性屈曲分析时,对耐压舱外表面施加 1 MPa 的压强,计算结果如图5 所示。可以看出,屈曲位置均发生在筒身段,钛合金耐压舱的失效波形数为 3,复合材料耐压舱的失效波形数均为 2,临界失稳载荷并未随着复合材料层数的增加呈线性变化,说明金属层和复合材料层在对抗屈曲时均发挥着重要作用。

  • 图5 耐压舱的失稳表现及一阶特征值:(a)TPH;(b)CPH1;(c)CPH2;(d)CPH3;(e)CPH4;(f)CPH5

  • Fig.5 Buckling behavior and first eigenvalue of the pressure hull: (a) TPH; (b) CPH1; (c) CPH2; (d) CPH3; (e) CPH4; (f) CPH5

  • 在线性屈曲分析的基础上,引入一阶模态下的位移偏差作为初始缺陷的参考,缺陷因子取厚度的 2%,采用 Riks 法进行非线性屈曲分析,载荷数值变为对应一阶特征值大小。通过非线性屈曲分析得到的临界失稳载荷比线性屈曲分析的结果更加保守,因此常采用非线性屈曲的计算结果作为参考,非线性屈曲分析的结果如图6 所示。

  • 随着复合材料层数的增加,临界失稳载荷逐渐增大,这是因为复合材料层的刚度更大,这让耐压舱的屈曲变得困难。相较于 TPH,CPH3 的临界失稳载荷提升了 44.8%。

  • 此时的金属层和复合材料层厚度相近,说明当两者厚度接近时,耐压舱能够得到较好的抗屈曲失稳的性能。但之后的临界失稳载荷开始下降,CPH5 的临界失稳载荷相较于 TPH 下降了 7.4%,这是因为两端盖跨距较大,材料厚度的变化会显著作用于其稳定性,意味着钛合金层的厚度不宜过薄。由结果可知,复合材料层的加入,能够明显提升耐压舱的临界失稳载荷,但也应保证钛合金层有适当的厚度,过薄的钛合金层会使临界失稳载荷降低。

  • 图6 各耐压舱的临界失稳载荷

  • Fig.6 Critical buckling loads of each pressure hull

  • 2.2 强度分析

  • 采用 Static/General 分析步来计算耐压舱强度,在耐压舱外表面施加 60 MPa 的压强,以模拟深海下的工作环境。在强度失效分析中,编写了用户子程序 USDFLD,用于计算任意节点的应力和材料失效后的刚度退化。研究采用 Hashin 破坏准则作为材料破坏准则,以首层破坏作为复合材料层破坏判断准则。Hashin 准则可表示为:

  • 纤维拉伸失效(σ11 ≥ 0):

  • Fff=σ11Xt2+σ12S122+σ13S132=1
    (1)
  • 纤维压缩失效(σ11 <0):

  • Ffc=σ11Xc2=1
    (2)
  • 基体拉伸失效(σ22 + σ33 ≥ 0):

  • Fmt=1YT2σ22+σ332+1S232σ232-σ22σ33+1S122σ122+σ312=1
    (3)
  • 基体压缩失效(σ22 + σ33 <0):

  • Fmc=σ22+σ33YcYc2S232-1+σ22+σ332S232+1S232σ232-σ22σ33+1S122σ122+σ312=1
    (4)
  • 式中,σij 为应力张量的分量。

  • 当任意一种失效模式的指数大于等于 1 时,说明失效发生。当部分单元的应力满足某一失效准则后,损伤会导致单元的承载能力下降,材料的性能会发生退化。退化程度一般通过对材料弹性常数的值进行不同程度的折减来表现,根据不同的失效类型将相应的弹性常数乘以一定的系数[23-25],本文使用的刚度退化准则如表3 所示。

  • 表3 材料退化方式

  • Table3 Material degradation modes

  • 在计算结束后,分析受载条件下的结构响应,通过对比钛合金层的最大应力与其破坏强度 (980 MPa),来判断钛合金层是否失效;通过观察 SDV1、SDV2、SDV3、SDV4 是否达到 1,来判断复合材料层是否失效,他们分别依次代表 Hashin 准则中的 4 种失效判据。

