en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

许吉,男,1994年出生。主要研究方向为防腐、防冰等多功能表面涂层技术。E-mail: xuji2023@nimte.ac.cn

蓝席建,男,1979年出生,高级工程师,硕士研究生导师。主要研究方向为特种功能涂层研发及工程化应用。E-mail: lanxj@nimte.ac.cn

通讯作者:

蓝席建,男,1979年出生,高级工程师,硕士研究生导师。主要研究方向为特种功能涂层研发及工程化应用。E-mail: lanxj@nimte.ac.cn

中图分类号:TQ630

DOI:10.11933/j.issn.1007-9289.20231221002

参考文献 1
ABBAS M,SHAFIEE M.An overview of maintenance management strategies for corroded steel structures in extreme marine environments[J].Marine Structures,2020,71:102718.
参考文献 2
陈志宇,郭小平,水晓雪,等.苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J].中国表面工程,2022,35(2):24-34.CHEN Zhiyu,GUO Xiaoping,SHUI Xiaoxue,et al.Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J].China Surface Engineering,2022,35(2):24-34.(in Chinese)
参考文献 3
侯悦,田原,赵志鹏,等.海洋工程用铝合金的腐蚀与防护研究进展[J].表面技术,2022,51(5):1-14.HOU Yue,TIAN Yuan,ZHAO Zhipeng,et al.Corrosion and protection of aluminum alloy for marine engineering[J].Surface Technology,2022,51(5):1-14.(in Chinese)
参考文献 4
赵光瑞.海洋平台腐蚀控制措施应用进展[J].现代涂料与涂装,2023,26(4):31-34.ZHAO Guangrui.Progress in application of corrosion control measures for offshore platform[J].Modern Paint & Finishing,2023,26(4):31-34.(in Chinese)
参考文献 5
孔祥峰,张婧,姜源庆,等.船舶防腐蚀技术应用及研究进展[J].全面腐蚀控制,2014,28(10):17-20.KONG Xiangfeng,ZHANG Jing,JIANG Yuanqing,et al.Application and research progress of anti-corrosion technology for ships[J].Total Corrosion Control,2014,28(10):17-20.(in Chinese)
参考文献 6
ZHANG M,XU H,TAO M,et al.Coating performance,durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection[J].Cement and Concrete Composites,2022,129:104495.
参考文献 7
WANG X,REN J,LI Z,et al.Research progress of vapor phase corrosion inhibitors in marine environment[J].Environmental Science and Pollution Research,2022,29(59):88432-88439.
参考文献 8
SAJI V S.Progress in rust converters[J].Progress in Organic Coatings,2019,127:88-89.
参考文献 9
王鑫,朱庆军,侯保荣.水性锈面涂料的研究进展与发展趋势[J].材料保护,2021,54(11):140-150.WANG Xin,ZHU Qingjun,HOU Baorong.Research progress and development trend of waterborne surface-tolerant coatings[J].Materials Protection,2021,54(11):140-150.(in Chinese)
参考文献 10
冯艳斐,潘自平.转锈剂在水性带锈防腐涂料中的研究进展[J].涂料工业,2018,48(8):49-54.FENG Yanfei,PAN Ziping.Research progress of rust converter in waterborne anticorrosion coatings[J].Paint & Coatings Industry,2018,48(8):49-54.(in Chinese)
参考文献 11
LI W,FAN Z,LI X,et al.Improved anti-corrosion performance of epoxy zinc rich coating on rusted steel surface with aluminum triphosphate as rust converter[J].Progress in Organic Coatings,2019,135:483-489.
参考文献 12
GAO X,LV Y,MA H,et al.Novel high-performance and long-life anti-corrosion coating with rust conversion and self-healing characteristics based on waste biomass derived carbon nanosheets[J].Progress in Organic Coatings,2022,166:106820.
参考文献 13
CHEN Y,LI S,LIU Z,et al.Anticorrosion property of alcohol amine modified phosphoric and tannic acid based rust converter and its waterborne polymer-based paint for carbon steel[J].Coatings,2021,11(9):1091.
参考文献 14
FENG L,YUAN P.Corrosion protection mechanism of aluminum triphosphate modified by organic acids as a rust converter[J].Progress in Organic Coatings,2020,140:105508.
参考文献 15
李艳华,刘迎新,许烨.新型水性带锈防锈涂料的研究[J].涂料工业,2017,47(7):45-50.LI Yanhua,LIU Yingxin,XU Ye.Preparation of novel waterborne antirust coatings for rusty substrate[J].Paint & Coatings Industry,2017,47(7):45-50.(in Chinese)
参考文献 16
FENG Y.Synthesis of 3,4,5-trihydroxy-2-[(hydroxyimino)methyl] benzoic acid as a novel rust converter[J].Green Chemistry Letters and Reviews,2017,10(4):455-461.
参考文献 17
DIAZ B.The corrosion protection afforded by a commercial rust converter doped with graphene oxide[J].Electrochimica Acta,2020,342:136096.
参考文献 18
LEI Y.Water-based & eco-friendly & high-efficiency 3,4,5-Trihydroxybenzoic acid ester as a novel rust conversion agent and its polymer composites for enhanced surface anticorrosion[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,626:127065.
参考文献 19
GUO X,XU H,PU J,et al.Corrosion performance and rust conversion mechanism of graphene modified epoxy surface tolerant coating[J].Frontiers in Materials,2021,8:767776.
参考文献 20
LI Y,LEI B,GUO X.Influence of phosphoric acid on the adhesion strength between rusted steel and epoxy coating[J].Coatings,2021,11(2):246-260.
参考文献 21
LI Y,MA Y,ZHANG B,et al.Enhancement the adhesion between epoxy coating and rusted structural steel by tannic acid treatment[J].Acta Metallurgica Sinica(English Letters),2014,27(6):1105-1113.
参考文献 22
LIU W,ZHANG X,QIANG Y,et al.Ureidopyrimidinone-containing Poly(amino ester)for corrosion inhibition of mild steel in acidic medium[J].Materials Chemistry and Physics,2022,292:126818.
参考文献 23
周闻云,郭蓓,李冬冬,等.钢材用缓蚀剂研究进展[J].电镀与精饰,2023,45(3):83-89.ZHOU Wenyun,GUO Bei,LI Dongdong,et al.Research progress of corrosion inhibitor for steel[J].Plating and Finishing,2023,45(3):83-89.(in Chinese)
参考文献 24
THABET H K,EL-SHAMY O A A,ASHMAWY A M,et al.The impact of corrosion inhibitors in desalination systems[J].ACS Omega,2023,8(48):45224-45231.
参考文献 25
LI H,ZHANG Y,LI C,et al.Cutting fluid corrosion inhibitors from inorganic to organic:progress and applications[J].Korean Journal of Chemical Engineering,2022,39(5):1107-1134.
参考文献 26
魏佳煜,邱诗惠,赵海超,等.聚左旋多巴-SiO2 复合材料在 1 M HCl 中的缓蚀作用[J].中国表面工程,2022,35(2):55-62.WEI Jiayu,QIU Shihui,ZHAO Haichao,et al.Corrosion inhibition of polylevodopa-silica composite in 1 M HCl[J].China Surface Engineering,2022,35(2):55-62.(in Chinese)
参考文献 27
候家瑞,冯辉霞,谷一鸣,等.有机缓蚀剂对低碳钢的缓蚀性能研究进展[J].应用化工,2023,52(10):2900-2904.HOU Jiarui,FENG Huixia,GU Yiming,et al.Research progress on corrosion inhibition of low carbon steel by organic corrosion inhibitor[J].Applied Chemical Industry,2023,52(10):2900-2904.(in Chinese)
参考文献 28
LIU Z,FAN B,ZHAO J,et al.Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater:formation,interfacial release and protective mechanisms[J].Corrosion Science,2023,212:110957.
参考文献 29
QIANG Y,GUO L,LI H,et al.Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium[J].Chemical Engineering Journal,2021,406:126863.
参考文献 30
BRYCKI B,SZULC A.Gemini surfactants as corrosion inhibitors:A review[J].Journal of Molecular Liquids,2021,344:117686.
参考文献 31
QIANG Y,LI H,LAN X.Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment[J].Journal of Materials Science & Technology,2020,52:63-71.
参考文献 32
李永胜,黄从树,付琬璐,等.海洋防腐领域中有机缓蚀剂的研究进展[J].精细化工,2023,40(6):1161-1175.LI Yongsheng,HUANG Congshu,FU Wanlu,et al.Research progress on organic corrosion inhibitors for marine corrosion protection[J].Fine Chemicals,2023,40(6):1161-1175.(in Chinese)
参考文献 33
石浩,褚贵文,李正利,等.中空二氧化硅微球包覆 2-巯基苯并噻唑自修复涂层防腐性能[J].中国表面工程,2023,36(5):112-122.SHI Hao,CHU Guiwen,LI Zhengli,et al.Corrosion protection performance of a self-repairing coating with hollow mesoporous silica microspheres loaded with 2-mercaptobenzothiazole[J].China Surface Engineering,2023,36(5):112-122.(in Chinese)
目录contents

