en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

严明龙,男,1992年出生,博士,助理研究员。主要研究方向为海洋防污材料和抗菌材料。E-mail: yanminglongivip@163.com

赵文杰,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为海洋功能材料。E-mail: zhaowj@nimte.ac.cn

中图分类号:TQ465;TQ628;TQ572

DOI:10.11933/j.issn.1007-9289.20231229006

参考文献 1
XUAN J Q,FENG W G,WANG J Y,et al.Antimicrobial peptides for combating drug-resistant bacterial infections[J].Drug Resistance Updates Reviews,2023,68:100954-100965.
参考文献 2
ROMEU M J,MERGULHAO F.Development of antifouling strategies for marine applications[J].Microorganisms,2023,11(6):1568-1601.
参考文献 3
楼彤,白秀琴,贺小燕,等.抗菌肽在海洋防污领域的研究进展[J].中国表面工程,2022,35(2):1-11.LOU Tong,BAI Xiuqin,HE Xiaoyan,et al.Research progress of antimicrobial peptides in the field of marine antifouling[J].China Surface Engineering,2022,35(2):1-11.(in Chinese)
参考文献 4
QIU H Y,FENG K,GAPEEVA A,et al.Functional polymer materials for modern marine biofouling control[J].Progress in Polymer Science,2022,127:101516-101563.
参考文献 5
贺小燕,白秀琴,袁成清,等.纳米复合海洋防污涂料研究进展[J].中国表面工程,2023,36(5):37-51.HE Xiaoyan,BAI Xiuqin,YUAN Chengqing,et al.Research progress of nanomaterial-based coatings for marine antifouling applications[J].China Surface Engineering,2023,36(5):37-51.(in Chinese)
参考文献 6
MURRAY C J K,IKUTA K S,SHARARA F,et al.Global burden of bacterial antimicrobial resistance in 2019:A systematic analysis[J].Lancet,2022,399(10325):629-655.
参考文献 7
MULAR A,SHANZER A,KOZLOWSKI H,et al.Cyclic analogs of desferrioxamine e siderophore for 68Ga nuclear imaging:coordination chemistry and biological activity in Staphylococcus aureus[J].Inorganic Chemistry,2021,60(23):17846-17857.
参考文献 8
SCHIFF H.Mittheilungen aus dem universitätslaboratorium in pisa:eine neue reihe organischer basen[J].J Justus Liebigs Annalen der Chemie,1864,131(1):118-119.
参考文献 9
PATTERSON A E,BOWES E G,BOS A,et al.Anti-mycobacterial activities of copper(ii)salicylaldimine complexes derived from long-chain aliphatic amines[J].Canadian Journal of Chemistry,2013,91(11):1093-1097.
参考文献 10
MAJUMDAR D,BISWAS J K,MONDAL M,et al.Cd(II)pseudohalide complexes with N,N'-bis(3-ethoxysalicylidenimino)1,3-diaminopropane:crystal structures,hirshfeld surface,antibacterial and anti-biofilm properties[J].Chemistryselect,2018,3(11):2912-2925.
参考文献 11
LIU X,HAMON J R.Recent developments in penta-,hexa-and heptadentate Schiff base ligands and their metal complexes[J].Coordination Chemistry Reviews,2019,389:94-118.
参考文献 12
BOULECHFAR C,FERKOUS H,DELIMI A,et al.Schiff bases and their metal complexes:a review on the history,synthesis,and applications[J].Inorganic Chemistry Communications,2023,150:110451.
参考文献 13
WANG X H,SHAN M Y,ZHANG S K,et al.Stimuli-responsive antibacterial materials:molecular structures,design principles,and biomedical applications[J].Advanced Science,2022,9(13):2104843-2104867.
参考文献 14
ABD EL-HALIM H,EL-SAYED O Y,MOHAMED G G.Anti-carcinoma and anti-microbial behavioral studies for octahedral synthesized Schiff base metal complexes[J].Journal of the Iranian Chemical Society,2023,20(11):2713-2725.
参考文献 15
ABDEL-RAHMAN L H,BASHA M T,AL-FARHAN B S,et al.Synthesis,characterization,dft studies of novel Cu(II),Zn(II),Vo(II),Cr(III),and La(III)chloro-substituted Schiff base complexes:aspects of its antimicrobial,antioxidant,anti-inflammatory,and photodegradation of methylene blue[J].Molecules,2023,28(12):4777-4807.
参考文献 16
DEVI J,YADAV J,SINGH N.Synthesis,characterisation,in vitro antimicrobial,antioxidant and anti-inflammatory activities of diorganotin(IV)complexes derived from salicylaldehyde Schiff bases[J].Research on Chemical Intermediates,2019,45(7):3943-3968.
参考文献 17
YAN M L,GUO Y H,ZHAO W J.Cross-linked but self-healing and entirely degradable poly-Schiff base metal complex materials for potential anti-biofouling[J].Advanced Materials Interfaces,2022,9(9):2101920-2101929.
参考文献 18
单玉兴,杨镜鑫,王进,等.具有多层结构的可拉伸可折叠自修复有机硅导电弹性体[J].中国表面工程,2021,34(5):34-41.SHAN Yuxing,YANG Jingxin,WANG Jin,et al.Stretchable and foldable self-healable conductive silicon elastomer with multi-layered structure[J].China Surface Engineering,2021,34(5):34-41.(in Chinese)
参考文献 19
TIAN Y C,PANG L,ZHANG R,et al.Poly-tetrahydropyrimidine antibacterial hydrogel with injectability and self-healing ability for curing the purulent subcutaneous infection[J].ACS Appled Materials & Interfaces,2020,12(45):50236-50247.
参考文献 20
ZHANG L Z,LIU Z H,WU X L,et al.A highly efficient self-healing elastomer with unprecedented mechanical properties[J].Advanced Materials,2019,31(23):1901402-1901409.
参考文献 21
LIU Z H,ZHANG L Z,GUAN Q B,et al.Biomimetic materials with multiple protective functionalities[J].Advanced Functional Materials,2019,29(28):1901058-1901067.
参考文献 22
ZHAO P,QIU H M,WEI Q,et al.Anti-tumor effect of novel amino acid schiff base nickel(II)complexes on oral squamous cell carcinoma cells(cal-27)in vitro[J].Molecular & Cellular Toxicology,2023,19(2):265-275.
参考文献 23
WANG W D,XIANG L GONG L,et al.Injectable,self-healing hydrogel with tunable optical,mechanical,and antimicrobial properties[J].Chemistry of Materials,2019,31(7):2366-2376.
参考文献 24
KAUFFMAN G B.Sophus mads jorgensen(1837-1914):a chapter in coordination chemistry history[J].Proceeding of the Pacific Southwest Association of Chemistry Teachers,1959,36:521-528.
参考文献 25
WERNER H.Alfred werner:a forerunner to modern inorganic chemistry[J].Angewandte Chemie-International Edition in English,2013,52(24):6146-53.
参考文献 26
PFEIFFER P,BREITH E,LUBBE E,et al.Tri-cyclical ortho-condensed side valence circles[J].Justus Liebigs Annalen Der Chemie,1933,503:84-130.
参考文献 27
LOOK G C,MURPHY M M,CAMPBELL D A,et al.Trimethylorthoformate:a mild and effective dehydrating reagent for solution and solid-phase imine formation[J].Tetrahedron Letters,1995,36(17):2937-2940.
参考文献 28
SHIRAISHI Y,IKEDA M,TSUKAMOTO D,et al.One-pot synthesis of imines from alcohols and amines with TiO2 loading Pt nanoparticles under UV irradiation[J].Chemical Communications,2011,47(16):4811-4813.
参考文献 29
LOVE B E,REN J H.Synthesis of sterically hindered imines[J].Journal of Organic Chemistry,1993,58(20):5556-5557.
参考文献 30
BULDURUN K,SARIDAĞ T.Synthesis of Pd+2 complexes of Schiff bases containing methyl 2-amino-6-benzyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxyl ate and spectral and catalytic activities[J].Journal of Molecular Structure,2023,1273:134278.
参考文献 31
SAVCI A,BULDURUN K,KIRKPANTUR G.A new Schiff base containing 5-Fu and its metal complexes:synthesis,characterization,and biological activities[J].Inorganic Chemistry Communications,2021,134:109060-109067.
参考文献 32
REDDELIEN G.Concerning the decomposition of anilene[J].Berichte Der Deutschen Chemischen Gesellschaft,1920,53:355-358.
参考文献 33
MOSHER H S,BLANZ E J.Reduction of ortho-bromoanisole by lithium dineopentylamide[J].Journal of Organic Chemistry,1957,22(4):445-446.
参考文献 34
GNANAPRAKASAM B,ZHANG J,MILSTEIN D.Direct synthesis of imines from alcohols and amines with liberation of H2[J].Angewandte Chemie-International Edition in English,2010,49(8):1510-1513.
参考文献 35
TIAN H W,YU X C,LI Q,et al.General,green,and scalable synthesis of imines from alcohols and amines by a mild and efficient copper-catalyzed aerobic oxidative reaction in open air at room temperature[J].Advanced Synthesis & Catalysis,2012,354(14-15):2671-2677.
参考文献 36
CHU G B,LI C B.Convenient and clean synthesis of imines from primary benzylamines[J].Organic & Biomolecular Chemmistry,2010,8(20):4716-4719.
参考文献 37
HUANG B,TIAN H W,LIN S S,et al.Cu(I)/TEMPO-catalyzed aerobic oxidative synthesis of imines directly from primary and secondary amines under ambient and neat conditions[J].Tetrahedron Letters,2013,54(22):2861-2864.
参考文献 38
LARGERON M.Protocols for the catalytic oxidation of primary amines to imines[J].European Journal of Organic Chemistry,2013,2013(24):5225-5235.
参考文献 39
LAN Y S,LIAO B S,LIU Y H,et al.Preparation of imines by oxidative coupling of benzyl alcohols with amines catalysed by dicopper complexes[J].European Journal of Organic Chemistry,2013,2013(23):5160-5164.
参考文献 40
MARUI K,NOMOTO A,UESHIMA M,et al.Ecofriendly copper sulfate-catalyzed oxidation of amines to imines by hydrogen peroxide in water[J].Tetrahedron Letters,2015,56(10):1200-1202.
参考文献 41
KAZEMNEJADI M,SHAKERI A,MOHAMMADI M,et al.Direct preparation of oximes and Schiff bases by oxidation of primary benzylic or allylic alcohols in the presence of primary amines using Mn(III)complex of polysalicylaldehyde as an efficient and selective heterogeneous catalyst by molecular oxygen[J].Journal of the Iranian Chemical Society,2017,14(9):1917-1933.
参考文献 42
PATIL M K,MASAND V H,MALDHURE A K.Schiff base metal complexes precursor for metal oxide nanomaterials:A review[J].Current Nanoscience,2021,17(4):634-645.
参考文献 43
LAYER R W.Chemistry of imines[J].Chemical Reviews,1963,63(5):489-510.
参考文献 44
HOESCH K.A new synthesis of aromatic ketones.I.representation of some phenol ketones[J].Berichte Der Deutschen Chemischen Gesellschaft,1915,48:1122-1133.
参考文献 45
PICKARD P L,TOLBERT T L.Improved method of ketimine synthesis[J].Journal of Organic Chemistry,1961,26(12):4886.
参考文献 46
PICKARD P L,YOUNG C W.Ketimines.III.Ι-cyclohexylalkyl alkyl type1 [J].Journal of the American Chemical Society,1951,73(1):42-43.
参考文献 47
BOYER J H,CANTER F C.Alkyl and aryl azides[J].Chemical Reviews,1954,54(1):1-57.
参考文献 48
MARESH J J,CROWE S O,RALKO A A,et al.Facile one-pot synthesis of tetrahydroisoquinolines from amino acids via hypochlorite-mediated decarboxylation and pictet-spengler condensation[J].Tetrahedron Letters,2014,55(36):5047-5051.
参考文献 49
SHARMA B,SHUKLA S,RATTAN R,et al.Antimicrobial agents based on metal complexes:present situation and future prospects[J].International journal of biomaterials,2022,1:6819080-6819100.
参考文献 50
KITAURA R,ONOYAMA G,SAKAMOTO H,et al.Immobilization of a metallo Schiff base into a microporous coordination polymer[J].Angewandte Chemie-International Edition,2004,43(20):2684-2687.