  • 图7 显示该计算条件下金属部分的应力分布情况,可以看出筒身段是其脆弱的部分,最大应力一般出现在筒身段靠近两端盖的部分。随着钛合金层厚度的不断减小,最大应力值在不断增大,除了 CPH3,其具有最小的应力值,这种特殊情况与屈曲分析结果形成良好的对应,说明当钛合金层和复合材料层厚度相近时,耐压舱结构强度提升最大。除了 CPH5,其他耐压舱金属层的最大应力均小于钛合金的破坏强度,同样证明钛合金层不能过薄。

  • 图7 60 MPa 外压下金属部分应力分布:(a)TPH;(b)CPH1;(c)CPH2;(d)CPH3;(e)CPH4;(f)CPH5

  • Fig.7 Stress distribution in the metal portion under external pressure of 60 MPa: (a) TPH; (b) CPH1; (c) CPH2; (d) CPH3; (e) CPH4; (f) CPH5

  • 图8 为不同复合材料层的应力对比结果,同样是筒身段较为脆弱。随着复合材料层厚度的增加,最大应力在不断减小,CPH3 也同样显示出其独特性,最大应力值最小。

  • 图8 60 MPa 外压下复合材料层应力分布:(a)CPH1;(b)CPH2;(c)CPH3;(d)CPH4;(e)CPH5

  • Fig.8 Stress distribution in the composite material layer under external pressure of 60 MPa: (a) CPH1; (b) CPH2; (c) CPH3; (d) CPH4; (e) CPH5

  • 图9显示CPH1的复合材料层的渐近失效情况,其 SDV1 至 SDV4 的值皆未出现大于等于 1 的情况,说明 CPH1 的复合材料层没有发生任何一种失效。由于 CPH1 的复合材料层最薄,应力最大,却无失效情况发生,故说明其他耐压舱的复合材料层也未出现失效,均能在 60 MPa 外压下保证强度需求。

  • 图9 CPH1 复合材料层的失效情况

  • Fig.9 Failure scenario of the CPH1 composite material layer

  • 结合钛合金层和复合材料层的分析结果,仅有 CPH5 的金属层出现失效,因此除 CPH5,其他复合材料耐压舱均能承受 60 MPa 的载荷,说明金属层不可设计的过薄,当金属层与复合材料层厚度接近时,耐压舱的强度最为理想。复合材料耐压舱通过合理的设计,其结构强度是远高于纯金属耐压舱的,并且复合材料耐压舱的重量也会明显低于钛合金耐压舱,因此通过钛合金-纤维增强聚合物复合的形式来设计耐压舱,是一种较为理想的方案。

  • 2.3 试验验证

  • 根据 TPH 以及 CPH3 的结构参数,制备了钛合金耐压舱以及钛合金-碳纤维复合材料耐压舱,作为水压爆破试验的试样,在相同的结构参数下,钛合金-碳纤维复合材料耐压舱的重量能够降低 12.8%。在水压爆破试验中,钛合金耐压舱成功在 60 MPa 水压下保压 15 min,继续加压至 63.2 MPa 时发生破坏,破坏结果如图10a 所示。可以看到钛合金耐压舱发生了屈曲失效,这与屈曲分析结果中的临界失稳载荷 70.8 MPa 相差 11%。而复合材料耐压舱在水压升至 58.3 MPa 时便已经破坏,结果如图10b。该结果与理论计算结果相差较大,推测是因钛合金与碳纤维复合材料层间结合强度低,当耐压舱在高压下出现分层,便会很快发生破坏。后续的研究将会重点关注这方面的问题。

  • 图10 耐压舱水压爆破试验结果

  • Fig.10 Hydrostatic burst test results of pressure hulls

  • 3 复合材料铺层优化

  • 耐压舱受外压情况下,筒身段复合材料层同时承受着轴向和径向载荷。但由于复合材料层是以环向缠绕的方式成型,轴向载荷几乎全部由基体承担,而径向载荷远低于该方向上纤维强度,未能充分发挥碳纤维复合材料的性能优势。因此,在保证碳纤维复合材料总层数不变的情况下,将一部分环向缠绕层替换为螺旋缠绕层。螺旋缠绕,即纤维缠绕角度与轴向呈一定夹角,而非接近 90°,从而让纤维能够同时承担一部分的轴向和径向载荷。选择螺旋层的角度,以及分配环向缠绕层和螺旋缠绕层的占比,是复合材料铺层优化的重点。但是复合材料层的力学性能和结构都十分复杂,直接进行有限元建模及数值分析会消耗大量的计算资源以及时间成本。基于上述问题,本文依据经典层合板理论,结合 Matlab 语言,编写了复合材料铺层优化程序,能够较好的提升铺层优化的效率。