    摘要

    海洋环境金属构筑物表面易腐蚀、维护成本高以及保养困难,而普通低表面处理涂料功能单一,无法长效防腐,且缓蚀剂与水性涂料配方体系难以兼容。引入适量咪唑啉缓蚀剂与过量的自交联环氧发生预固化反应,提升涂层交联密度的同时具备缓蚀钝化功能,加上乙二胺四乙酸(EDTA)与金属底材的络合作用,制得一种具有高效强渗透、转锈和缓蚀功能的水性涂层材料。通过扫描电子显微镜(SEM)、激光共聚焦扫描显微镜(LSCM)、X 射线衍射仪(XRD)、拉曼光谱仪(Raman) 和 X 射线光电子能谱(XPS)等手段对转锈缓蚀低表面处理涂料的转锈性能和缓蚀机制进行初步探索。结果表明,金属基材表面的锈蚀产物在转锈剂和缓蚀剂的双重作用下快速形成稳定的“沉淀型”转化膜和钝化膜。拉曼和 XRD 显示,锈转化率达到 72.4%,转锈膜和钝化膜的协同保护使涂层具有长效防腐性能,3.5% NaCl 盐水浸泡试验 168 h 后附着力衰减值仅为 3.3%,耐中性盐雾 500 h 仍具有良好的防腐效果。新型低表面处理转锈缓蚀涂料施工便捷、可有效降低金属构筑物表面处理等级,同时减少涂层打磨带来的环境污染,提高施工效率,降低海洋环境下船舶和海洋平台等的运维成本,对于难以彻底表面处理的海洋环境金属材料的长寿命服役需求有着优异的工程应用前景。

    Abstract

    In the marine environment, the surfaces of metal structures are prone to corrosion, which leads to the common challenges of high maintenance costs and difficult upkeep. Conventional low surface treatment coatings typically offer limited functionality and mostly target superficial enhancements. These coatings often fall short in providing adequate long-term anti-corrosion protection. Whereas rust converters and corrosion inhibitors are effective solutions for treating surface rust and the corrosion protection of substrate surfaces, they encounter issues related to poor paint penetration and difficult compatibility with waterborne coating systems. This study focuses on the development of a novel low surface treatment coating that is capable of integrating long-term anti-corrosion properties, effective low surface treatment functionalities, and enhanced penetration capabilities. The novel coating formulation aims to harmonize the interplay between the rust converter, corrosion inhibitor, and waterborne coating to achieve synergistic, multifunctional benefits. By introducing a proper amount of imidazole corrosion inhibitor and an excessive self-crosslinking epoxy to initiate a pre-curing reaction, the coating’s crosslinking density and adhesion strength between the coating and substrate are significantly enhanced, which also breaks through the difficult challenge of compatibility between the corrosion inhibitor and waterborne coating formulation system. Moreover, through the complexation of EDTA with the metal substrate, the coating can form a stable “precipitation-type” passivation film to protect the substrate from corrosion. Furthermore, by adding a suitable amount of rust converter and a coupling agent, efficient rust conversion and strong penetration can be achieved. This innovative coating system represents a holistic approach by which to combat corrosion in marine environments, offering enhanced durability, multifunctional efficacy, and improved substrate protection via a carefully designed formulation strategy. The rust conversion performance and corrosion inhibition mechanism of the low surface treatment coatings were subjected to preliminary investigation via various analytical techniques, including scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM), X-ray diffraction (XRD), Raman spectrometry, and X-ray photoelectron spectroscopy (XPS). The results of microstructure and composition analyses before and after rust transformation reveal that the corrosion products on the rust surface of the metal substrate are effectively converted into a dense rust conversion film and passivation film under the dual action of the rust conversion agent and corrosion inhibitor, which successfully impedes the further occurrence of corrosion. The results of a quantitative XRD analysis show that the conversion rate of corrosion products reaches 72.4%, indicating that the coating has excellent rust transfer efficiency. The collaborative protection of the rust conversion film and passivation film gives the coating long-lasting anticorrosive performance. The test of neutral salt spray resistance shows that it still has a favorable anti-corrosion effect after 500 h of neutral salt spray resistance, indicating that the coating has excellent anti-corrosion properties. Moreover, these results prove that the two corrosion inhibitors both play a role in corrosion protection, indicating that they have excellent compatibility in waterborne coatings. The adhesion of the coating is effectively enhanced via the combination of the low surface treatment, strong penetration of the coupling agent, and improvement of the density inside and adhesion at the interface between the coating and substrate. Following a 168 h, 3.5% NaCl salt immersion test, the adhesion attenuation value is only 3.3%, effectively addressing the issues related to poor adhesion and difficult penetration encountered with the traditional low surface treatment coating. This novel low surface treatment coating for rust conversion and corrosion inhibition offers notable advantages in its ease of application, and it significantly enhances construction efficiency while concurrently reducing operational and maintenance expenses for ships and offshore platforms that operate within marine environments. With its promising engineering application prospects, this coating holds potential for extending the service lives of metal surfaces exposed to marine conditions. Hence, this coating addresses critical challenges in marine infrastructure maintenance and sustainability.