参考文献 51
EL-SONBATI A Z,MAHMOUD W H,MOHAMED G G,et al.Synthesis,characterization of Schiff base metal complexes and their biological investigation[J].Applied Organometallic Chemistry,2019,33(9):5048-5063.
参考文献 52
JEEWOTH T,BHOWON M G,WAH H L K.Synthesis,characterization and antibacterial properties of Schiff bases and Schiff base metal complexes derived from 2,3-diamino-pyridine[J].Transition Metal Chemistry,1999,24(4):445-448.
参考文献 53
COZZI P G.Metal-salen Schiff base complexes in catalysis:practical aspects[J].Chemical Society Reviews,2004,33(7):410-421.
参考文献 54
SINGH A,BARMAN P.Recent advances in Schiff base ruthenium metal complexes:synthesis and applications[J].Topics in Current Chemistry,2021,379(4):29-99.
参考文献 55
SEGURA J L,MANCHENO M J,ZAMORA F.Covalent organic frameworks based on Schiff-base chemistry:synthesis,properties and potential applications[J].Chemical Society Reviews,2016,45(20):5635-5671.
参考文献 56
SINGH H L,SINGH J,MUKHERJEE A.Synthesis,spectral,and antibacterial studies of organosilicon(IV)complexes with Schiff bases derived from amino acids[J].Bioinorganic Chemistry and Applications,2013,1:425832-425840.
参考文献 57
PIETRANGELO A,SIH B C,BODEN B N,et al.Nonlinear optical properties of Schiff-base-containing conductive polymer films electro-deposited in microgravity[J].Advanced Materials,2008,20(12):2280-2284.
参考文献 58
WANG R Y,WANG J J,ZI H M,et al.Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium(IV)Schiff base complexes on mesoporous silica with isopropanol as hydrogen source[J].Molecular Catalysis,2017,441:168-178.
参考文献 59
WANG Q W,SONG H B,ZI G F.Synthesis,structure,and catalytic activity of group 4 complexes with new chiral biaryl-based NO2 ligands[J].Journal of Organometallic Chemistry,2010,695(10-11):1583-1591.
参考文献 60
XU Y,YUAN D,WANG Y R,et al.Aluminum complexes derived from a hexadentate salen-type Schiff base:synthesis,structure,and catalysis for cyclic carbonate synthesis[J].Dalton Transactions,2017,46(18):5848-5855.
参考文献 61
PERVAIZ M,AHMAD I,YOUSAF M,et al.Synthesis,spectral and antimicrobial studies of amino acid derivative Schiff base metal(Co,Mn,Cu,and Cd)complexes[J].Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2019,206:642-649.
参考文献 62
GHOSH M K,PATHAK S,GHORAI T K.Synthesis of two mononuclear Schiff base metal(M = Fe,Cu)complexes:Mof structure,dye degradation,H2O2 sensing,and DNA binding property[J].Acs Omega,2019,4(14):16068-16079.
参考文献 63
JAFARPOUR M,REZAEIFARD A,GAZKAR S,et al.Catalytic activity of a zirconium(IV)Schiff base complex in facile and highly efficient synthesis of indole derivatives[J].Transition Metal Chemistry,2011,36(7):685-690.
参考文献 64
AL ZOUBI W,NASHRAH N,CHAOUIKI A,et al.Self-assembled molecular network formed by controlling molecular deposition of organic compounds[J].Flatchem,2021,29:100270-100280.
参考文献 65
BRODOWSKA K,LODYGA‐CHRUSCINSKA E J C.Schiff bases-interesting range of applications in various fields of science[J].International Journal for Research Publication and Seminar,2016,7(1):2278-6848
参考文献 66
ZHANG Z,HE C,RONG Y,et al.A fast and versatile cross-linking strategy via o-phthalaldehyde condensation for mechanically strengthened and functional hydrogels[J].National Science Review,2021,8(4):128-138.
参考文献 67
XU L R,CAO L L,GUO Z X,et al.Side-functionalized two-dimensional polymers synthesized via on-surface Schiff-base coupling[J].Chemical Communications,2015,51(41):8664-8667.
参考文献 68
LI H M,LI J H,THOMAS A,et al.Ultra-high surface area nitrogen-doped carbon aerogels derived from a Schiff-base porous organic polymer aerogel for CO2 storage and supercapacitors[J].Advanced Functional Materials,2019,29(40):1904785-1904793.
参考文献 69
VENKATESAN K,SATYANARAYANA V S V,SIVAKUMAR A.Ultrasonic assisted synthesis of naphthalene substituted Schiff base derivatives and their antioxidant activity studies[J].Journal of the Chinese Chemical Society,2011,58(5):583-589.
参考文献 70
MERMER A,DEMIRBAS N,USLU H,et al.Synthesis of novel Schiff bases using green chemistry techniques;antimicrobial,antioxidant,antiurease activity screening and molecular docking studies[J].Journal of Molecular Structure,2019,1181:412-422.
参考文献 71
SUJATHA B,MOHAN S,SUBRAMANYAM C,et al.Microwave-assisted synthesis and anti-inflammatory activity evaluation of some novel α-aminophosphonates[J].Phosphorus Sulfur and Silicon and the Related Elements,2017,192(10):1110-1113.
参考文献 72
MOEKETSE T N,BAKER P G,FARAO A,et al.Microwave-assisted synthesis of Schiff base metal-ligand complexes with copper and nickel centres for electrochemical in vitro sensing of nitric oxide in an aqueous solution[J].Chemosensors,2022,10(5):75-76.
参考文献 73
GABANO E,RAVERA M.Microwave-assisted synthesis:can transition metal complexes take advantage of this "green" method?[J].Molecules,2022,27(13):4249-4286.
参考文献 74
HANIF M,HASSAN M,RAFIQ M,et al.Microwave-assisted synthesis,in vivo anti-inflammatory and in vitro anti-oxidant activities,and molecular docking study of new substituted Schiff base derivatives[J].Pharmaceutical Chemistry Journal,2018,52(5):424-437.
参考文献 75
AL-HIYARI B A,SHAKYA A K,NAIK R R,et al.Microwave-assisted synthesis of Schiff bases of isoniazid and evaluation of their anti-proliferative and antibacterial activities[J].Molbank,2021,2021(1):1189-1195.
参考文献 76
BORUAH J J,BHATT Z S,NATHANI C R,et al.Green synthesis of a vanadium(V)Schiff base complex by grinding method:study on its catalytic and anti-bacterial activity[J].Journal of Coordination Chemistry,2021,74(12):2055-2068.
参考文献 77
ALHARBI A,ALSOLIEMY A,ALZAHRANI S O,et al.Green synthesis approach for new Schiff’s-base complexes;theoretical and spectral based characterization with in-vitro and in-silico screening[J].Journal of Molecular Liquids,2022,345:117803-117814.
参考文献 78
STASSEN I,STYLES M,GRENCI G,et al.Chemical vapour deposition of zeolitic imidazolate framework thin films[J].Nature Materials,2016,15(3):304-313.
参考文献 79
MAHMOOD A A.Green synthesis of Schiff bases:A review study[J].Iraqi Journal of Pharmacy,2022,18(2):180-193.
参考文献 80
KATOUAH H,HAMEED A M,ALHARBI A,et al.Green synthesis strategy for new Schiff-base complexes:characterization,conductometry,in vitro assay confirmed by in silico approach[J].Chemistryselect,2020,5(33):10256-10268.
参考文献 81
SACHDEVA H,SAROJ R,KHATURIA S,et al.Green route for efficient synthesis of novel amino acid Schiff bases as potent antibacterial and antifungal agents and evaluation of cytotoxic effects[J].Journal of Chemistry,2014,2014(1):848543-848554.
参考文献 82
SHAMLY P,NELSON M,ANTONY A,et al.Synthesis of salicylaldehyde based Schiff bases and their metal complexes in aqueous media-characterization and antibacterial study[J].Journal of Recent Scientific Research,2018,9(5):26566-26570.
参考文献 83
CARNE-SANCHEZ A,IMAZ I,CANO-SARABIA M,et al.A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures[J].Nature Chemistry,2013,5(3):203-213.
参考文献 84
ZHANG Z,HE C L,CHEN X S.Hydrogels based on ph-responsive reversible carbon-nitrogen double-bond linkages for biomedical applications[J].Materials Chemistry Frontiers,2018,2(10):1765-1778.
参考文献 85
SHEKHAR S,CHAUDHARY V,SHARMA B,et al.Sustainable polysaccharide hydrogels based on dynamic Schiff base linkages as versatile building blocks for fabricating advanced functional materials[J].Journal of Polymers and the Environment,2023,31(4):1257-1278.
参考文献 86
BELOWICH M E,STODDART J F.Dynamic imine chemistry[J].Chemical Society Reviews,2012,41(6):2003-2024.
参考文献 87
GARCÍA F,SMULDERS M M J.Dynamic covalent polymers[J].Journal of Polymer Science Part a-Polymer Chemistry,2016,54(22):3551-3577.
参考文献 88
ZHANG H,WANG D,LIU W X,et al.Recyclable polybutadiene elastomer based on dynamic imine bond[J].Journal of Polymer Science Part A:Polymer Chemistry,2017,55(12):2011-2018.
参考文献 89
ZHANG H S,SU Z P,WANG X H.Starch-based rehealable and degradable bioplastic enabled by dynamic imine chemistry[J].Acs Sustainable Chemistry & Engineering,2022,10(26):8650-8657.
参考文献 90
YAN M L,LAN X J,ZHAO W J.Self-renewal poly-Schiff base/gallium-based liquid metal composite coatings triggered via water for superior antimicrobial performance under water[J].Progress in Organic Coatings,2024,186:108075-108085.
参考文献 91
KUMAR R,SINGH A A,KUMAR U,et al.Recent advances in synthesis of heterocyclic Schiff base transition metal complexes and their antimicrobial activities especially antibacterial and antifungal[J].Journal of Molecular Structure,2023,1294:136346.
参考文献 92
ASHRAF T,ALI B,QAYYUM H,et al.Pharmacological aspects of Schiff base metal complexes:A critical review[J].Inorganic Chemistry Communications,2023,150:110449.
参考文献 93
MURTAZA G,MUMTAZ A,KHAN F A,et al.Recent pharmacological advancements in Schiff bases:A review[J].Acta Poloniae Pharmaceutica,2014,71(4):531-535.
参考文献 94
CHEN S,ALADEJANA J T,LI X,et al.A strong,antimildew,and fully bio-based adhesive fabricated by soybean meal and dialdehyde chitosan[J].Industrial Crops and Products,2023,194:116277-116285.
参考文献 95
CHEN Y,MI Y Q,LI Q,et al.Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications[J].International Journal of Biological Macromolecules,2020,143:714-723.
参考文献 96
NAZIRKAR B,MANDEWALE M,YAMGAR R.Synthesis,characterization and antibacterial activity of Cu(II)and Zn(II)complexes of 5-aminobenzofuran-2-carboxylate Schiff base ligands[J].Journal of Taibah University for Science,2019,13(1):440-449.
参考文献 97
BOYLE T J,SEARS J M,GREATHOUSE J A,et al.Synthesis and characterization of structurally diverse alkaline-earth salen compounds for subterranean fluid flow tracking[J].Inorganic Chemistry Communications,2018,57(5):2402-2415.
参考文献 98
WANG L Y,HUANG C Y,HU F L,et al.Preparation and antitumor application of N-phenylcarbazole/triphenylamine-modified fluorescent half-sandwich iridium(III)Schiff base complexes[J].Dalton Transactions,2021,50(43):15888-15899.