  • 3.1 程序设计

  • 研究中的复合材料层可认为是薄板,因此可应用经典层合板理论进行问题分析。该理论做出以下假设:

  • (1)各单层的位移是连续的,铺层间没有滑移。

  • (2)各单层是等厚的。

  • (3)变形前垂直于中面的直线段,仍垂直于变形后中面。

  • 选择层合板的中面作为参考面,层合板中任意一层的应变为:

  • εxεyγs=εx0εy0γs0+zκxκyκs
    (5)
  • 式中,εx0εy0为板中面应变,γs0为板中面切应变; κxκy 为板中面弯曲挠曲率, κs 为板中面扭曲率;z 为各铺层的几何坐标参数。各铺层的正轴柔度矩阵为:

  • S=S11S120S21S22000S66
    (6)
  • S11=1E1,S12=-v21E2,S21=-v12E1,S22=1E2,S66=1G12
    (7)
  • 式中,E1E2G12v12=v21,是复合材料的工程常数。各铺层的正轴刚度矩阵为:

  • Q=S-1
    (8)
  • 但通常情况下材料坐标与全局坐标并不重合,需将材料的正轴柔度矩阵和正轴刚度矩阵进行变换,使其在全局坐标系下适用。需要用到的变换矩阵为:

  • T=m2n22mnn2m2-2mn-mnmnm2-n2
    (9)
  • T-1=m2n2-2mnn2m22mnmn-mnm2-n2
    (10)
  • 式中,m=cosθn=sinθ

  • 则全局坐标下各铺层的偏轴柔度矩阵和偏轴刚度矩阵为:

  • S¯=T-1ST
    (11)
  • Q¯=S¯-1
    (12)
  • 层合板横截面上单位宽度的内力和内力矩为:

  • (13)
  • (14)
  • 上式矩阵展开后有:

  • (15)
  • 式中包含拉伸刚度系数矩阵 A、耦合刚度系数矩阵 B、弯曲刚度系数矩阵 D。分别为

  • (16)
  • (17)
  • (18)
  • 各刚度矩阵的刚度系数计算公式为:

  • Aij=k=1n Q-ijkzk+1-zk
    (19)
  • Bij=12k=1n Q-ijkzk+12-zk2
    (20)
  • Dij=13k=1n Q-ijkzk+13-zk3
    (21)
  • 式中,zk 为单层 k 到参考层之间的距离。则层合板中面应变和中面弯曲率可表达为:

  • (22)
  • 再通过式(5)可以求得任一铺层的应变 εxys,则任一铺层的应力为:

  • σxys=Q-εxys
    (23)
  • 最终可以求得各铺层在材料正轴下的应力:

  • σ126=Tσxys
    (24)
  • 结合材料的强度参数,采用 Hashin 失效准则进行失效预测,通过预测也可以知道该层合板的强度极限。图11 显示了通过该理论开发的 Matlab 程序解析流程图。

  • 图11 Matlab 程序流程图

  • Fig.11 Matlab program flowchart

  • 3.2 铺层设计及验证

  • 通过使用优化设计的程序,计算出 CPH4 铺层方式下,复合材料层合板的极限载荷。以该结果为参考对象,计算了两种设计方案下各铺层相对于 CPH4 铺层方式的强度系数,分别用于研究螺旋层角度的选择和厚度的分配对铺层强度的影响,并结合有限元方法,验证该优化程序的可行性。方案一以[9010/(±θ10/9010]方式铺层,经程序计算,各铺层的强度系数见表4。

  • 表4 [9010/(±θ10/9010]方案下各铺层强度系数

  • Table4 Strength coefficients for each ply in [9010/ (±θ) 10/9010] configuration