    关键词

    涂料防腐转锈剂缓蚀剂表面处理

  • 0 前言

  • 海洋环境所造成的腐蚀现象是一个复杂而多方面的问题,其中包括高盐、高湿、高温、高溶解氧、微生物、海浪冲击等,这一系列因素的互相协同作用使得海洋环境腐蚀成为船舶和海洋平台受损、失效的主要原因[1-4]。防腐涂料因其易施工、高经济效应、表面覆盖性强、多样性选择、易维护、泛用型强等优点,已逐渐成为海洋腐蚀的主要防护手段[5]。尽管有涂层的保护,船舶和设备在海洋环境服役期间仍会受到海洋大气严重腐蚀以及炎热气候、老化、流体冲刷、生物污损等综合作用,加速涂层的失效[6-7]。腐蚀性介质(H2O、O2、Cl 等)能够通过涂层渗透到金属表面,易使得涂层外表面无明显变化的情况下,涂层内部已经开始劣化甚至下方金属已经发生腐蚀生锈,大大降低船舶的在航率,影响设备使用,显著缩短船舶设备的服役寿命。为减缓钢材腐蚀损耗,船厂和海洋平台每年需要在维护和保养上支付大量的费用。

  • 为了提升维保效率、降低表面处理等级及缩减维护费用,使得装备更具竞争力,亟需一款高效稳定的低表面处理涂料。市面上现有的低表面处理涂料原理以酸蚀转化为主,通过酸将基材表面不能轻易去除的残锈或活性锈蚀产物转化成稳定无害的络合物或其他物质,并能较好地附着在基材之上,使其与外界隔绝,形成附着物保护层[8-10]。目前比较常见的转锈剂是以磷酸和单宁酸类[11-14]为主,也包括如没食子酸类[15-18]、植酸类[19]的新型转锈剂。单宁酸的大分子结构中含有多个羟基,能与 Fe3+形成稳定的螯合物,抑制钢铁的腐蚀;而磷酸作为中强酸可以为单宁酸的转锈提供合适的 PH 值,同时磷酸与钢基反应也会形成致密的磷化层,提高基体的耐蚀性[13]。FENG 等[14]利用羟基乙叉二膦酸和单宁酸对三磷酸铝转锈剂进行改性,由于这些物质均能够螯合,通过协同作用有效提高了锈转化率和防锈性能。LEI[18]将没食子酸和三乙醇胺反应制得一种新型转锈剂,将“底漆”与“面漆”合二为一,展现出良好的耐腐蚀性和附着力。然而,这些转锈涂料中的酸往往是过量的,随着时间的推移,成膜中残留的过量酸对漆膜稳定性起到负面作用,反而会加速涂层的剥离和失效,严重影响涂层防护效果。同时,转锈涂料不稳定,附着力受转化层致密性、PH 值等因素的影响仍有待加强,导致其应用受限[20-21]

  • 另外通过添加缓蚀剂改变腐蚀环境一直被认为是最简单有效的腐蚀保护方法之一[22]。缓蚀效果是通过在金属表面自发地形成一层保护膜,从而达到有效延缓或者阻止腐蚀的效果,一般通过添加缓蚀剂的形式实现[23-24]。缓蚀剂可以分为无机缓蚀剂和有机缓蚀剂,以适当的浓度和形式存在于环境介质中[25-26]。其中,有机缓蚀剂因其毒性小、可设计性强、效果明显、成本低等优势逐渐取代无机缓蚀剂[27-31]。然而,通常使用涂层防护的部位不具备适合缓蚀剂的环境介质条件,且缓蚀剂与涂料的相容性差,因此缓蚀剂和涂料通常作为两种防护产品在腐蚀防护领域分别使用[32-33]

  • 为降低转锈涂料过量酸的负面影响,增强涂层附着力,本文开发了一种将转锈与缓蚀两方面作用相结合,并具有高效强渗透特性的转锈缓蚀低表面处理涂料。其中,咪唑啉缓蚀剂参与环氧树脂预固化,突破缓蚀剂与水性涂料之间的兼容性问题,与乙二胺四乙酸(Ethylene diamine tetraacetic acid,EDTA)一起实现缓蚀钝化作用。转锈剂与锈层表面的腐蚀产物反应,将其转化成络合物形式的转锈膜,并且在强渗透性作用下有高效的锈转化率。通过扫描电子显微镜( Scanning electron microscope,SEM)、激光共聚焦扫描显微镜(Laser scanning confocal microscope,LSCM)、X 射线衍射仪(X-ray diffraction,XRD)、拉曼光谱仪(Raman)和 X 射线光电子能谱(X-ray photoelectron spectroscopy,XPS) 等表征手段,显示转锈与缓蚀机理的协同作用显著提升了涂料的防腐性能,同时旧涂层经过低表面处理后实现附着力的大幅提升,也降低了表面处理难度,提升了施工效率,从而实现海洋环境下船舶和海洋平台等设施的低成本高效维护。这一创新技术有望满足海洋平台、油轮等大型金属构筑物在运营中更具竞争力的目标。

  • 1 试验部分

  • 1.1 试验原料

  • 自交联环氧乳液(沈阳百辰化学科技有限公司)、防锈颜填料转锈剂(广西新晶科技有限公司)、转锈剂(上海麦克林生化科技有限公司)、润湿剂 194N 和消泡剂 021(毕克助剂(上海)有限公司)、咪唑啉(秦皇岛悦翔科技有限公司)、乙二胺四乙酸(EDTA)(上海阿拉丁生化科技股份有限公司)、偶联剂 BCA9304(鹤山市金润纳新型材料有限公司)。

  • 1.2 试验仪器

  • 搅拌磨砂分散多用机,BGD751,广州标格达试验室仪器用品有限公司;试验室篮式研磨机, BGD-755 / 3,标格达精密仪器(上海)有限公司; 电动漆膜附着力试验仪,QFD 型,上海魅宇仪器设备有限公司;漆膜柔韧性测定器,QTX 型,上海现代环境工程技术股份有限公司;漆膜冲击器,QCJ 型,上海现代环境工程技术股份有限公司;拉开法附着力测试仪,PosiTest AT-M,美国 DeFelsko 公司; 盐雾试验箱,Q-FOG / CCT1100,美国 Q-Lab 公司; 扫描电子显微镜(SEM),Quanta FEG 250,美国 FEI;激光共聚焦扫描显微镜(LSCM),凯视迈 KC-X1000 系列,南京木木西里科技有限公司;X 射线衍射仪(XRD),D8 ADVANCE DAVINCI,德国 BRUKER;拉曼光谱仪(Raman),Renishaw inVia Reflex,英国 Renishaw;X 射线光电子能谱(XPS), AXIS SUPRA,英国 Kratos。