参考文献 99
ZHUANG Y F,ZHU L P,CHEN X P,et al.Synthesis of carbon dot based Schiff bases and selective anticancer activity in glioma cells[J].Rsc Advances,2024,14(3):1952-1961.
参考文献 100
KENAWY E,EL-KHALAFY S H,ABOSHARAF H A,et al.Synthesis,characterization,and anticancer potency of branched poly(p-hydroxy styrene)Schiff-bases[J].Macromolecular Bioscience,2023,23(11):2300090-2300103.
参考文献 101
HASSAN A,ASKAR A,NOSSIER E,et al.Antibacterial evaluation,in silico characters and molecular docking of Schiff bases derived from 5-aminopyrazoles[J].Molecules,2019,24(17):3130-3141.
参考文献 102
ARAGON-MURIEL A,LISCANO Y,UPEGUI Y,et al.In vitro evaluation of the potential pharmacological activity and molecular targets of new benzimidazole-based Schiff base metal complexes[J].Antibiotics(Basel),2021,10(6):728-754.
参考文献 103
CAROCCI A,CATALANO A,BRUNO C,et al.Synthesis and in vitro sodium channel blocking activity evaluation of novel homochiral mexiletine analogs[J].Chirality,2009,22(3):299-307.
参考文献 104
ROSENBERG B,VANCAMP L,TROSKO J E,et al.Platinum compounds:a new class of potent antitumour agents[J].Nature,1969,222(5191):385-390.
参考文献 105
PAGES B J,ANG D L,WRIGHT E P,et al.Metal complex interactions with DNA[J].Dalton Transactions,2015,44(8):3505-3526.
参考文献 106
ANUPAMA B.DNA binding interactions,docking and antioxidative studies of ternary copper(II)complexes[J].Journal of Molecular Structure,2020,1210:127988-127996.
参考文献 107
MANUS L M,HOLBROOK R J,ATESIN T A,et al.Axial ligand exchange of n-heterocyclic cobalt(III)Schiff base complexes:molecular structure and nmr solution dynamics[J].Inorganic Chemistry Communications,2013,52(2):1069-1076.
参考文献 108
CHENNAM K P,RAVI M,USHAIAH B,et al.Synthesis,characterization,DNA interactions,DNA cleavage,radical scavenging activity,antibacterial,anti-proliferative and docking studies of new transition metal complexes[J].Journal of Fluorescence,2016,26(1):189-205.
参考文献 109
PASDAR H,HEDAYATI S B,FOROUGHIFAR N,et al.Synthesis,characterization and antibacterial activity of novel 1,3-diethyl-1,3-bis(4-nitrophenyl)urea and its metal(II)complexes[J].Molecules,2017,22(12):2125-2136.
参考文献 110
GUO Z Y,XING R,LIU S,et al.Antifungal properties of Schiff bases of chitosan,N-substituted chitosan and quaternized chitosan[J].Carbohydrate Research,2007,342(10):1329-1332.
参考文献 111
JIN X X,WANG J T,BAI J.Synthesis and antimicrobial activity of the Schiff base from chitosan and citral[J].Carbohydrate Research,2009,344(6):825-829.
参考文献 112
HAMED A A,ABDELHAMID I A,SAAD G R,et al.Synthesis,characterization and antimicrobial activity of a novel chitosan Schiff bases based on heterocyclic moieties[J].International Journal of Biological Macromolecules,2020,153:492-501.
参考文献 113
LIU D,SHU H B,ZHOU J W,et al.Research progress on new environmentally friendly antifouling coatings in marine settings:A review[J].Biomimetics,2023,8(2):200-227.
参考文献 114
LIU W J,YAN M L,ZHAO W J.Antibacterial-renew dual-function anti-biofouling strategy:self-assembled Schiff-base metal complex coatings built from natural products[J].Journal of Colloid and Interface Science,2023,629:496-507.
参考文献 115
戴胜,刘鲁英,王致钘,等.具有增强光催化和抗菌活性的 TiO2@Ag-GO 复合材料[J].中国表面工程,2024,37(1):118-125.DAI Sheng,LIU Luying,WANG Zhixing,et al.TiO2@Ag-GO composite materials with enhanced photocatalytic and antimicrobial activities[J].China Surface Engineering,2024,37(1):118-125.(in Chinese)
参考文献 116
MOUSSA S N,BOUHIDEL Z,CHEROUANA A.A new crystal form and anti-microbial activity of(e)-1-3-(2-hy-droxy-benzyl-idene-amino)-phen-yl ethanone[J].Acta Crystallographic,2018,74(7):884-888.
参考文献 117
JOSE A P,SANKARGANESH M,RAJA D J,et al.Pyrimidine derivative Schiff base ligand stabilized copper and nickel nanoparticles by two step phase transfer method;in vitro anticancer,antioxidant,anti-microbial and DNA interactions[J].Journal of Fluorescence,2020,30(3):471-482.
参考文献 118
OBASI L N,KAIOR G U,RHYMAN L,et al.Synthesis,characterization,antimicrobial screening and computational studies of 4-[3-(4-methoxy-phenyl)-allylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihyd ro-pyrazol-3-one[J].Journal of Molecular Structure,2016,1120:180-186.
参考文献 119
WANG Z Q,GAO J Q,WANG J,et al.Spectroscopic analyses on interaction of amantadine-salicylaldehyde,amantadine-5-chloro-salicylaldehyde and amantadine-o-vanillin Schiff-bases with bovine serum albumin(bsa)[J].Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2011,83(1):511-517.
参考文献 120
KARTHIKEYAN M S,PRASAD D J,POOJARY B,et al.Synthesis and biological activity of Schiff and mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety[J].Bioorganic & Medicinal Chemistry,2006,14(22):7482-7489.
参考文献 121
MAKAWANA J A,SUN J,ZHU H L.Schiff’s base derivatives bearing nitroimidazole moiety:new class of antibacterial,anticancer agents and potential egfr tyrosine kinase inhibitors[J].Bioorganic & Medicinal Chemistry Letters,2013,23:6264-6268.
参考文献 122
ABOUL-FADL T,BIN-JUBAIR F A,ABOUL-WAFA O.Schiff bases of indoline-2,3-dione(isatin)derivatives and nalidixic acid carbohydrazide,synthesis,antitubercular activity and pharmacophoric model building[J].European Journal of Medicinal Chemistry,2010,45(10):4578-4586.
参考文献 123
PRAKASH C R,RAJA S.Synthesis,characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and mannich base of isatin derivatives[J].Journal of Saudi Chemical Society,2013,17(3):337-344.
参考文献 124
ELSHAARAWY R F M,MUSTAFA F H A,SOFY A R,et al.A new synthetic antifouling coatings integrated novel aminothiazole-functionalized ionic liquids motifs with enhanced antibacterial performance[J].Journal of Environmental Chemical Engineering,2019,7(1):102800-10289.
参考文献 125
KARGAR H,FALLAH-MEHRJARDI M,BEHJATMANESH-ARDAKANI R,et al.Synthesis,spectral characterization,crystal structures,biological activities,theoretical calculations and substitution effect of salicylidene ligand on the nature of mono and dinuclear Zn(II)Schiff base complexes[J].Polyhedron,2022,213:115636-115647.
参考文献 126
NATH B D,ISLAM M M,KARIM M R,et al.Recent progress in metal-incorporated acyclic Schiff-base derivatives:biological aspects[J].Chemistryselect,2022,7(14):202104290-202104312.
参考文献 127
PERVAIZ M,SADIQ S,SADIQ A,et al.Azo-Schiff base derivatives of transition metal complexes as antimicrobial agents[J].Coordination Chemistry Reviews,2021,447:214128-214170.
参考文献 128
SAKIYAN I,ÖZDEMIR R,ÖGÜTCÜ H.Synthesis,characterization,and antimicrobial activities of new n-(2-hydroxy-1-naphthalidene)-amino acid(l-tyrosine,l-arginine,and l-lysine)Schiff bases and their manganese(III)complexes[J].Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry,2014,44(3):417-423.
参考文献 129
XU Y J,SHI Y,LEI F,et al.A novel and green cellulose-based Schiff base-Cu(II)complex and its excellent antibacterial activity[J].Carbohydrate Polymers,2020,230:115671-115678.
参考文献 130
ABBASI TYULA Y,GOUDARZIAFSHAR H,YOUSEFI S,et al.Template synthesis,characterization and antibacterial activity of D10(Zn2+,Cd2+,Hg2+)Schiff base complexes:a novel supramolecular Cd2+ complex with two 1D helical chains,and its hirshfeld surface analysis[J].Journal of Molecular Structure,2023,1272:134051-134059.
参考文献 131
LIANG J,SUN D J,YANG Y Y,et al.Discovery of metal-based complexes as promising antimicrobial agents[J].European Journal of Medicinal Chemistry,2021,224:214128-214141.
参考文献 132
LOBANA T S,KAUSHAL M,BALA R,et al.Di-2-pyridylketone-n(1)-substituted thiosemicarbazone derivatives of copper(II):biosafe antimicrobial potential and high anticancer activity against immortalized l6 rat skeletal muscle cells[J].Journal of Inorganic Biochemistry,2020,212:111205-111215.
参考文献 133
LIN Y,BETTS H,KELLER S,et al.Recent developments of metal-based compounds against fungal pathogens[J].Chemical Society Reviews,2021,50(18):10346-10402.
参考文献 134
MORRISON C N,PROSSER K E,STOKES R W,et al.Expanding medicinal chemistry into 3d space:metallofragments as 3d scaffolds for fragment based drug discovery[J].Chemical Science,2020,11(5):1216-1225.
参考文献 135
ZALTARIOV M F,VLAD A,CAZACU M,et al.Silicon-containing bis-azomethines:synthesis,structural characterization,evaluation of the photophysical properties and biological activity[J].Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2015,138:38-48.
参考文献 136
SOROCEANU A,VACAREANU L,VORNICU N,et al.Assessment of some application potentials for copper complexes of the ligands containing siloxane moiety:antimicrobial,antifungal,antioxidant and redox activity[J].Inorganica Chimica Acta,2016,442:119-123.
参考文献 137
PAHONTU E,JULEA F,ROSU T,et al.Antibacterial,antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones[J].Journal of Cellular and Molecular Medicine,2015,19(4):865-878.
参考文献 138
MORE M S,JOSHI P G,MISHRA Y K,et al.Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications:A review[J].Materials Today Chemistry,2019,14:100195-100216.
参考文献 139
MANJULA B,ANTONY S A,DHANARAJ C J.Synthesis,spectral characterization,and antimicrobial activities of Schiff base complexes derived from 4-aminoantipyrine[J].Spectroscopy Letters,2014,47(7):518-526.
参考文献 140
RAMAN N,UTTHRA P P,CHELLAPANDI T.Insight into the in vitro anticancer screening,molecular docking and biological efficiency of pyridine-based transition metal(II)complexes[J].Journal of Coordination Chemistry,2020,73(1):103-119.
参考文献 141
FERNÁNDEZ G J M,RIO-PORTILLA F D,QUIROZ-GARCı́ A B,et al.The structures of some ortho-hydroxy Schiff base ligands[J].Journal of Molecular Structure,2001,561(1-3):197-207.
参考文献 142
MAL A,DING H M,LI M S,et al.Covalent organic frameworks with nanopores for biological applications:A review[J].Acs Applied Nano Materials,2022,5(10):13972-13984.
参考文献 143
SHINDE D B,KANDAMBETH S,PACHFULE P,et al.Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores[J].Chemical Communications,2015,51(2):310-313.
参考文献 144