  • 由图12 我们可以明显看出,当 θ 在 37.5°附近时,该铺层方案能够达到最高的强度系数。但耐压舱并非仅有复合材料层,而是金属-复合材料结合而成,在此情况下是否仍然符合这个规律仍需验证。因此,建立该铺层方案下的复合材料耐压舱的有限元模型,施加 60 MPa 外压,分析其承载情况。经有限元分析后,各铺层情况下金属层的最大应力均小于极限载荷,说明该耐压舱金属层不会发生破坏。

  • 图12 [9010/(±θ10/9010] 方案下铺层强度与 θ 的关系

  • Fig.12 Relationship between ply strength and θ in the [9010/ (±θ) 10/9010] configuration

  • 复合材料层的破坏情况通过 Hashin 失效准则的失效判据指数进行判断,由于复合材料层整体仅受压,因此仅需关注 SDV8 和 SDV10,它们分别代表纤维压缩失效指数和基体压缩失效指数的数值。

  • 纤维在 1 方向的强度是富余的,在 2 和 3 方向的强度较低,易发生破坏,若复合材料层合板发生破坏,应当首先出现在 90°层,因此仅需判断 90° 层的 SDV8 和 SDV10 数值即可。以首层 90°层为例,计算结果如图13、14 所示,可以看到,纤维压缩的最大应力出现在筒身段,分布均匀。基体压缩的最大应力出现在筒身与端盖交界处,但不论是 SDV8 还是 SDV10,最大值均处在一个小于 1 的较低的范围内,因此均未发生失效。

  • 图13 不同 θ 值情况下首层 90°层的 SDV8 的值

  • Fig.13 Values of SDV8 for the first 90°ply at different θ values

  • 图14 不同 θ 值情况下首层 90°层的 SDV10 的值

  • Fig.14 Values of SDV10 for the first 90°ply at different θ values

  • 由图15 可明显看出,SDV8 会随着 θ 的增大而减小,这是因为随着角度趋近 90°,螺旋层纤维能更有效地分担径向载荷。SDV10 则是随着 θ 的增大,先减小后增大,在 θ= 35°时达到最低值,由于螺旋层纤维需同时承担轴向载荷和径向载荷,所以纤维角度不宜过大或过小。在该计算条件下,复合材料失效均为基体失效,因此 SDV10 值的最低点即代表其整体强度最高点,这与程序计算的结果非常接近。

  • 方案二为 [90n/(±45)20-n/90n],以同样的方式进行计算,程序的计算结果如表5、图16。可以看到,当 n=8 时,复合材料层强度达到最高。

  • 图15 SDV8 和 SDV10 最大值随 θ 变化趋势图

  • Fig.15 Trend of maximum values for SDV8 and SDV10 with θ variation

  • 表5 [90n/(±45)20-n/90n] 方案下各铺层强度系数

  • Table5 Strength coefficients for each ply in [90n/ (±45) 20-n/90n] configuration

  • 图16 [90n/(±45)20-n/90n]方案下各铺层强度与 n 的关系

  • Fig.16 Relationship between ply strength and n in the [90n/ (±45) 20-n/90n] configuration

  • 有限元计算的 SDV 值分布情况与方案一结果近似,同样以首层 90°层为分析对象,从图17 可以看到,SDV8 的最大值随着 n 的增大,即 90°层的增多,在逐渐减小,无失效情况发生。SDV10 的最大值则在 n=8 时达到最小,即此时的复合材料层强度最高,这与优化程序的计算结果符合得很好。

  • 图17 SDV8 和 SDV10 最大值随 n 变化趋势图

  • Fig.17 Trend of maximum values for SDV8 and SDV10 with n variation

  • 以上验证结果表面,该铺层优化程序可以高效地分析不同铺层方案下复合材料层的强度,并找到最佳的铺层设计。通过两种方案的计算结果可知,对于复合材料耐压舱,螺旋缠绕层的加入很有必要,通过合理的设计可以进一步提升整体强度。计算结果表明,螺旋缠绕角在 30°~40°范围内较为合适,此时螺旋层可以提供较多的轴向强度,同时也能承担一部分的径向载荷。而环向层和螺旋层的比例也不能失衡,螺旋层应略多于环向层。有限元分析的结果也验证了该优化程序的可行性。