  • 1.3 涂料的基础配方

  • 转锈缓蚀低表面处理涂料的配方如表1 所示,其中根据咪唑啉和 EDTA 的不同比例、偶联剂的不同添加量分成了 1#、2#和 3#样品。

  • 表1 转锈缓蚀低表面处理涂料的基础配方

  • Table1 Formula of low surface treatment coating with rust conversion and corrosion inhibition

  • 1.4 涂料的制备工艺

  • 制备转锈缓蚀低表面处理涂料的基本工艺为:首先,称取配方量的咪唑啉和自交联环氧乳液在转速为 500±50 r / min 条件下搅拌 60 min,进行预固化。之后,称取配方量的润湿剂和消泡剂加入去离子水中,转速为 500±50 r / min,搅拌 5 min。继续保持搅拌的状态,加入防锈颜填料和 EDTA 至分散均匀,再加入转锈剂。将搅拌好的原料用篮式研磨机研磨至细度≤30 µm,然后依次加入配方量的偶联剂,在转速为 1 500±100 r / min 下搅拌 30 min。最后,往搅拌好的样品中加入预固化的自交联环氧乳液,转速为 500±50 r / min,搅拌 10 min 至混合均匀,即可制得转锈缓蚀低表面处理涂料。

  • 1.5 涂料性能测试

  • 涂层的附着力、柔韧性、耐冲击均在马口铁板上进行测试,马口铁板尺寸为 50 mm×120 mm× (0.2~0.3)mm。涂层耐中性盐雾、附着力拉开法、变色时间测试均在 Q235 碳钢板上进行测试,Q235 碳钢板尺寸为 150 mm×70 mm×3 mm。上述涂膜厚度按照下面对应标准进行涂覆,其中转锈膜层的微观形貌和物性测试使用拉拔后的基材表面进行测试。按照《漆膜划圈试验》(GB / T1720—2020)进行划圈法附着力测试,按照《色漆和清漆拉开法附着力试验》(GB / T5210—2006)进行拉开法附着力测试,参考《漆膜、腻子膜柔韧性测定法》(GB / T1731— 2020)测试漆膜的柔韧性,采用曲率半径为 1 mm 的轴棒 6 测试;参考《漆膜耐冲击测定法》(BG / T1732—2020)测试漆膜的耐冲击性,采用 1 kg 重锤,测试高度 50 cm;涂层变色时间通过目测法观察涂层表面由锈色转为黑色所需要的时间来实现;参考《色漆和清漆耐中性盐雾性能的测定》(GB / T1771—2007)测试涂层耐中性盐雾性,测试时间为 500 h;通过扫描电子显微镜(SEM)观察表面微观结构;通过激光共聚焦扫描显微镜(LSCM) 观察表面三维形貌;通过 X 射线衍射仪(XRD)和拉曼光谱仪(Raman)表征样品内部的结构和组成; 通过 X 射线光电子能谱(XPS)分析表面的化学成分和化学键。

  • 2 结果与讨论

  • 2.1 涂层基础性能

  • 通过对二甲基咪唑和 EDTA 配比的调整和偶联剂使用量的控制,以自交联环氧树脂作为基料,并添加一定量的转锈剂,涂层的附着力、柔韧性、耐冲击和变色时间如表2 所示。

  • 表2 转锈缓蚀低表面处理涂料的基础性能测试

  • Table2 Basic tests of low surface treatment coating with rust conversion and corrosion inhibition

  • 由表2 可以看出,所有样品通过划圈法测试的涂层附着力均能达到 1 级,并且涂层均能通过 1 mm 的柔韧性测试和 1 kg 重锤在 50 cm 的抗冲击测试,总体表现较好。涂层表面有明显变色,且变色时间短,因转锈时间没有相应的标准,涂层表面的颜色变化可以初步判断其转锈时间。涂层基础性能显示,自交联环氧树脂符合防腐涂料的基本标准,相较于需要固化剂的环氧树脂,自交联环氧树脂可以作为单组分防腐涂料直接使用,与转锈剂和缓蚀剂有良好的相容性,优化了防腐涂料使用过程中需要多道涂装工程。同时,较短的转锈时间也说明由于没有使用固化剂,自交联环氧树脂不会与转锈剂之间发生竞争反应,从而保证防腐涂料的转锈性能。

  • 2.2 涂层附着力

  • 表3 和图1 显示了通过拉开法对不同样品进行附着力测试的结果,分别测试了初始时间和经过 3.5% NaCl 盐水浸泡 168 h 后的附着力。涂层的初始附着力随着偶联剂含量的增加而增加,但偶联剂的添加量从 1wt.%到 1.5wt.%对附着力的增强趋势要明显低于从 0.5wt.%到 1.0wt.%,因此偶联剂添加量只需适量的 1wt.%就能使涂层的附着力得到较强提升,继续添加对附着力的提升并不明显。偶联剂的添加对涂层附着力增强主要是由于偶联剂在水性涂料中的强渗透作用,并且其拥有的大量氢键与基材表面形成较强的分子间作用力,使其牢牢附着在基材表面。但受限于界面处能形成强渗透强附着的分子趋于饱和,进一步增加偶联剂的含量并不会显著提升附着性能。同时,咪唑啉因为自身存在的胺基基团,会部分参与环氧树脂的交联,从而提升涂层内部的致密度以及涂层与基材的结合力。附着力的增强不仅可以有效提高转锈涂层与金属基底的结合强度,在后续服役过程中更能起到延长涂层服役寿命的作用,对稳锈转锈防腐涂层来讲意义重大。

  • 表3 初始和盐水浸泡 168 h 后样品拉开法附着力测试结果及附着力保留率

  • Table3 Adhesion (pull off) and conservation rate of samples before and after 168 h saltwater immersion

  • 图1 初始和盐水浸泡 168 h 后样品拉开法附着力测试结果及附着力保留率

  • Fig.1 Adhesion (pull off) and conservation rate of samples before and after 168 h saltwater immersion

  • 涂层在 3.5% NaCl 盐水浸泡 168 h 后的附着力及其保持率进一步体现了涂层内部致密度以及与基材结合力的巨大提升。其中,2#涂料在盐水浸泡后几乎保持了与初始相同的附着力,其 96.7%的附着力保持率远高于 1#样品的 66.6%和 3#样品的 81.2%。盐水浸泡后附着力的保持说明采用自交联环氧乳液后,涂料对咪唑啉和 EDTA 缓蚀剂的稳定性能有明显提升,并且当咪唑啉和 EDTA 的添加比例为 1∶1 时,涂料对这两种缓蚀剂的稳定效果最好,从而更好地发挥其缓蚀效果。