CHEN X,ADDICOAT M,JIN E Q,et al.Locking covalent organic frameworks with hydrogen bonds:general and remarkable effects on crystalline structure,physical properties,and photochemical activity[J].Journal of the American Chemical Society,2015,137(9):3241-3248
参考文献 145
CHANDRA S,KUNDU T,KANDAMBETH S,et al.Phosphoric acid loaded azo(-N=N-)based covalent organic framework for proton conduction[J].Journal of the American Chemical Society,2014,136(18):6570-6573.
参考文献 146
CHEN X,HUANG N,GAO J,et al.Towards covalent organic frameworks with predesignable and aligned open docking sites[J].Chemical Communications,2014,50(46):6161-6163.
参考文献 147
ZHANG H X,MA J,LIU C,et al.Antibacterial activity of guanidinium-based ionic covalent organic framework anchoring ag nanoparticles[J].Journal of Hazardous Materials,2022,435:128965-128973.
参考文献 148
ZHAO Z P,FENG H M,QIN D,et al.Ph-responsive intelligent antibacterial coatings based on 2D-COF for controlled release of capsaicin[J].Acs Applied Polymer Materials,2023,5:2124-2135.
参考文献 149
LIU T T,HU X Y,WANG Y F,et al.Triazine-based covalent organic frameworks for photodynamic inactivation of bacteria as type-II photosensitizers[J].Journal of Photochemistry and Photobiology B,2017,175:156-162.
参考文献 150
HYNEK J,ZELENKA J,RATHOUSKY J,et al.Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria[J].Acs Applied Materials & Interfaces,2018,10:8527-8535.
参考文献 151
DING L G,WANG S,YAO B J,et al.Synergistic antibacterial and anti-inflammatory effects of a drug-loaded self-standing porphyrin-COF membrane for efficient skin wound healing[J].Advanced Healthcare Materials,2021,10(8):2001821-2001832.
参考文献 152
MITRA S,KANDAMBETH S,BISWAL B P,et al.Self-exfoliated guanidinium-based ionic covalent organic nanosheets(iCONS)[J].Journal of the American Chemical Society,2016,138:2823-2828.
参考文献 153
MAL A,VIJAYAKUMAR S,MISHRA R K,et al.Supramolecular surface charge regulation in ionic covalent organic nanosheets:reversible exfoliation and controlled bacterial growth[J].Angewandte Chemie-International Edition in English,2020,59:8713-8719.
参考文献 154
HIGUERAS L,LÓPEZ-CARBALLO G,GAVARA R,et al.Reversible covalent immobilization of cinnamaldehyde on chitosan films via Schiff base formation and their application in active food packaging[J].Food and Bioprocess Technology,2015,8(3):526-538.
参考文献 155
GUO Y H,YAN M L,ZHAO W J.Cinnamaldehyde grafted porous aerogel-organ gel liquid infused surface for achieving difunctional long-term dynamic antifouling[J].Journal of Colloid and Interface Science,2024,653:833-843.
参考文献 156
ARNON-RIPS H,COHEN Y,SAIDI L,et al.Covalent linkage of bioactive volatiles to a polysaccharide support as a potential approach for preparing active edible coatings and delivery systems for food products[J].Food Chemistry,2021,338:127822-127830.
参考文献 157
GAO L H,LIU X X,XU M X,et al.Biodegradable anti-biofilm fiber-membrane ureteral stent constructed with a robust biomimetic superhydrophilic polycationic hydration surface exhibiting synergetic antibacterial and antiprotein properties[J].Small,2021,17(20):2006815-2006828.
参考文献 158
ZHANG P F,CHEN X Y,BU F Q,et al.Dual coordination between stereochemistry and cations endows polyethylene terephthalate fabrics with diversiform antimicrobial abilities for attack and defense[J].Acs Applied Materials & Interfaces,2023,15(7):9926-9939.
参考文献 159
XIANG S,YANG J,CUI Z,et al.Preparation of hollow fiber membrane via grafting tannic acid and its influence on microstructure,permeability and anti-fouling[J].Materials Letters,2021,285:129095-129099.
参考文献 160
XIE Y,CHEN L T,ZHANG X,et al.Integrating zwitterionic polymer and ag nanoparticles on polymeric membrane surface to prepare antifouling and bactericidal surface via Schiff-based layer-by-layer assembly[J].Journal of Colloid and Interface Science,2018,510:308-317.
参考文献 161
ZHANG Y D,ZHANG X,ZHAO Y Q,et al.Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties[J].Biomaterials Science,2020,8(3):997-1006.
参考文献 162
LI Q,ZHANG X T,YU H,et al.A facile surface modification strategy for improving the separation,antifouling and antimicrobial performances of the reverse osmosis membrane by hydrophilic and Schiff-base functionalizations[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2020,587:124326-124334.
参考文献 163
BARAN N Y,SACAK M.Preparation of highly thermally stable and conductive Schiff base polymer:molecular weight monitoring and investigation of antimicrobial properties[J].Journal of Molecular Structure,2018,1163:22-32.
参考文献 164
LEE S J,GWAK M A,CHATHURANGA K,et al.Multifunctional chitosan/tannic acid composite films with improved anti-UV,antioxidant,and antimicrobial properties for active food packaging[J].Food Hydrocolloids,2023,136:108249-108260.
参考文献 165
ELSHAARAWY R F M,MUSTAFA F H A,VAN GEELEN L,et al.Mining marine shell wastes for polyelectrolyte chitosan anti-biofoulants:fabrication of high-performance economic and ecofriendly anti-biofouling coatings[J].Carbohydrate Polymers,2017,172:352-364.
参考文献 166
PAWARIYA V,DE S,DUTTA J.Chitosan-based Schiff bases:promising materials for biomedical and industrial applications[J].Carbohydrate Polymers,2024,323:121395-121419.
参考文献 167
NASROLLAHZADEH M,SHAFIEI N,NEZAFAT Z,et al.Recent progresses in the application of cellulose,starch,alginate,gum,pectin,chitin and chitosan based(nano)catalysts in sustainable and selective oxidation reactions:A review[J].Carbohydrate Polymers,2020,241:116353-116377.
参考文献 168
ZHANG Y,QI Y C,ULRICH S,et al.Dynamic covalent polymers for biomedical applications[J].Materials Chemistry Frontiers,2020,4(2):489-506.
参考文献 169
FU X R,SHEN Y,JIANG X,et al.Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics[J].Carbohydrate Polymers,2011,85(1):221-227.
参考文献 170
OMIDI S,KAKANEJADIFARD A.A review on biological activities of Schiff base,hydrazone,and oxime derivatives of curcumin[J].Rsc Advances,2020,10(50):30186-30202.
参考文献 171
XU G,PRANANTYO D,ZHANG B,et al.Tannic acid anchored layer-by-layer covalent deposition of parasin I peptide for antifouling and antimicrobial coatings[J].Rsc Advances,2016,6(18):14809-14818.
参考文献 172
YUAN Y,SHEN S H,FAN D D.A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing:shape adaptability,injectable self-healing property and enhanced adhesion[J].Biomaterials,2021,276:120838-120854.
参考文献 173
ZHAO X,LUO J L,HUANG Y,et al.Injectable antiswelling and high-strength bioactive hydrogels with a wet adhesion and rapid gelling process to promote sutureless wound closure and scar-free repair of infectious wounds[J].Acs Nano,2023,17(21):22015-22034.
参考文献 174
CHEN J L,MU Z X,CHEN D F,et al.H2S-releasing versatile hydrogel dressing with potent antimicrobial,anti-inflammatory,epithelialization and angiogenic capabilities for diabetic wound healing[J].Chemical Engineering Journal,2023,469:143985-141001.
参考文献 175
ZHANG Y,PHAM C Y,YU R,et al.Dynamic hydrogels based on double imine connections and application for delivery of fluorouracil[J].Frontiers in Chemistry,2020,8:739-746
参考文献 176
YE J,FU S W,ZHOU S Y,et al.Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application[J].European Polymer Journal,2020,139:110024-110039.
参考文献 177
AL Z W,KHAN M E,KO Y G.A simple method to functionalize the surface of plasma electrolysis produced inorganic coatings for growing different organic structure[J].Progress in Organic Coatings,2022,171:107008-107013.
参考文献 178
DING W,WU Y B.Sustainable dialdehyde polysaccharides as versatile building blocks for fabricating functional materials:An overview[J].Carbohydrate Polymers,2020,248:116801-116815.
参考文献 179
WEI L J,TAN W Q,WANG G,et al.The antioxidant and antifungal activity of chitosan derivatives bearing Schiff bases and quaternary ammonium salts[J].Carbohydrate Polymers,2019,226:115256-115266.
参考文献 180
QIAN C,ZHANG T B,GRAVESANDE J,et al.Injectable and self-healing polysaccharide-based hydrogel for ph-responsive drug release[J].International Journal of Biological Macromolecules,2019,123:140-148.
参考文献 181
ZHU Y,WANG Y M,SUN Y,et al.In situ self imine-crosslinked nanocomplexes loaded with small noncoding RNA for efficient osteoarthritis attenuation[J].Chemical Engineering Journal,2021,420:127631-127639.
参考文献 182
AMIRIAN J,ZENG Y,SHEKH M I,et al.In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosan as potential wound dressing for skin repairing[J].Carbohydrate Polymers,2021,251:117005-117017.
参考文献 183
LIU J Q,WU M M,LU J,et al.Janus intelligent antibacterial hydrogel dressings for chronic wound healing in diabetes[J].Acs Applied Polymer Materials,2023,5(4):2596-2606.
参考文献 184
OZAY H,ILGIN P,OZAY O.Novel hydrogels based on crosslinked chitosan with formyl-phosphazene using Schiff-base reaction[J].International Journal of Polymeric Materials and Polymeric Biomaterials,2021,70(4):246-255.
参考文献 185
HASSAN M A,OMER A M,ABBAS E,et al.Preparation,physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives[J].Scientific Reports,2018,8:11416-11429.
参考文献 186
LIANG Y Q,LI Z L,HUANG Y,et al.Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing[J].Acs Nano,2021,15(4):7078-7093.
参考文献 187
HUANG Y,MU L,ZHAO X,et al.Bacterial growth-induced tobramycin smart release self-healing hydrogel for pseudomonas aeruginosa-infected burn wound healing[J].Acs Nano,2022,16(8):13022-13036.
参考文献 188
FUKUDA K,SHIMODA M,SUKEGAWA M,et al.Doubly degradable dynamers:dynamic covalent polymers based on reversible imine connections and biodegradable polyester units[J].Green Chemistry,2012,14(10):2907-2911.
参考文献 189
HOU S T,SUO X,CHEN N Q,et al.Facile synthesis of a linear porous organic polymer via Schiff-base chemistry for propyne/propylene separation[J].Polymer Chemistry,2020,11(27):4382-4386.
参考文献 190
NISHAT N,KHAN S A,PARVEEN S,et al.Antimicrobial agents:synthesis,spectral,thermal,and biological aspects of a polymeric Schiff base and its polymer metal(II)complexes[J].Journal of Coordination Chemistry,2010,63(22):3944-3955.
目录contents