  • 4 结论

  • 本文对纯金属耐压舱和金属-复合材料耐压舱在外部压力作用下的屈曲行为以及强度进行数值分析,还使用 MATLAB 软件编写复合材料铺层优化程序,以求高效地找到更优的结构设计参数。研究得到以下结论:

  • (1)随着复合材料层数的增加,临界失稳载荷呈先增大后减小的趋势,并在钛合金层厚度与复合材料层厚度相近时达到最大,此时的临界失稳载荷相较于钛合金耐压舱提升了 44.8%。且在 60 MPa 外压下,金属-复合材料耐压舱的强度显著高于纯金属耐压舱。这主要归因于复合材料的高比强度和高比刚度特性,他能够在保证结构轻量化的同时,有效提升耐压舱的抗屈曲能力。

  • (2)水压爆破试验中,钛合金耐压舱的破坏结果与有限元方法计算的结果相差 11%,符合的较好。但复合材料耐压舱的破坏压强低于预期,推测是由于钛合金与碳纤维复合材料的层间结合强度不足导致了分层。未来的研究可重点关注复合材料层和金属层之间的界面处理技术,选用合适的界面材料和设计理论以提高结合强度。

  • (3)使用铺层优化程序分析了两种铺层方案对复合材料层强度的影响,结果表明,当螺旋缠绕角在 30°~40°范围内,且螺旋缠绕层数略大于环向缠绕层数时,对复合材料层强度提升最大。这是因为螺旋缠绕层能够在一定程度上分担轴向载荷,并有效提升径向承载能力,从而提高耐压舱的整体强度,增强其抵抗外压的能力。有限元分析结果也验证了该优化程序的可行性,为耐压舱的优化设计提供了理论依据。

  • 参考文献

    • [1] MAGNUCKI K,JASION P,RODAK M.Strength and buckling of an untypical dished head of a cylindrical pressure vessel[J].International Journal of Pressure Vessels and Piping,2018,161:17-21.

    • [2] ZHANG J D,ZHANG F X,GUO L F,et al.Chronic alcohol administration affects purine nucleotide catabolism in vivo[J].Life Sciences,2017,168:58-64.

    • [3] SMITH C S.Design of submersible pressure hulls in composite materials[J].Marine Structures,1991,4(2):141-182.

    • [4] 王浩杰,崔志健,王向东.深海耐压舱结构设计[J].中国科技纵横,2017,(13):48-49.WANG Haojie,CUI Zhijian,WANG Xiangdong.Deep-sea pressure chamber structural design[J].China Science and Technology Review,2017,(13):48-49.(in Chinese)

    • [5] BŁACHUT J.Buckling of axially compressed cylinders with imperfect length[J].Computers & Structures,2010,88(5):365-374.

    • [6] FATEMI S M,SHOWKATI H,MAALI M.Experiments on imperfect cylindrical shells under uniform external pressure[J].Thin-Walled Structures,2013,65:14-25.

    • [7] KHAMLICHI A,BEZZAZI M,LIMAM A.Buckling of elastic cylindrical shells considering the effect of localized axisymmetric imperfections[J].Thin-Walled Structures,2004,42(7):1035-1047.

    • [8] 李军,刘甲秋,陈浩然,等.深海复合材料耐压壳体研制[J].纤维复合材料,2020,37(3):64-68.LI Jun,LIU Jiaqiu,CHEN Haoran,et al.Development of deep-sea composite material pressure hull[J].Fiber Reinforced Plastics/Composites,2020,37(3):64-68.(in Chinese)

    • [9] CARVELLI V,PANZERI N,POGGI C.Buckling strength of GFRP under-water vehicles[J].Composites Part B:Engineering,2001,32(2):89-101.

    • [10] ÖZBEK Ö.Axial and lateral buckling analysis of kevlar/epoxy fiber-reinforced composite laminates incorporating silica nanoparticles[J].Polymer Composites,2021,42(3):1109-1122.

    • [11] DAVIES K,GOUGH C,KING E,et al.Single best answer questions for the final FFICM[M].Cambridge University Press,2016.

    • [12] WEI R,PAN G,JIANG J,et al.An efficient approach for stacking sequence optimization of symmetrical laminated composite cylindrical shells based on a genetic algorithm[J].Thin-Walled Structures,2019,142:160-170.