  • 2.3 涂层耐腐蚀性

  • 涂层的耐腐蚀性能通过耐中性盐雾测试进行验证。将上述的 1#、2#和 3#样品在中性盐雾试验箱中放置 500 h,测试所制得涂层的耐中性盐雾性,其结果如图2 所示。从图2 可见,三块样板表面均没有锈点,当咪唑啉和 EDTA 的质量分数为 0.5%和 1.5% 时,板面气泡偏多,且板中间靠右区域有明显的两个大气泡;当咪唑啉和 EDTA 的质量分数为 1%和 1%时,板面几乎没有气泡;当咪唑啉和 EDTA 的质量分数为 1.5%和 0.5%时,板面靠边缘处出现少量小气泡。从盐雾测试的结果可以看出,涂层的长效防腐效果显著,说明涂层的缓蚀效果明显,其中咪唑啉和 EDTA 质量分数为 1%和 1%时,缓蚀效果最佳,两种缓蚀剂的协同作用使得样品的缓蚀效果优于以其中任意一种缓蚀剂为主所制得的样品。同时,两种缓蚀剂共同发挥作用也证明了其与涂料之间有着优异的兼容性。为进一步表征盐雾腐蚀程度,通过SEM观察2#样品在盐雾前和500 h盐雾后的表面形貌。图3a 显示中性盐雾测试前的涂层表面致密且较为平滑,图3b 显示涂层经过 500 h 中性盐雾测试后表面显得更为粗糙,伴有出现个别小孔隙,但整体的致密度仍然较高,表面未见腐蚀产物堆积。说明盐雾后涂层表面虽然已经出现一定的损伤,但基材整体基本没有受到腐蚀破坏,体现了涂层良好的防腐性能,这也和涂层的缓蚀效果密不可分。缓蚀组分通过在钢铁基材表面形成一层致密的保护膜,当涂层盐雾中表层损伤后仍能够隔绝 Cl 对基材的渗透。同时,缓蚀组分也会起到一定调节 PH 值的作用,转锈剂带来的酸性环境对缓蚀组分而言更容易形成络合物,转锈缓蚀的协同作用增强了体系各组分的相容性。

  • 图2 不同样品涂层的耐中性盐雾性能

  • Fig.2 Neutral salt spray resistance of coating based on different samples

  • 图3 #2 样品 500 h 盐雾前后涂层表面的 SEM 图像

  • Fig.3 SEM images of surface morphology of #2 sample before and after 500 h salt spray test

  • 2.4 材料表面转锈前后的表征及分析

  • 铁锈是铁表面因受潮和受酸性物质、氧气及其他腐蚀性物质的作用而生成的氧化反应产物,是一种复杂的混合物,其主要成分包括 α-FeOOH、Fe2O3、 γ-FeOOH、Fe3O4、Fe(OH)2、Fe(OH)3。铁锈分为表面的浮锈层和内部的牢锈层,其中内层的牢锈层结合力更强、活性更高,是产生持续腐蚀的主要原因,其成分主要是 α-FeOOH、γ-FeOOH 和 Fe3O4。转锈缓蚀低表面处理涂料中的转锈剂中存在大量可以螯合的酚羟基基团,会与锈层中的铁离子发生反应形成稳定的络合物,使疏松的铁锈层转化成致密的保护膜,从而起到减少锈蚀产物和防止基材进一步腐蚀的双重作用。

  • 在对上述三种低表面处理转锈缓蚀涂料进行性能测试后,得出 2#涂料在综合性能上有着最佳的表现,在基础性能达到标准的前提下保证了涂层的高附着力,并在附着力保持率和缓蚀效果上最为突出。因此,接下来通过材料表面转锈前后的表征对 2#涂层的转锈性能进行探索分析。

  • 2.4.1 表面形貌

  • 图4 显示了样板转锈前后的表面形貌和 3D 形貌,其中图4a 是转锈前的 SEM 图像,图4c 是转锈前的 LSCM 图像。从中可以看出,钢基底表面腐蚀产物呈疏松多孔的特征,腐蚀产物堆积并且出现裂纹。这种形貌不但无法阻止水分和氧气与金属基材的接触,对金属基材起到保护作用,而且易于吸收空气中的水分和氧气,促进金属腐蚀。

  • 图4 样板转锈前后表面形貌 SEM 和 3D 形貌 LSCM 图

  • Fig.4 SEM surface topography and LSCM 3D topography of sample plate before and after rust conversion

  • 图4b 为转锈后的 SEM 图像,图4d 为转锈后的 LSCM 图像。经过转锈剂处理后,锈层表面由原来疏松多孔的形态转变为平整均匀的膜层形貌,原本疏松的腐蚀产物被转化并且被膜层覆盖。转锈剂不仅可以深入到铁锈颗粒之间的微小间隙,同时还具有良好的相融性。铁离子与转锈剂之间的配位反应将有害的铁锈转化成对基材有一定保护作用的络合物或螯合物,促使平整膜层的出现。

  • 当把转锈涂料刷涂到锈蚀工件表面后,转锈剂可以快速地渗透到锈层中,并与铁锈产生络合反应,将表面松散的铁锈转化成黑色的铁盐络合物,不能转化的深层次铁锈会被挤出水分变成干锈,然后被偶联、螯合包裹起来,与乳液中的聚合物、活性官能团等重新交联,形成一层致密的膜层,达到转锈稳锈的效果。经过稳锈转锈后金属基底表面变得致密均匀,涂料与底部金属可以得到充分结合,致密的络合产物膜代替了疏松的铁锈,从而实现增加涂层与基材间附着力的目的。络合产物膜层还可以进一步阻挡水和氧气等腐蚀介质在后续服役过程中在界面处的扩散作用,进而提升防腐蚀涂料的整体防护性能。

  • 2.4.2 XRD 与 Raman 分析

  • 图5 通过 Raman 分析了样品转锈前后表面的物质变化。从中可以看出,在稳锈转锈前,金属基底表面存在大量 α-FeOOH、Fe2O3、Fe3O4 等铁的腐蚀产物,表明金属基底表面已经发生严重腐蚀,并且已处于腐蚀后期,这与 SEM 结果中大量腐蚀产物堆积以及腐蚀产物出现裂纹等现象一致。转锈稳锈后样品的拉曼光谱中在 1 156、1 232、1 368、1 610 cm−1 等位置出现残留涂层的 C-O、C-O-C、CH2、C=C 等有机峰。而经过转锈稳锈后,Fe2O3的峰几乎消失不见,同样作为腐蚀产物的 Fe3O4 和 α-FeOOH 也由明显的强峰转变为弱峰,而在 421 cm−1 处出现了 Fe-O 的络合物峰。表明有很大一部分金属基底表面的腐蚀产物与转锈剂反应形成了新的络合物,且有着较高的转化率,这对于金属基底在后续的服役过程中抵抗腐蚀介质进一步侵蚀起到至关重要的作用。