    摘要

    微生物在工程装备、医疗设备及生活物品上的粘附生长为设备高效安全运行和人民生命健康带来了沉重负担,是亟需解决的重大问题。近年来,席夫碱、席夫碱金属配合物和聚席夫碱等席夫碱基材料因其独特的结构特征和物化性质而备受关注,尤其是其展现出的抗菌、抗真菌和防污等生物活性有望在生物医药、工业和海洋等各个领域广泛应用,但针对席夫碱基抗菌防污材料的研究进展尚缺乏系统综述。简要回顾席夫碱基材料的发展历史,总结包括传统合成法和绿色合成法(超声波辅助合成、微波辐照法、研磨法和水溶剂法)制备席夫碱基材料的合成方法,分析席夫碱动力学上的不稳定性衍生出的独特化学特征(包括本征自愈性、可回收性、刺激响应性、水降解性和环保性等),尤其强调它们在医药材料、海洋防污等抗菌防污材料方面的研究进展和应用前景。指出相关研究在机理揭示、材料高效制备和应用等方面的共性科学问题,进一步提出席夫碱基抗菌防污材料的未来发展方向,相关内容可为化学、材料、海洋防污等领域的研究人员和专业人士提供参考。

    Abstract

    The adhesion and growth of organisms on engineering equipment, medical devices, and household items necessitates the efficient and safe operation of equipment and the health of the human population, which is a challenge that needs urgent solutions. Schiff base-based materials, such as Schiff bases, Schiff base metal complexes, and poly-Schiff bases, have attracted significant attention because of their unique structural features and physicochemical properties, particularly their proven antibacterial, antifungal, and antifouling activities. These materials are expected to have a wide range of applications in various fields, such as biomedicine, industry, and marine science. Schiff base compounds were first discovered approximately 160 years ago by Hugo Schiff, a German chemist, and are formed through the dehydration and condensation of aldehydes or ketones (carbonyl compounds) with amines. Methods have been developed to synthesize Schiff bases through the addition of phenols / phenol ethers or organometallic reagents to nitriles and the conversion of olefins into ketoimines. Chemical reactions of conventional Schiff bases are typically conducted in organic solvents under mild conditions and are easy to perform. However, this method requires large amounts of organic solvents, catalysts, and energy, which are prone to environmental hazards. In recent years, the green synthesis method for Schiff base materials,which can achieve efficient and precise energy use, has become a research hotspot and the main future development direction. It mainly includes ultrasound-assisted synthesis, microwave irradiation, grinding, and water-solvent methods. Schiff bases are kinetically unstable; this instability, combined with their recoverability, gives them unique inherent properties. By grafting or embedding this type of linkage into the polymer chain segments, materials can be made to share the same bonding characteristics while possessing a number of outstanding properties that are unavailable in individual structural units, particularly intrinsic self-healing, recyclability, stimulus-responsiveness, water-degradability, and eco-friendliness. Schiff base-based organics include a wide range of antimicrobial and antifouling materials that exhibit good sensitivity and inhibition of microorganisms, such as bacteria, fungi, and algae. Its main possible antimicrobial and antifouling mechanisms include the following. ①Schiff base compounds and their degradation products damage the integrity, permeability, and selectivity of the cell membrane and wall, resulting in an imbalance of osmotic pressure inside and outside the cell and intracellular metabolic disorders, leading to cell death. ②Generating reactive oxygen species (ROS) through oxidation results in the accumulation of intracellular ROS and cell death via oxidative senescence, thus inhibiting the growth and reproduction of pathogens. ③Schiff bases and their decompositions bind to essential components of microorganisms, such as proteins, enzymes, and DNA, destroying the integrity of the structure and function of the organism, thus causing antimicrobial and antifouling effects. In addition, the inhibitory and ant adhesion effects of Schiff base-based materials on bacteria and fungi are usually not explained by a single mechanism, but require a combination of multiple antimicrobial and antifouling mechanisms. Currently, Schiff base-based antimicrobial and antifouling materials fall into five main categories: Schiff bases and their metal complexes, Schiff base-based covalent organic frameworks, side-chain poly-Schiff bases, cross-linked poly-Schiff bases, and main-chain poly-Schiff bases. Schiff bases and their metal complexes are mainly small-molecule organics, which are used as biocides and antifouling agents in biomedicine and marine fouling protection and cannot be used alone as coatings or block materials. Schiff base-valent organic frameworks typically exhibit show micro-nanoparticle and lamellar structures, which are good carriers for ROS generation and can be used as functional fillers in block materials or coatings with good long-term antifouling ability. Side-chain and cross-linked poly-Schiff base materials with good biocompatibility are typically used as biomedical materials. Main-chain poly-Schiff base materials are important for marine antifouling materials because of their multifunctionality and eco-friendliness. This review paper briefly describes the history, chemical characteristics, and synthetic methods of Schiff base-based materials, with emphasis on their research progress and application prospects in antibacterial and antifouling materials. Common scientific issues in related research are highlighted, and future directions for the development of Schiff base-based antimicrobial and antifouling materials are proposed. This review is a reference for researchers and professionals in chemistry, materials, and marine antifouling.

    关键词

    席夫碱配合物医用材料抗菌防污涂层

  • 0 前言

  • 长久以来,微生物在工程装备、医疗设备及生活物品上的粘附生长对设备高效安全运行和人类健康造成巨大困扰。最典型的两个例子是细菌感染[1] 和海洋生物污损[2-3]。细菌和真菌可以在手套、尿道导管、止血纱布等物品表面上存活数小时甚至数天,并与宿主接触后在个体之间传播,造成群体感染。海洋污损是指海洋污损生物(如细菌、微藻和软体动物)在设施设备上的粘附生长,表现为促进金属材料腐蚀,增加船舶阻力和燃料消耗,缩短设备使用寿命,甚至造成船用仪器故障[4-5]。近百年来,使用抗菌防污材料一直是解决这一棘手问题的最佳选择,然而,具有实质性抗菌防污效果的材料通常含有大量抗生素或杀生剂。抗生素或杀生剂的滥用不仅大量和无选择性地杀死污损物,而且创造出了大量超级耐药菌[6],极大地损害了抗生素药物的使用效果,更是对人类健康医疗保健系统和海洋生态构成巨大挑战[7],这使得开发非抗生素药物及新型抗菌防污材料成为迫切需要。

  • 近年来,席夫碱、席夫碱金属复合物和聚席夫碱等席夫碱基抗菌防污材料因其独特的结构特征和物化性质而备受关注,是解决细菌感染与海洋生物污损的潜在材料。席夫碱化合物最先由德国化学家雨果-希夫在大约 160 年前发现,它是由醛或酮(羰基化合物)与胺脱水缩合而成[8],醛与胺脱水产生醛亚胺,而酮与胺脱水产生酮亚胺。席夫碱可以看成是醛或酮的氮同源物,其中羰基(C=O)被亚胺 (C=N)或甲亚胺(-CONN-)取代,其化学通式为 R1R2C=N-R3,其中 R1、R2 和 R3可以是烷基、芳基或任何杂芳基。得益于席夫碱立体电子结构的可调性,甲亚胺基中杂化轨道上 N 原子的一对孤对电子是优异的多功能含氮配体,而金属离子含有空轨道,因此可以互相络合形成席夫碱金属配合物[9],除Cu、 Fe、Zn 等常见的金属离子,还包括 d 区金属和镧系元素在内的一系列具有不同几何结构和化学价态的金属离子[10-11]。该类配合物易于合成且结构稳定,现已用于包括催化、储能、生物活性等在内的多方面研究[12-13],其中席夫碱及其金属配合物正因其良好的抗菌、抗真菌、抗癌、抗自由基、抗结核、抗疟药物、活性氧(Reactive oxygen species,ROS)清除和抗病毒等生物活性而受到广泛关注[14-16],是寻找新型药物和开发抗菌材料的良好平台。

  • 聚席夫碱是指在分子链段中含有亚胺或甲亚胺官能团的一类高分子,按席夫碱官能团在高分子链段中所处的位置,大致可分为主链型、侧链型、交联型和共价有机框架(Covalent organic frameworks,COFs)。聚席夫碱中的席夫碱官能团为动态共价键,席夫碱官能团在一定条件下可以进行断裂和再生,因此具有自修复的特性[17-18]。例如,TIAN 等[19]通过席夫碱反应将四氢嘧啶基阳离子抗菌聚合物与聚香草醛丙烯酸酯交联,得到一种自修复高效抗菌水凝胶材料。聚席夫碱中的席夫碱官能团与金属离子也可以发生配位反应,生成高分子金属配合物,形成动态化学交联点,在赋予材料自修复能力的同时,提升材料的力学性能[20-21]。另外,聚席夫碱在海水环境中可降解为具有防污能力的小分子胺类和醛类物质,醛类物质可在自然界中快速降解,不产生累积效应,保证环境友好的同时,可提高降解产物的防污利用率。基于席夫碱兼具可配位、自修复、可降解和本征抗菌防污特点,席夫碱、席夫碱金属配合物和聚席夫碱等席夫碱基材料正成为一种极具探索价值及应用意义的抗菌防污材料[22-23]

  • 本文基于目前席夫碱基材料在抗菌防污领域的研究,整理了席夫碱及其金属配合物基材料的常用合成路线和制备方法,探讨了席夫碱基材料特有的功能性质及其抗菌防污机制,重点归纳了席夫碱有机物和聚席夫碱基类材料在抗菌防污应用中的研究现状。根据上述总结,进一步介绍该类材料的瓶颈技术问题及未来发展方向。

  • 1 席夫碱及其金属配合物化学

  • 如前所述,雨果-希夫于 1864 年首次报道了亚胺或偶氮亚胺的合成[8],从而发现了一类新的有机化合物。为了纪念他在该方面的卓越贡献,这类亚胺化合物被称为席夫碱。席夫碱化合物的发现为席夫碱络合化学的发展带来了机遇,19 世纪 70 年代中期,丹麦的约根森开始了合成金属配位化合物的研究[24]。维尔纳在 1893 年研究了包括钴、氯和氨在内的多种化合物[25],显著加快了这一领域的进步,也正因他在配位化学上的成就,于 1913 年荣获诺贝尔化学奖。在过去的近百年里,人们对席夫碱配体进行了广泛研究,其中研究最多的席夫碱配体之一是由 PFEIFFER 等[26]于 1933 年报道的萨伦 (Salen)配体体系。它是由水杨醛化合物与二胺衍生物缩合后产生两个氮和羟基分子而形成的化合物。席夫碱配体的化学性质和合成方法因金属类型和配体上的功能基团而异,下面将介绍席夫碱及其金属配合物的主要合成方法。