    • [13] IMRAN M,SHI D,TONG L,et al.Design optimization of composite submerged cylindrical pressure hull using genetic algorithm and finite element analysis[J].Ocean Engineering,2019,190:106443.

    • [14] XING J,GENG P,YANG T.Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure[J].Composite Structures,2015,131:868-877.

    • [15] MAHDY W M,ZHAO L,LIU F,et al.Buckling and stress-competitive failure analyses of composite laminated cylindrical shell under axial compression and torsional loads[J].Composite Structures,2021,255:112977.

    • [16] IFAYEFUNMI O,BLACHUT J.Combined stability of unstiffened cones-theory,experiments and design codes[J].International Journal of Pressure Vessels and Piping,2012,93-94:57-68.

    • [17] 王鹏飞,江亚彬,宋江,等.深海用复合材料耐压壳体结构设计方法研究[J].复合材料科学与工程,2020(11):49-53.WANG Pengfei,JIANG Yabin,SONG Jiang,et al.Research on structural design method of composite material pressure hull for deep-sea applications[J].Advanced Composite Materials,2020(11):49-53.(in Chinese)

    • [18] GRAHAM D.Composite pressure hulls for deep ocean submersibles[J].Composite Structures,1995,32(1):331-343.

    • [19] ZUO X,ZHANG J,TANG W,et al.Buckling behavior of steel and steel-composite cylinders under external pressure[J].Thin-Walled Structures,2022,181:110011.

    • [20] ZHANG X,LI Z,WANG P,et al.Experimental and numerical analyses on buckling and strength failure of composite cylindrical shells under hydrostatic pressure[J].Ocean Engineering,2022,249:110871.

    • [21] 苏祖君,梁国忠,曾金芳,等.树脂基复合材料湿法缠绕成型研究进展[J].玻璃钢/复合材料,2005(1):46-49.SU Zujun,LIANG Guozhong,ZENG Jinfang,et al.Research progress on wet filament winding forming of resin-based composite materials[J].Fiberglass/Composites,2005,(1):46-49.(in Chinese)

    • [22] 张洪彬,徐会希.球柱壳耐压舱体极限承载力研究[J].海洋工程,2022,40(2):154-161.ZHANG Hongbin,XU Huixi.Research on the ultimate bearing capacity of spherical shell pressure hulls[J].Ocean Engineering,2022,40(2):154-161.(in Chinese)

    • [23] TAN S C,PEREZ J.Progressive failure of laminated composites with a hole under compressive loading[J].Journal of Reinforced Plastics and Composites,1993,12(10):1043-1057.

    • [24] DONADON M V,IANNUCCI L,FALZON B G,et al.A progressive failure model for composite laminates subjected to low velocity impact damage[J].Computers & Structures,2008,86(11):1232-1252.

    • [25] CAMANHO P P,MATTHEWS F L.A progressive damage model for mechanically fastened joints in composite laminates[J].Journal of Composite Materials,1999,33(24):2248-2280.

  • 参考文献

    • [1] MAGNUCKI K,JASION P,RODAK M.Strength and buckling of an untypical dished head of a cylindrical pressure vessel[J].International Journal of Pressure Vessels and Piping,2018,161:17-21.

    • [2] ZHANG J D,ZHANG F X,GUO L F,et al.Chronic alcohol administration affects purine nucleotide catabolism in vivo[J].Life Sciences,2017,168:58-64.

    • [3] SMITH C S.Design of submersible pressure hulls in composite materials[J].Marine Structures,1991,4(2):141-182.

    • [4] 王浩杰,崔志健,王向东.深海耐压舱结构设计[J].中国科技纵横,2017,(13):48-49.WANG Haojie,CUI Zhijian,WANG Xiangdong.Deep-sea pressure chamber structural design[J].China Science and Technology Review,2017,(13):48-49.(in Chinese)

    • [5] BŁACHUT J.Buckling of axially compressed cylinders with imperfect length[J].Computers & Structures,2010,88(5):365-374.

    • [6] FATEMI S M,SHOWKATI H,MAALI M.Experiments on imperfect cylindrical shells under uniform external pressure[J].Thin-Walled Structures,2013,65:14-25.

    • [7] KHAMLICHI A,BEZZAZI M,LIMAM A.Buckling of elastic cylindrical shells considering the effect of localized axisymmetric imperfections[J].Thin-Walled Structures,2004,42(7):1035-1047.