  • 结合图6 的 XRD 谱图进一步验证了样品表面在转锈稳锈前后腐蚀产物变化。从图中可以看出,转锈前的金属表面有大量的 Fe3O4和 FeOOH,与拉曼图谱中的腐蚀产物相对应,表明样品表面腐蚀严重。在转锈之后的样品谱图中,Fe3O4 和 FeOOH 明显减少,并且 Fe 单质的占比显著上升,说明 Fe3O4 和 FeOOH 等腐蚀产物被转化。同时,采用 XRD 谱图对转锈效率进行定量分析,首先根据晶体结构、X 光源波长和衍射光路等条件对衍射图谱进行全图谱范围 Rietveld 精修,获得计算图谱,再通过积分计算图谱的各个物相特征峰的面积,进而获得各个物相的相对含量。通过计算发现,转锈前 Fe 单质、 Fe3O4 和 FeOOH 的质量占比分别为 13.3%、57.7% 和 29.0%,而在转锈后 Fe 单质、Fe3O4和 FeOOH 对应的质量占比分别为 35.7%、42.4%、21.9%。以不参与反应的 Fe 单质作为对照物,可以得出有 72.6% 的 Fe3O4 和 71.9%的 FeOOH 被转化,其综合转锈效率高达 72.4%。

  • 图5 样板转锈前后的拉曼光谱图

  • Fig.5 Raman spectrum of sample plate before and after rust conversion

  • 图6 样板转锈前后的 XRD 谱图

  • Fig.6 XRD spectrum of sample plate before and after rust conversion

  • 2.4.3 XPS 分析

  • 图7 显示了转锈前的锈板和转锈后表面涂层的 XPS 成分分析,其中上图从左往右分别是转锈前金属基底铁锈层的 Fe 2p、C 1s、O 1s 的分析谱图,下图为稳锈转锈后形成的膜层的相对应元素分析谱图。图中可以看出转锈前后铁锈产物和氧化基团减少,说明涂料中转锈剂对铁锈具有良好的配位作用。同时转锈剂所带有的活性基团将有助于转锈剂与腐蚀产物反应形成络合物,从而提升络合物的成膜性,经过处理后可以在腐蚀产物表面形成一层致密且均匀的膜层,这为转锈后金属基底腐蚀防护性能的提升奠定了良好的基础。该膜层与缓蚀剂形成的钝化膜共同起到防腐作用,在金属基材表面设置了“双重保险”,能显著提高涂料的防腐蚀性能,同时缓蚀形成的钝化膜也能对转锈剂中的过量酸起到一定隔绝作用,避免酸过量引发的涂层失效,增强涂层的长效性和稳定性。

  • 图7 锈板和转锈膜层的 XPS 成分谱图

  • Fig.7 XPS spectrum of rust plate and rust convert coating

  • 3 结论

  • 为解决海洋环境腐蚀问题,通过制备一种具有高效强渗透、转锈和缓蚀功能的涂层材料,取得了一定进展。通过附着力、柔韧性、抗冲击、耐中性盐雾等涂层性能测试证明涂料具有强渗透性和耐腐蚀性,同时根据 SEM、LSCM、XRD、Raman 和 XPS 等手段对涂层的转锈稳锈机理和转锈效率进行分析。

  • (1)涂层通过低表面处理、偶联剂的强渗透作用和涂层内部与界面致密度的提高有效增强了附着力,中性盐雾 168 h 后的附着力衰减仅为 3.3%,有效解决了传统转锈型低表面处理涂料附着力差、难渗透的问题。

  • (2)耐中性盐雾测试表明涂层有着优异的防腐蚀性能,缓蚀剂形成的钝化膜和转锈之后形成的转锈膜共同作用对基材有强保护性。同时,试验也证明两种缓蚀剂在缓蚀防腐中都起到作用,说明其在水性涂料中有优异的兼容性。

  • (3)转锈前后的微观形貌和物性表征显示,锈蚀产物在转锈剂的作用下被有效转化成有一定保护作用的致密膜层,抑制腐蚀的进一步发生。XRD 的定量分析显示,锈蚀产物的转化率达到 72.4%,表明涂料有着优异的转锈效率。

  • (4)该低表面处理涂料同时解决了转锈、缓蚀、涂层渗透性的问题,效果可靠,成本较低,有着良好的应用前景。但该研究只对缓蚀转锈机制进行了初步探索,其缓蚀转锈机理仍须进行更深入的研究,从而优化工艺,实现其工程应用价值。

  • 参考文献

    • [1] ABBAS M,SHAFIEE M.An overview of maintenance management strategies for corroded steel structures in extreme marine environments[J].Marine Structures,2020,71:102718.

    • [2] 陈志宇,郭小平,水晓雪,等.苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J].中国表面工程,2022,35(2):24-34.CHEN Zhiyu,GUO Xiaoping,SHUI Xiaoxue,et al.Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J].China Surface Engineering,2022,35(2):24-34.(in Chinese)

    • [3] 侯悦,田原,赵志鹏,等.海洋工程用铝合金的腐蚀与防护研究进展[J].表面技术,2022,51(5):1-14.HOU Yue,TIAN Yuan,ZHAO Zhipeng,et al.Corrosion and protection of aluminum alloy for marine engineering[J].Surface Technology,2022,51(5):1-14.(in Chinese)

    • [4] 赵光瑞.海洋平台腐蚀控制措施应用进展[J].现代涂料与涂装,2023,26(4):31-34.ZHAO Guangrui.Progress in application of corrosion control measures for offshore platform[J].Modern Paint & Finishing,2023,26(4):31-34.(in Chinese)

    • [5] 孔祥峰,张婧,姜源庆,等.船舶防腐蚀技术应用及研究进展[J].全面腐蚀控制,2014,28(10):17-20.KONG Xiangfeng,ZHANG Jing,JIANG Yuanqing,et al.Application and research progress of anti-corrosion technology for ships[J].Total Corrosion Control,2014,28(10):17-20.(in Chinese)

    • [6] ZHANG M,XU H,TAO M,et al.Coating performance,durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection[J].Cement and Concrete Composites,2022,129:104495.

    • [7] WANG X,REN J,LI Z,et al.Research progress of vapor phase corrosion inhibitors in marine environment[J].Environmental Science and Pollution Research,2022,29(59):88432-88439.

    • [8] SAJI V S.Progress in rust converters[J].Progress in Organic Coatings,2019,127:88-89.

    • [9] 王鑫,朱庆军,侯保荣.水性锈面涂料的研究进展与发展趋势[J].材料保护,2021,54(11):140-150.WANG Xin,ZHU Qingjun,HOU Baorong.Research progress and development trend of waterborne surface-tolerant coatings[J].Materials Protection,2021,54(11):140-150.(in Chinese)

    • [10] 冯艳斐,潘自平.转锈剂在水性带锈防腐涂料中的研究进展[J].涂料工业,2018,48(8):49-54.FENG Yanfei,PAN Ziping.Research progress of rust converter in waterborne anticorrosion coatings[J].Paint & Coatings Industry,2018,48(8):49-54.(in Chinese)

    • [11] LI W,FAN Z,LI X,et al.Improved anti-corrosion performance of epoxy zinc rich coating on rusted steel surface with aluminum triphosphate as rust converter[J].Progress in Organic Coatings,2019,135:483-489.