  • 1.1 席夫碱的合成路径

  • 1.1.1 酮与胺的脱缩反应及相关的衍生反应

  • 合成席夫碱的最典型方法是使用胺与醛 / 酮进行脱水缩合反应(图1)[12],该方法涉及醛或酮与伯胺脱水缩合的过程。在该反应中,酮的反应活性低于醛,芳香族酮的反应活性低于脂肪族酮,因此需要较苛刻的条件才能转化为亚胺。胺转化为亚胺的过程是可逆的(图1a),羰基与胺在不同的合成工艺参数和溶剂中脱水缩合时,脱水因素会极大地影响缩合过程[27]。目前,已开发出了多种去除水的方法,包括分子筛、共沸蒸馏以及采用原硅酸四甲酯或原甲酸三甲酯等脱水剂[28-29]。有些催化剂能加速该反应,例如 HCl、H2SO4、对甲苯磺酸、对甲苯磺酸吡啶鎓等有机 / 无机酸和 ZnCl2、SnCl4、TiCl4、 MgSO4、BF3Et2O 等路易斯酸。最近还提出了各种加快反应进程的改良策略,如采用多重超声波和红外线辐照、异构催化剂等[30-31]

  • 缩酮是一种类似于酮的化合物,可逆转化为酮化合物,通常用以在有机化学反应中保护酮羰基,因此在一定条件下缩酮与胺反应可以生成酮亚胺。如图1b 所示,利用芳基酮二乙基酮和芳基胺可以得到高产率的酮亚胺,而采用烷基胺的产率较低[32]。伯胺的金属碱或钠盐与伯胺具有类似的结构特征 (图1c),伯胺的金属碱或钠盐与酮芳香族发生作用时会生成席夫碱[1233]

  • 醛和酮可以由相应的醇通过氧化法合成,基于该原理,近年来有学者通过氧化胺或醇获得醛,然后原位并联与胺反应制备席夫碱(图1d)[34-35]。CHU 等[36]以 V2O5 为催化剂、H2O2 为氧化剂,通过在水中氧化伯胺生成亚胺。HUANG 等[37]和 LARGERON 等[38]进一步改善了这种胺氧化技术。LAN 等[39]通过氧化苄醇和芳香胺合成了席夫碱,MARUI 等[40]使用 CuSO4 / H2O2 作为催化体系也进行了类似的反应。KAZEMNEJADI 等[41]发现聚(水杨醛)和氧分子结合的 Mn(III)异相催化剂可用于氧化伯氨基苄基、醇烯丙基以及伯氨基,进一步生成肟和席夫碱。

  • 图1 醛 / 酮与胺的脱水缩合反应及相关的衍生反应[1227-33]

  • Fig.1 Dehydration condensation reactions of aldehydes / ketones with amines and other similar reactions[12, 27-33]

  • 1.1.2 酚类 / 酚醚、有机金属试剂与腈类的加成反应

  • 含有氰基(-CN)的有机化合物称为腈,氰基是一种可加成、强极性和强负性的基团。研究者发现,酚及其醚与烷基 / 芳基氰化物在醚溶剂中的反应平稳,在氯化氢和 / 或氯化锌的催化下能高效合成酮亚胺[42-43]。该反应通常需要将丁腈和苯酚混合在乙醚中,并用气态 HCl 使溶液饱和(图2a),而对于活性较低的苯酚,可使用氯化锌(ZnCl2)催化加速该反应进程[44]。有机金属试剂是一类高效的亲核试剂,可用于未取代席夫碱的合成[45-46],例如,在合成芳基或烷基氰化物时加入格氏试剂(R-Mg-X)或有机锂试剂,可生成未取代的酮亚胺(图2b),杂芳基锂试剂也可用于生成相应的酮亚胺[46]

  • 图2 酚类 / 酚醚、有机金属试剂与腈类的加成反应[4346]

  • Fig.2 Addition reactions of phenols / phenol ethers, organometallic reagents with nitriles [43, 46]

  • 1.1.3 其他反应

  • 除以上介绍的席夫碱合成方法,研究者还开发了其他合成方法[4347]。例如,图3a 展示了一种将烯烃转化为酮亚胺的方法,该方法通常以肼酸(HN3) 为原料,在硫酸(H2SO4)中反应获得酮亚胺。同样,三元醇或卤化物也可以通过类似的反应转化为酮胺。有学者发现,氨基酸与次氯酸钠反应也可形成亚胺(图3b),该反应的第一步是形成氯胺中间体,进一步通过消除二氧化碳和氯化钠产生亚胺[4648]

  • 图3 其他合成席夫碱化合物的反应类型[4346-47]

  • Fig.3 Other reactions for the synthesis of Schiff bases [43, 46-47]

  • 总之,胺与醛 / 酮的脱水缩合反应是合成席夫碱最典型和最常用的方法,具有成本低、工艺成熟等优势,但该反应通常需要除去生成的水才能推动反应进程,这通常会给生产过程带来较为复杂的除水工艺。尽管通过氧化醇或胺一锅法合成席夫碱化合物的工艺具有简便、易操作等优势,但也存在反应产物不易控制、产率低的缺点。通过酚类 / 酚醚、有机金属试剂与腈类的加成反应制备席夫碱化合物时不涉及水分子的脱除过程,反应活性高,但原料涉及反应活性极高的有机金属试剂,导致成本大和生产风险高;烯烃转化为酮亚胺通常以肼酸(HN3)和硫酸(H2SO4)为原料,该反应产生氮气,容易去除,但该反应能合成的席夫碱种类有限,成本较高。

  • 1.2 席夫碱金属配合物的合成路径

  • 席夫碱金属配合物是由席夫碱(配体)与金属离子(中心离子)完全或部分通过配位键结合而形成的,该配位键通常建立在亚胺(C=N)上的氮原子与金属离子之间,并通常以双齿配位方式与金属离子配位。由于偶氮甲基氮原子上未配对的电子赋予了席夫碱配体很强的螯合能力,以及亚胺基团易于分离和灵活合成的特点,席夫碱被认为是配位化学中的优异配体[49-50]。除了席夫碱中的活性亚胺键,席夫碱有机物中其他的 N、O、P 和 / 或 S 等极性杂原子也可为金属离子提供活性亲和力,因此,过渡金属可以与 N、O、P 和 / 或 S 形成金属配合物[51-52]。以席夫碱为配体的金属配合物一般是通过将席夫碱与金属酰胺、烷基、烷氧基、醋酸盐或卤化物等常见的金属盐(配合物)反应合成的,该方法工艺简单、反应条件温和、产率高、适合规模化应用[53-54]。图4 总结了目前五种制备席夫碱金属配合物的常见合成途径。

  • 图4 席夫碱金属配合物的常用合成路径[5355-58]

  • Fig.4 Typical synthetic pathways for Schiff base metal complexes [53, 55-58]

  • 1.2.1 席夫碱与金属烷氧基(M(OR)n)的反应

  • 钛或锆等过渡金属的烷氧基衍生物来源广泛,利用该反应制备席夫碱金属配合物具有操作简单的优势。例如,SINGH 等[56]利用甲醇与二氯化锆反应制备了其金属配合物,并通过该反应合成了新型席夫碱及其锆配合物,得到的元素分析结果与预测试验结果十分吻合(图4)。然而,在制备其他金属的烷氧基衍生物方面仍存在一定的难度,尤其是对湿度高度敏感的镧系元素的烷氧基衍生物。需要注意的是,金属氧化烷与席夫碱的反应是一种平衡反应,难以完全预测生成的化合物[5153]

  • 1.2.2 席夫碱与金属酰胺 M(NMe24反应

  • 该反应是通过去除金属酰胺前驱体中易挥发的 NHMe2 以及消除席夫碱中的酚酸质子来进行的(图4)[53]。例如,WANG 等[59]通过将 M(NMe24(M= Ti、Zr)与手性双芳基席夫碱反应,制备了系列新型手性双配位配合物。结果表明,Ti 和 Zr 酰胺是氨基烯类不对称羟基化或环化的高效催化剂,可提供相对较高产率的环胺。

  • 1.2.3 席夫碱与金属烷基 MRn 反应

  • 金属烷基配合物可作为合成席夫碱金属配合物的一种清洁而有效的方法(图4)。其中,三种容易获得的金属烷基(AlMe3、GaMe3、InMe3)可用于直接合成配体,因此,M(Mesityl)n(M=Fe、Mn、 V、Cu,Mesityl=2,4,6-三甲基苯)适合用于合成以 Fe、Mg、V 和 Cu 为基础的席夫碱配体[53]。近年来, XU 等[60]通过该方法由六价萨伦配体合成几种未曾报道的铝(Al)配合物。

  • 1.2.4 席夫碱与金属醋酸盐 M(OAc)2 反应

  • 通过使用适当的金属醋酸盐处理配体,可以合成各种席夫碱金属配合物(图4),例如,将席夫碱在金属盐存在的情况下加热回流[57]。Cu、Co 和 Ni 的席夫碱配合物也可以用醋酸盐 M(OAc)2 制备[53-54]。另外, PERVAIZ 等[61]通过氨基酸衍生物配体与 Co、Mn、Cu 和 Cd 金属醋酸盐反应合成了稳定的配合物。

  • 1.2.5 席夫碱与金属卤化物 MXn 反应

  • 使用金属卤化物与席夫碱进行交换反应制备席夫碱金属配合物涉及两个过程:席夫碱配体去质子化,及生成的分子与金属卤化物发生反应(图4)[55]。 TiCl4 或 ZrCl4 与席夫碱直接反应是一种常见的制备方法[58]。对于萨伦金属配合物来说,这种方法进行原位合成时非常有用[62]。例如,JAFARPOUR 等[63] 利用 FeCl3 或 CuCl2 合成了水杨醛苯甲酰腙的金属复合物(Fe3+或 Cu2+)。

  • 1.3 席夫碱基材料的制备方法

  • 在有机溶剂中进行席夫碱化学是最早制备席夫碱材料的方法,也是当前最为广泛的合成方法。随着人们环保意识的增强,近年来也出现了几种制备席夫碱的绿色方法,主要包括超声波法、微波辐照法、研磨法和水溶剂法。这些绿色合成方法为未来席夫碱更可持续、更高效的化学生产提供了一个前景广阔的解决方案。

  • 1.3.1 传统合成法

  • 席夫碱化学是指含有氨基(-NH2、NH2OH、 NH2-NH2)的有机物与羰基(酮或醛)发生可逆相互作用并生成亚胺的反应[64-65]。席夫碱化学反应通常在有机溶剂中进行,条件温和、反应简便,唯一的副产物是水。该反应具有 pH 值敏感性,在 pH 值为 3~7 时,质子催化羰基碳的亲核攻击速度最快,四面体半氨基中间体通常是这类反应的速率决定步骤(图1a)。酸催化可以加快反应速度,但由于末端氮原子的质子化会导致亲核性衰减,因此在 pH 值很低的情况下,反应速度反而减慢,通常情况下, pH 值在 4.5 左右较为理想[66]。目前绝大多数结晶度良好的席夫碱基共价有机框架(Schiff base-based covalent organic frameworks,SBCOFs)是在溶剂热条件下制备的[55],这通常需要苛刻的试验条件,如需在惰性气氛密封的水热反应釜中进行较长时间的高温反应。合适的温度和压力是确保反应可行性的关键参数,制备 SBCOFs 的温度通常在 85~160℃ 之间,而密封容器内的压力(自生压力)通常是不明确的。为了获得结晶度更高的 COFs,缩合反应所选择的溶剂组合和比例也至关重要,通常情况下会选择较为稳定的有机溶剂,如四氢呋喃、二氧六环等[67-68]