    • [8] 李军,刘甲秋,陈浩然,等.深海复合材料耐压壳体研制[J].纤维复合材料,2020,37(3):64-68.LI Jun,LIU Jiaqiu,CHEN Haoran,et al.Development of deep-sea composite material pressure hull[J].Fiber Reinforced Plastics/Composites,2020,37(3):64-68.(in Chinese)

    • [9] CARVELLI V,PANZERI N,POGGI C.Buckling strength of GFRP under-water vehicles[J].Composites Part B:Engineering,2001,32(2):89-101.

    • [10] ÖZBEK Ö.Axial and lateral buckling analysis of kevlar/epoxy fiber-reinforced composite laminates incorporating silica nanoparticles[J].Polymer Composites,2021,42(3):1109-1122.

    • [11] DAVIES K,GOUGH C,KING E,et al.Single best answer questions for the final FFICM[M].Cambridge University Press,2016.

    • [12] WEI R,PAN G,JIANG J,et al.An efficient approach for stacking sequence optimization of symmetrical laminated composite cylindrical shells based on a genetic algorithm[J].Thin-Walled Structures,2019,142:160-170.

    • [13] IMRAN M,SHI D,TONG L,et al.Design optimization of composite submerged cylindrical pressure hull using genetic algorithm and finite element analysis[J].Ocean Engineering,2019,190:106443.

    • [14] XING J,GENG P,YANG T.Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure[J].Composite Structures,2015,131:868-877.

    • [15] MAHDY W M,ZHAO L,LIU F,et al.Buckling and stress-competitive failure analyses of composite laminated cylindrical shell under axial compression and torsional loads[J].Composite Structures,2021,255:112977.

    • [16] IFAYEFUNMI O,BLACHUT J.Combined stability of unstiffened cones-theory,experiments and design codes[J].International Journal of Pressure Vessels and Piping,2012,93-94:57-68.

    • [17] 王鹏飞,江亚彬,宋江,等.深海用复合材料耐压壳体结构设计方法研究[J].复合材料科学与工程,2020(11):49-53.WANG Pengfei,JIANG Yabin,SONG Jiang,et al.Research on structural design method of composite material pressure hull for deep-sea applications[J].Advanced Composite Materials,2020(11):49-53.(in Chinese)

    • [18] GRAHAM D.Composite pressure hulls for deep ocean submersibles[J].Composite Structures,1995,32(1):331-343.

    • [19] ZUO X,ZHANG J,TANG W,et al.Buckling behavior of steel and steel-composite cylinders under external pressure[J].Thin-Walled Structures,2022,181:110011.

    • [20] ZHANG X,LI Z,WANG P,et al.Experimental and numerical analyses on buckling and strength failure of composite cylindrical shells under hydrostatic pressure[J].Ocean Engineering,2022,249:110871.

    • [21] 苏祖君,梁国忠,曾金芳,等.树脂基复合材料湿法缠绕成型研究进展[J].玻璃钢/复合材料,2005(1):46-49.SU Zujun,LIANG Guozhong,ZENG Jinfang,et al.Research progress on wet filament winding forming of resin-based composite materials[J].Fiberglass/Composites,2005,(1):46-49.(in Chinese)

    • [22] 张洪彬,徐会希.球柱壳耐压舱体极限承载力研究[J].海洋工程,2022,40(2):154-161.ZHANG Hongbin,XU Huixi.Research on the ultimate bearing capacity of spherical shell pressure hulls[J].Ocean Engineering,2022,40(2):154-161.(in Chinese)

    • [23] TAN S C,PEREZ J.Progressive failure of laminated composites with a hole under compressive loading[J].Journal of Reinforced Plastics and Composites,1993,12(10):1043-1057.

    • [24] DONADON M V,IANNUCCI L,FALZON B G,et al.A progressive failure model for composite laminates subjected to low velocity impact damage[J].Computers & Structures,2008,86(11):1232-1252.

    • [25] CAMANHO P P,MATTHEWS F L.A progressive damage model for mechanically fastened joints in composite laminates[J].Journal of Composite Materials,1999,33(24):2248-2280.

  • 手机扫一扫看