    • [12] GAO X,LV Y,MA H,et al.Novel high-performance and long-life anti-corrosion coating with rust conversion and self-healing characteristics based on waste biomass derived carbon nanosheets[J].Progress in Organic Coatings,2022,166:106820.

    • [13] CHEN Y,LI S,LIU Z,et al.Anticorrosion property of alcohol amine modified phosphoric and tannic acid based rust converter and its waterborne polymer-based paint for carbon steel[J].Coatings,2021,11(9):1091.

    • [14] FENG L,YUAN P.Corrosion protection mechanism of aluminum triphosphate modified by organic acids as a rust converter[J].Progress in Organic Coatings,2020,140:105508.

    • [15] 李艳华,刘迎新,许烨.新型水性带锈防锈涂料的研究[J].涂料工业,2017,47(7):45-50.LI Yanhua,LIU Yingxin,XU Ye.Preparation of novel waterborne antirust coatings for rusty substrate[J].Paint & Coatings Industry,2017,47(7):45-50.(in Chinese)

    • [16] FENG Y.Synthesis of 3,4,5-trihydroxy-2-[(hydroxyimino)methyl] benzoic acid as a novel rust converter[J].Green Chemistry Letters and Reviews,2017,10(4):455-461.

    • [17] DIAZ B.The corrosion protection afforded by a commercial rust converter doped with graphene oxide[J].Electrochimica Acta,2020,342:136096.

    • [18] LEI Y.Water-based & eco-friendly & high-efficiency 3,4,5-Trihydroxybenzoic acid ester as a novel rust conversion agent and its polymer composites for enhanced surface anticorrosion[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,626:127065.

    • [19] GUO X,XU H,PU J,et al.Corrosion performance and rust conversion mechanism of graphene modified epoxy surface tolerant coating[J].Frontiers in Materials,2021,8:767776.

    • [20] LI Y,LEI B,GUO X.Influence of phosphoric acid on the adhesion strength between rusted steel and epoxy coating[J].Coatings,2021,11(2):246-260.

    • [21] LI Y,MA Y,ZHANG B,et al.Enhancement the adhesion between epoxy coating and rusted structural steel by tannic acid treatment[J].Acta Metallurgica Sinica(English Letters),2014,27(6):1105-1113.

    • [22] LIU W,ZHANG X,QIANG Y,et al.Ureidopyrimidinone-containing Poly(amino ester)for corrosion inhibition of mild steel in acidic medium[J].Materials Chemistry and Physics,2022,292:126818.

    • [23] 周闻云,郭蓓,李冬冬,等.钢材用缓蚀剂研究进展[J].电镀与精饰,2023,45(3):83-89.ZHOU Wenyun,GUO Bei,LI Dongdong,et al.Research progress of corrosion inhibitor for steel[J].Plating and Finishing,2023,45(3):83-89.(in Chinese)

    • [24] THABET H K,EL-SHAMY O A A,ASHMAWY A M,et al.The impact of corrosion inhibitors in desalination systems[J].ACS Omega,2023,8(48):45224-45231.

    • [25] LI H,ZHANG Y,LI C,et al.Cutting fluid corrosion inhibitors from inorganic to organic:progress and applications[J].Korean Journal of Chemical Engineering,2022,39(5):1107-1134.

    • [26] 魏佳煜,邱诗惠,赵海超,等.聚左旋多巴-SiO2 复合材料在 1 M HCl 中的缓蚀作用[J].中国表面工程,2022,35(2):55-62.WEI Jiayu,QIU Shihui,ZHAO Haichao,et al.Corrosion inhibition of polylevodopa-silica composite in 1 M HCl[J].China Surface Engineering,2022,35(2):55-62.(in Chinese)

    • [27] 候家瑞,冯辉霞,谷一鸣,等.有机缓蚀剂对低碳钢的缓蚀性能研究进展[J].应用化工,2023,52(10):2900-2904.HOU Jiarui,FENG Huixia,GU Yiming,et al.Research progress on corrosion inhibition of low carbon steel by organic corrosion inhibitor[J].Applied Chemical Industry,2023,52(10):2900-2904.(in Chinese)

    • [28] LIU Z,FAN B,ZHAO J,et al.Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater:formation,interfacial release and protective mechanisms[J].Corrosion Science,2023,212:110957.

    • [29] QIANG Y,GUO L,LI H,et al.Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium[J].Chemical Engineering Journal,2021,406:126863.

    • [30] BRYCKI B,SZULC A.Gemini surfactants as corrosion inhibitors:A review[J].Journal of Molecular Liquids,2021,344:117686.

    • [31] QIANG Y,LI H,LAN X.Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment[J].Journal of Materials Science & Technology,2020,52:63-71.

    • [32] 李永胜,黄从树,付琬璐,等.海洋防腐领域中有机缓蚀剂的研究进展[J].精细化工,2023,40(6):1161-1175.LI Yongsheng,HUANG Congshu,FU Wanlu,et al.Research progress on organic corrosion inhibitors for marine corrosion protection[J].Fine Chemicals,2023,40(6):1161-1175.(in Chinese)

    • [33] 石浩,褚贵文,李正利,等.中空二氧化硅微球包覆 2-巯基苯并噻唑自修复涂层防腐性能[J].中国表面工程,2023,36(5):112-122.SHI Hao,CHU Guiwen,LI Zhengli,et al.Corrosion protection performance of a self-repairing coating with hollow mesoporous silica microspheres loaded with 2-mercaptobenzothiazole[J].China Surface Engineering,2023,36(5):112-122.(in Chinese)

  • 参考文献

    • [1] ABBAS M,SHAFIEE M.An overview of maintenance management strategies for corroded steel structures in extreme marine environments[J].Marine Structures,2020,71:102718.

    • [2] 陈志宇,郭小平,水晓雪,等.苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J].中国表面工程,2022,35(2):24-34.CHEN Zhiyu,GUO Xiaoping,SHUI Xiaoxue,et al.Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J].China Surface Engineering,2022,35(2):24-34.(in Chinese)

    • [3] 侯悦,田原,赵志鹏,等.海洋工程用铝合金的腐蚀与防护研究进展[J].表面技术,2022,51(5):1-14.HOU Yue,TIAN Yuan,ZHAO Zhipeng,et al.Corrosion and protection of aluminum alloy for marine engineering[J].Surface Technology,2022,51(5):1-14.(in Chinese)

    • [4] 赵光瑞.海洋平台腐蚀控制措施应用进展[J].现代涂料与涂装,2023,26(4):31-34.ZHAO Guangrui.Progress in application of corrosion control measures for offshore platform[J].Modern Paint & Finishing,2023,26(4):31-34.(in Chinese)

    • [5] 孔祥峰,张婧,姜源庆,等.船舶防腐蚀技术应用及研究进展[J].全面腐蚀控制,2014,28(10):17-20.KONG Xiangfeng,ZHANG Jing,JIANG Yuanqing,et al.Application and research progress of anti-corrosion technology for ships[J].Total Corrosion Control,2014,28(10):17-20.(in Chinese)

    • [6] ZHANG M,XU H,TAO M,et al.Coating performance,durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection[J].Cement and Concrete Composites,2022,129:104495.