  • 1.3.2 绿色合成法

  • 席夫碱材料的绿色合成法已成为研究热点和未来的主要发展方向,主要包括超声波辅助合成、微波辐照法、研磨法和水溶剂法。

  • 超声辅助合成又称超声化学,是一种利用超声波作为能量源合成席夫碱的绿色方法。这种方法产生的高强度声波可在液体介质中产生高频振荡的小气泡,气泡塌陷后,产生高能量、高压和高温的微环境,进而用于激活反应物、促进反应和加速产物的形成。VENKATESAN 等[69]采用超声波方法,通过 2,2'-[萘-2,7-二基双(氧)]二乙酰肼与芳基 / 芳香族醛反应,成功合成了含有萘类似物的席夫碱衍生物。 MERMER 等[70]采用多种方法合成席夫碱衍生物,发现利用超声波能合成所需的产物,且产率高,使用超声波法通过 2-氨基吡啶衍生物与 3-乙氧基水杨醛反应制备了席夫碱,研究发现,席夫碱的酮形式同时具有亲核中心和亲电中心,而酚形式只具有一个亲核中心。与加热和搅拌等传统方法相比,该方法可以提高反应速率,改善反应的产率和选择性。

  • 微波辐照法可将反应物直接暴露在微波能下,能均匀而快速地加热,缩短反应时间,大大提高反应速率[71]。该方法最显著的优点之一是它所需的反应温度大大低于传统的加热方法,从而降低了能耗,并将反应物热分解的风险降低。另外,微波法可在水等可生物降解且无毒的环保溶剂中进行[72-73],相关研究也证明了这种方法在结合醛、酮和胺合成席夫碱方面的有效性和高效率[7274]。例如,AL-HIYARI 等[75]在以芳香醛为反应物合成异烟肼希席夫碱的过程中,对比了微波辅助合成和传统缩合方法。结果表明,利用微波辐照合成席夫碱极大缩短了反应时间,加快了合成速度,提高了生产率,是一种新兴的绿色合成席夫碱的方法[73]

  • 机械研磨法制备席夫碱的原理是通过机械研磨的方式将反应物混合、局部快速加热并形成席夫碱。一方面不需要单独使用催化剂,可在室温和大气压力下进行,也可以在水或离子液体等绿色溶剂中进行;另一方面,研磨过程能增加反应物的表面积和局部区域的温度,提高反应速率和产率。例如BORUAH 等[76]采用研磨法,从水杨醛、二乙烯三胺和硫酸钒中制备了目标化合物,反应迅速,分离出的产物纯度高,克服了溶剂带来的环境问题。 ALHARBI 等[77]利用球磨法从 Fe、Ni、Zn 和 Co 离子溶液中获得了席夫碱配合物。近期,在制备 SBCOFs 方面,室温下使用机械化学研磨直接形成 COFs 方面取得了一些开创性成果[78]。另外,该方法具有放大生产的潜力,适合工业应用,是一种简单、高效、经济的绿色合成方法[79-80]

  • 与有机溶剂相比,水是一种易于回收、可重复使用、廉价和环境危害小的溶剂,利用水作为溶剂合成席夫碱被认为是一种更绿色和安全的合成方法,也是一个前景广阔的研究领域。SACHDEVA 等[81]使用水作为溶剂,以 1H-吲哚-2,3-二酮、氨基酸和硫代氨基脲为原料,采用一锅法合成了目标席夫碱,该方法产量高、反应时间短且环保。SHAMLY 等[82]将 3-氨基苯甲酸、苯胺、乙二胺和水杨醛混合在水溶液中合成了水杨醛基席夫碱,最终产率高达 83%。这一过程中使用水作为溶剂,为传统合成方法提供了一种具有成本和环境效益的替代方法。

  • 利用可再生资源和在较温和的条件下绿色合成席夫碱。例如,在室温水溶液中使用漆酶和过氧化物酶等酶来合成席夫碱;以精油等天然物为原料在无溶剂环境中合成席夫碱;化学气相沉积[78]和喷雾干燥[83]等也已证明可用于 COFs 的制备。

  • 总体而言,传统的席夫碱化学合成法具有条件温和、产率高和便于操作等优势,但需要消耗大量的有机溶剂和催化剂,并伴随着大量能耗,能源利用率低,可能造成环境危害。绿色合成方法减少了席夫碱合成对环境的影响,可实现对能源的高效和精准利用,为发现新的独特化合物提供了可能。

  • 2 席夫碱基聚合物材料的主要特性

  • 席夫碱显示出动力学上的不稳定性,这种不稳定性与它们的复原性相结合,使其具有与生俱来的独特性质。通过在高分子链段中引入这种连接类型,可使材料具有相同的键合特征,同时还具有单个结构单元所不具备的一些突出特性[84]

  • 2.1 可逆与自愈性

  • 可逆性是席夫碱化学的显著动态特征。随着正向反应和逆反应的平行进行,反应物最终都会进入热力学稳定状态,进而产生多重平衡(图1a)。因此,聚合物形成过程中的反应形式应占主导地位,可以选择具有高热力学倾向的原料或反应类型,通过二次加工装置将产物移出或形成其他产物。具有可逆共价键特征的材料在温和条件下易于加工,一定条件下,网络破坏后可自行重新整合(图5a)[85]。氢键、动态共价键、疏水相互作用都存在可逆交联,在超分子体系中,非共价键具有可逆性,从而产生了动态特性,而动态共价键可以是可逆的永久共价键,也可以是物理非共价键。亚胺键的可逆性允许自发地从破坏状态恢复到原来的形式,而不需要任何添加剂或封装剂来促进愈合过程[86]

  • 图5 席夫碱基材料的主要特性[138587-90]

  • Fig.5 Main properties of Schiff base materials [13, 85, 87-90]

  • 2.2 可回收性

  • 可回收性是席夫碱基材料的另一个基本特征。通过在聚合物中引入动态键,具有了应力松弛、可回收性、自愈性和延展性等可适应的机械特性。与传统聚合物相比,非共价键动态交联聚合物很容易回收利用,但通常产生的结构不够坚固。利用动态共价化学作用形成的适应性网络在常温下可作为传统的热固性塑料,在特定的外部刺激下会变得具有延展性、可回收和再加工,具有在下一代材料中应用的潜力,其中席夫碱基聚合物因其内部的动态亚胺键具有很高的可回收性,可恢复原有的物理和化学结构(图5b)[87-88]。此外,在室温和没有催化剂的情况下,动态亚胺交换反应也非常迅速[89]

  • 2.3 刺激响应性

  • 席夫碱基材料的结构由热力学过程控制,并受环境因素改变的影响,使其具有外部刺激响应性,如氧化还原反应、温度、光照、pH 值的刺激会导致相关化学和物理特性的改变和系统自适应,如图5c 所示[13]。动态建在时间尺度的交换会影响材料的响应性(动态键的动力学),因此,微调动态键的交换速率可以生产出适应性强的材料,这也会影响材料的可回收性。

  • 2.4 水降解性

  • 席夫碱基材料的水解特征来源于亚胺键的可逆性。席夫碱是通过羰基与伯氨基的脱水缩合反应形成亚胺键(C=N),反应过程中通过除去水,能推动反应进程。而当席夫碱基材料置于在水环境中,亚胺键在水的攻击下生成胺和醛 / 酮,它们易于进行,反应条件温和。席夫碱的水降解性赋予了该类材料的环保属性,有利于使该类材料快速在环境中降解和吸纳,避免微塑料的产生(图5d)[90]。此外,酸性 pH 下有利于亚胺键的水解断裂,使得席夫碱对 pH 敏感,这为利用席夫碱结构创建刺激响应降解系统提供了可能性。

  • 3 席夫碱的抗菌防污机制

  • 席夫碱、席夫碱金属配合物和聚席夫碱等席夫碱基有机物是一种广泛的抗菌防污材料,对细菌、真菌、海藻等微生物均表现出较好的敏感性和抑制作用,其抗菌防污机理也一直是科研工作者的研究热点[91-92]。近年来,关于席夫碱基材料的抗菌防污机制研究逐渐增多,但是所得结论不甚一致[93]。本文对席夫碱基材料在抗菌防污机理方面的研究进行梳理,归纳出以下几种可能的抗菌防污机制。

  • (1)作用于细胞壁 / 膜:席夫碱基化合物及其降解产物作用于细胞膜,破坏菌体细胞膜 / 壁的完整性、通透性和选择性,致使细胞内外渗透压失衡,胞内代谢紊乱,导致细胞死亡。CHEN 等[94]通过席夫碱反应将二醛壳聚糖与豆粕交联,制备的蛋白质基粘合剂表现出优异的防霉性能。他们认为二醛壳聚糖上的醛基可以不可逆地破坏微生物细胞壁和细胞质膜,带正电荷的氨基可以通过静电吸附在微生物表面,席夫碱(C=N)的存在会使微生物细胞壁泄漏,导致渗透性丧失和微生物死亡。CHEN 等[95] 通过席夫碱化学对菊粉进行结构改造。由于苯环和乙酰基的引入,席夫碱修饰的新菊粉衍生物更具亲脂性,容易渗入细胞,导致细胞凋亡,在 1.6 mg / mL 的低浓度下,对真菌的抑制率超过 82%,具有宽域抗真菌谱。NAZIRKAR 等[96]报告了一类新的苯并呋喃基席夫配体及其铜 / 锌配合物,金属配合物比参考化合物更有潜力,而铜配合物比锌配合物的抗菌活性高,这是因为铜离子对生物大分子具有更强的亲和力,增加了细胞膜的通透性。席夫碱化合物通过与金属离子配位,其抗菌、化学稳定性等性质得到了明显改善[9597]。这种现象可以通过 Tweedy 螯合理论来解释,因为配体轨道和金属离子轨道部分重叠,阳离子的极性降低,螯合作用还增强了螯合环上 p 电子的离域,从而增加了复合物亲脂性,这促使复合物更容易渗透到脂质膜中,导致目标微生物酶中的金属位点阻塞[49]

  • (2)氧化胁迫损伤菌体细胞:通过氧化胁迫损伤菌体细胞,致使细胞内 ROS 累积,细胞氧化衰老死亡,从而抑制病菌的生长繁殖。WANG 等[98]制备了四种 N-苯基咔唑 / 三苯胺半夹心铱水杨醛席夫碱配合物。研究发现,这些复合物可以降低线粒体膜电位,催化烟酰胺腺嘌呤二核苷酸的氧化,诱导细胞内 ROS 的增加并导致溶酶体损伤,最终导致细胞凋亡。ZHUANG 等[99]利用碳点表面的氨基与对苯二甲醛的醛基团进行偶联形成碳点基席夫碱。GL261 神经胶质瘤细胞中 ROS 的产生表明,浓度为 44 μg·mL−1 的碳点基席夫碱导致细胞内 ROS 的产生量比对照组高约 13 倍,这些试验提供了碳点基席夫碱诱导线粒体损伤的证据,导致 GL261 细胞中线粒体膜电位降低。KENAWY 等[100]制造出基于支链聚(对羟基苯乙烯)的席夫碱,研究结果也证明该类席夫碱化合物能够引发 ROS,促使 MCF-7 细胞凋亡,展现出了强细胞毒性。