    • [7] WANG X,REN J,LI Z,et al.Research progress of vapor phase corrosion inhibitors in marine environment[J].Environmental Science and Pollution Research,2022,29(59):88432-88439.

    • [8] SAJI V S.Progress in rust converters[J].Progress in Organic Coatings,2019,127:88-89.

    • [9] 王鑫,朱庆军,侯保荣.水性锈面涂料的研究进展与发展趋势[J].材料保护,2021,54(11):140-150.WANG Xin,ZHU Qingjun,HOU Baorong.Research progress and development trend of waterborne surface-tolerant coatings[J].Materials Protection,2021,54(11):140-150.(in Chinese)

    • [10] 冯艳斐,潘自平.转锈剂在水性带锈防腐涂料中的研究进展[J].涂料工业,2018,48(8):49-54.FENG Yanfei,PAN Ziping.Research progress of rust converter in waterborne anticorrosion coatings[J].Paint & Coatings Industry,2018,48(8):49-54.(in Chinese)

    • [11] LI W,FAN Z,LI X,et al.Improved anti-corrosion performance of epoxy zinc rich coating on rusted steel surface with aluminum triphosphate as rust converter[J].Progress in Organic Coatings,2019,135:483-489.

    • [12] GAO X,LV Y,MA H,et al.Novel high-performance and long-life anti-corrosion coating with rust conversion and self-healing characteristics based on waste biomass derived carbon nanosheets[J].Progress in Organic Coatings,2022,166:106820.

    • [13] CHEN Y,LI S,LIU Z,et al.Anticorrosion property of alcohol amine modified phosphoric and tannic acid based rust converter and its waterborne polymer-based paint for carbon steel[J].Coatings,2021,11(9):1091.

    • [14] FENG L,YUAN P.Corrosion protection mechanism of aluminum triphosphate modified by organic acids as a rust converter[J].Progress in Organic Coatings,2020,140:105508.

    • [15] 李艳华,刘迎新,许烨.新型水性带锈防锈涂料的研究[J].涂料工业,2017,47(7):45-50.LI Yanhua,LIU Yingxin,XU Ye.Preparation of novel waterborne antirust coatings for rusty substrate[J].Paint & Coatings Industry,2017,47(7):45-50.(in Chinese)

    • [16] FENG Y.Synthesis of 3,4,5-trihydroxy-2-[(hydroxyimino)methyl] benzoic acid as a novel rust converter[J].Green Chemistry Letters and Reviews,2017,10(4):455-461.

    • [17] DIAZ B.The corrosion protection afforded by a commercial rust converter doped with graphene oxide[J].Electrochimica Acta,2020,342:136096.

    • [18] LEI Y.Water-based & eco-friendly & high-efficiency 3,4,5-Trihydroxybenzoic acid ester as a novel rust conversion agent and its polymer composites for enhanced surface anticorrosion[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,626:127065.

    • [19] GUO X,XU H,PU J,et al.Corrosion performance and rust conversion mechanism of graphene modified epoxy surface tolerant coating[J].Frontiers in Materials,2021,8:767776.

    • [20] LI Y,LEI B,GUO X.Influence of phosphoric acid on the adhesion strength between rusted steel and epoxy coating[J].Coatings,2021,11(2):246-260.

    • [21] LI Y,MA Y,ZHANG B,et al.Enhancement the adhesion between epoxy coating and rusted structural steel by tannic acid treatment[J].Acta Metallurgica Sinica(English Letters),2014,27(6):1105-1113.

    • [22] LIU W,ZHANG X,QIANG Y,et al.Ureidopyrimidinone-containing Poly(amino ester)for corrosion inhibition of mild steel in acidic medium[J].Materials Chemistry and Physics,2022,292:126818.

    • [23] 周闻云,郭蓓,李冬冬,等.钢材用缓蚀剂研究进展[J].电镀与精饰,2023,45(3):83-89.ZHOU Wenyun,GUO Bei,LI Dongdong,et al.Research progress of corrosion inhibitor for steel[J].Plating and Finishing,2023,45(3):83-89.(in Chinese)

    • [24] THABET H K,EL-SHAMY O A A,ASHMAWY A M,et al.The impact of corrosion inhibitors in desalination systems[J].ACS Omega,2023,8(48):45224-45231.

    • [25] LI H,ZHANG Y,LI C,et al.Cutting fluid corrosion inhibitors from inorganic to organic:progress and applications[J].Korean Journal of Chemical Engineering,2022,39(5):1107-1134.

    • [26] 魏佳煜,邱诗惠,赵海超,等.聚左旋多巴-SiO2 复合材料在 1 M HCl 中的缓蚀作用[J].中国表面工程,2022,35(2):55-62.WEI Jiayu,QIU Shihui,ZHAO Haichao,et al.Corrosion inhibition of polylevodopa-silica composite in 1 M HCl[J].China Surface Engineering,2022,35(2):55-62.(in Chinese)

    • [27] 候家瑞,冯辉霞,谷一鸣,等.有机缓蚀剂对低碳钢的缓蚀性能研究进展[J].应用化工,2023,52(10):2900-2904.HOU Jiarui,FENG Huixia,GU Yiming,et al.Research progress on corrosion inhibition of low carbon steel by organic corrosion inhibitor[J].Applied Chemical Industry,2023,52(10):2900-2904.(in Chinese)

    • [28] LIU Z,FAN B,ZHAO J,et al.Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater:formation,interfacial release and protective mechanisms[J].Corrosion Science,2023,212:110957.

    • [29] QIANG Y,GUO L,LI H,et al.Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium[J].Chemical Engineering Journal,2021,406:126863.

    • [30] BRYCKI B,SZULC A.Gemini surfactants as corrosion inhibitors:A review[J].Journal of Molecular Liquids,2021,344:117686.

    • [31] QIANG Y,LI H,LAN X.Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment[J].Journal of Materials Science & Technology,2020,52:63-71.

    • [32] 李永胜,黄从树,付琬璐,等.海洋防腐领域中有机缓蚀剂的研究进展[J].精细化工,2023,40(6):1161-1175.LI Yongsheng,HUANG Congshu,FU Wanlu,et al.Research progress on organic corrosion inhibitors for marine corrosion protection[J].Fine Chemicals,2023,40(6):1161-1175.(in Chinese)

    • [33] 石浩,褚贵文,李正利,等.中空二氧化硅微球包覆 2-巯基苯并噻唑自修复涂层防腐性能[J].中国表面工程,2023,36(5):112-122.SHI Hao,CHU Guiwen,LI Zhengli,et al.Corrosion protection performance of a self-repairing coating with hollow mesoporous silica microspheres loaded with 2-mercaptobenzothiazole[J].China Surface Engineering,2023,36(5):112-122.(in Chinese)

  • 手机扫一扫看