  • (3)抑制菌体细胞内蛋白质、酶、脱氧核糖核酸 ( Deoxyribonucleic acid,DNA)、核糖核酸 (Ribonucleic acid,RNA)等:席夫碱自身或分解物可以与生物体中的蛋白质、酶和 DNA 等微生物重要组成部分进行结合,破坏生物体自身结构功能的完整性,进而起到抗菌防污的作用(图6a)[101-103]。 HASSAN 等[101]对源自 5-氨基吡唑的相关席夫碱化合物进行了合成与抗菌机制的研究。酶学测定和分子对接结果显示,席夫碱化合物对金黄色葡萄球菌 DNA 回旋酶和二氢叶酸还原酶激酶具有很强的抑制活性。在席夫碱金属配位物方面,该类化合物能够与 DNA 结合,阻止 DNA 复制,最终诱导细胞凋亡[104]。这种类型的细胞凋亡通常受 DNA 形态的影响,通过 DNA 形态可以发生各种类型的分子间相互作用、可逆的结合和解离等(图6b)[105-106]。 MANUS 等[107]研究发现,双(乙酰丙酮)乙二胺的 Co(III)席夫碱配合物衍生物是一种有效的酶和转录因子抑制剂,该配合物在溶液中会发生易变轴配体的交换,解离时,Co(III)与蛋白质的特定组氨酸残基发生不可逆的相互作用,从而改变结构并导致抑制作用。CHENNAM 等[108]合成并检测一种新型席夫碱及其复合物对 pBR-322 质粒 DNA 的核酸酶活性,结果表明其 Cu(II)配位物能显著裂解双链 DNA。此外,金属配合物还能抑制细胞呼吸和蛋白质合成,从而影响微生物的生长[109]

  • (4)多元协同抗菌作用:席夫碱基材料对细菌、真菌的抑制作用和防粘附作用通常不是单一机制所能解释的,需要多种抗菌防污机制相互结合。 ARAGON-MURIEL 等[102]调查了四种基于苯并咪唑的席夫碱及其金属配合物的抗菌潜力。研究发现,这些化合物不仅可以改变双分子层的疏水核心来影响细菌膜的通过性,抗菌机制还与 DNA 的相互作用有关(图6a),当形成 DNA-化合物复合物时, DNA 与酮-烯醇互变异构体的相互作用将导致其中一种互变异构体稳定。GUO 等[110]报道了一种以壳聚糖、N-取代壳聚糖和季铵盐壳聚糖为原料合成的壳聚糖 / 席夫碱复合抗菌剂,发现复合抗菌剂对灰葡萄孢菌具有更好的抑制性能。JIN 等[111]在高强度超声作用下通过壳聚糖结合柠檬醛合成了一种壳聚糖 / 席夫碱复合抗菌剂,复合抗菌剂的抗菌活性主要取决于席夫碱部分[112],而与单一的壳聚糖抗菌剂相比,壳聚糖 / 席夫碱复合抗菌剂的抗菌效果更佳。

  • 海洋生物污损是一个复杂的过程,通常包括四个主要的生长步骤:①形成以蛋白质、多糖、糖蛋白等有机分子组成的条件膜;②形成以海水中细菌、藻类等构成的初级微生物膜;③生长形成微型污损群落;④形成藤壶、贻贝、多毛纲动物等宏观污损生物群落[113]。目前,席夫碱基材料在海洋防污机制方面主要是阻断条件膜和初级微生物膜的形成,确保微生物难以在材料表面上粘附和生长,而对宏观污损生物群落的阻断研究方面较少涉及[114]。例如,本课题组[17]以聚席夫碱金属配合物基材料为载体,制备了在海洋环境下可完全降解的绿色防污材料,该材料在降解产物防污、水化层和动态表面的多元协同抗菌防污机制作用下能够有效阻止细菌等微生物的粘附生长,展现出了高效广谱的防污能力。

  • 图6 生物结合作用与金属螯合作用[102106]

  • Fig.6 Bioconjugation and metal chelation [102, 106]

  • 4 席夫碱基抗菌防污材料

  • 按席夫碱基抗菌防污材料的形态性质,可分为席夫碱基抗菌防污剂和聚席夫碱抗菌防污块体材料 / 涂层。其中席夫碱基抗菌防污剂按照其结构特征可分为席夫碱及其金属配合物基抗菌防污剂、席夫碱基共价有机框架抗菌防污剂两大类;聚抗菌防污块体材料按照席夫碱基团在聚合物分子网络中的位置可分为侧链型(接枝)聚席夫碱抗菌防污材料、交联型聚席夫碱抗菌防污材料和主链型聚席夫碱抗菌防污材料。

  • 4.1 席夫碱及其金属配合物基抗菌防污剂

  • 抗菌剂是指能够在一定时间范围内,使细菌、真菌以及病毒等某些微生物的生长或繁殖保持在必要水平以下的化学物质[115]。基于席夫碱的抗菌防污剂具有许多优良特征:高效广谱的抗菌效果、可水降解从而减少环境危害、制备简单、成本效益低。这些特征促使席夫碱抗菌防污剂在保障人类健康和环境卫生方面引起了研究者们的广泛关注[116-117]。 OBASI 等[118]从对甲氧基肉桂醛和 4-氨基安替比林缩合物中合成了 4-氨基安替比林衍生物,经与环丙沙星和酮康唑等标准药物比较,证明其抗真菌活性更强,原因是偶氮甲基与 sp 3 杂化的电子释放基团具有更高的柔韧性、溶解性和抗菌活性。由水杨醛衍生的席夫碱基抗菌防污剂因其优异的抗菌活性成为研究热点,例如,N-(亚水杨醛)-2-羟基苯胺对结核分枝杆菌具有显著的活性,而 5-氯水杨醛的席夫碱对大肠杆菌、金黄色葡萄球菌和黄绿微球菌菌株的抗菌活性显著增强(图7a)[119]。席夫碱衍生物也可用作抑菌剂,例如,2,4-二氯-5-氟苯基的席夫碱(图7b)[120]和含有硝基咪唑分子的席夫碱(图7c)[121]对多种细菌具有良好的抗菌活性。据报道,靛红基席夫碱衍生物的抗菌活性与标准药物磺胺甲噁唑相当(图7d)[122]。席夫碱也具有良好的抗真菌活性,例如,N-(水杨醛基)-2-羟基苯胺和 3-氟水杨醛的席夫碱具有抗真菌活性(图7e)[111],以靛红结构为基础的席夫碱对多种真菌菌株具有显著的抗真菌活性(图7f)[111122-123]

  • 图7 席夫碱及其金属配合物基抗菌防污剂[111119-122124-139]

  • Fig.7 Schiff bases and their metal complex-based antimicrobial antifoulants [111, 119-122, 124-139]

  • 国际海事组织于 2008 年禁止使用有机锡类防污涂料,因为它们会对环境和健康造成严重影响。为了应对这一挑战,研究人员寻找新的无锡防污涂料添加剂。ELSHAARAWY 等[124]成功制备了多种基于离子液体的新型水杨基-亚氨基噻唑和苄基-双亚氨基噻唑席夫碱抗菌和防污剂,这些新型席夫碱对大多数常见的海洋生物成膜菌具有中等到优异的广谱抗菌功效(图7g)。将这些杀菌席夫碱加入到商用涂料的基质中,可显著提高其防污性能,通过对这些席夫碱进一步改进以及开展广泛的环境和毒性评估有望开发新一代防污剂。

  • 关于席夫碱金属配合物在生物应用中的使用,已有大量研究[125-126]。与游离的席夫碱相比,席夫碱与金属离子的络合通常会增强抗菌和抗真菌效果[127]。据报道,以氨基酸为原料合成的席夫碱及其锰配合物对革兰氏阳性和革兰氏阴性菌株均显示出优异的活性(图7h)[128]。最近,XU 等[129]开发了一种绿色纤维素基席夫碱与铜的抗菌复合物,与其配体相比,对大肠杆菌和金黄色葡萄球菌的抗菌活性分别提高了 472%和 823%(图7i)。ABBASI 等[130] 开展了对席夫碱与金属(Zn2+、Cd2+、Hg2+和 Cd2+) 配合物及其抗菌活性的研究。结果表明,所有化合物都显示出抗菌活性,活性最高的是 Hg(II)复合物,其活性高于标准的磺胺异噁唑。近期的文献表明[131-132],铜(II)的硫代氨基羰基衍生物在培养 6 h 后对金黄色葡萄球菌、伤寒杆菌和肺炎双球菌具有良好的杀灭活性。在抗真菌方面,席夫碱金属复合物具有巨大的应用潜力[133-134]。相关人员研究了以 1,3-双(3-丙基)四甲基二硅氧烷为起点的水杨醛型席夫碱与各种水杨醛衍生物过渡金属配合物的抗菌活性(图7j)[135-136]。结果表明,5-氯水杨醛衍生的配体及其金属复合物在抗细菌和真菌方面的应用潜力最大。此外,研究人员还发现甲氧基、卤素和萘基等一些基团可增强配体的杀真菌活性[137-138]

  • 科学家一直致力于从植物提取物、有机化合物中寻找高效药物。由于大多数席夫碱配位化合物对多种微生物具有良好的抗菌活性,且与临床使用的抗生素相比效果显著,因此使用生物来源的原料制备多功能配位化合物成为研究热点。MANJULA 等[139]利用 4-氨基安替比林与香兰素 / 甲氧基苯胺的缩合反应及席夫碱与金属离子的配位反应,合成了 Cu(II)、Ni(II)、Co(II)和 Zn(II)金属配合物(图7k),对绿脓杆菌、变形杆菌和大肠杆菌的抗菌试验和对黑曲霉、烟曲霉和白色念珠菌的抗真菌试验表明了天然产物基席夫碱金属配合物的优异抗菌抗真菌能力。到目前为止,所讨论的 4-氨基安替比林衍生物及其配合物对微生物都具有活性,且金属配合物比配体更有活性,可能的原因是整个配合物的 π 电子分散增加了药物的亲脂性,提高了配合物对微生物脂膜的穿透力,活性成分与细胞结合,导致细胞呼吸过程受阻,影响微生物的死亡[140]。不过,有学者指出席夫碱金属复合物也并非完全没有缺点,例如,在存在正羟基的情况下,亚胺键的酮 / 烯醇同分异构现象可能会导致两种同分异构体的活性不同[141]

  • 4.2 席夫碱基共价有机框架抗菌防污剂

  • 通过有机分子缩合反应形成的共价有机框架是一类新兴的晶体纳米多孔网络材料,其中共价连接的分子构建块在网状化学引导下扩展到二维或三维[142]。近年来,席夫碱化学或动态亚胺化学在 COFs 的合成中得到了广泛应用,主要原因是基于席夫碱化学的 COFs 具有以下显著特点[55]:①通过席夫碱相互作用的共价分子组装和逐层法,可在多种试验条件下制备 COFs,包括在室温条件;②可使用多种分子前驱体;③可在多种基底上制备;④与其他 COFs 相比,席夫碱基 COFs 化学稳定性好、孔隙率和结晶度高; ⑤展现了多种有趣的物理化学性质和潜在应用。

  • 抗菌防污 COFs 设计需要考虑的一个重要问题是如何对单体进行改性,以微调 COFs 的结构和性能。一方面,通过在席夫碱中心附近引入-OH 官能团,形成分子内 O-H···N=C 氢键,可提高二维 COFs 的化学稳定性和结晶度[143-144];另一方面,在席夫碱反应后使用不可逆的烯醇-酮共聚物也是提高晶体框架化学稳定性的有效策略[145]。此外,开发出具有高度功能化孔壁结构的COFs是另一个重要方向,而这种结构很难通过直接缩聚反应获得[146]。叠氮炔之间的 Huisgen 环加成反应已被证明对孔壁表面工程非常有效,可加入有机基和手性分子进行催化。另一种简单的合成后改性方法包括制备掺杂金属的 COFs 以及基于 COFs 和金属纳米颗粒的混合体,从而为材料提供新的特性。在此,ZHANG 等[147]通过溶剂热法合成了含有胍基阳离子的抗菌二维共价有机骨架,并以此为载体,将银纳米粒子沉积在表面上形成纳米复合材料,避免了纳米粒子的聚集,获得了优异的抗菌效果。ZHAO 等[148]以三醛基间苯三酚(1,3,5-Triformylphloroglucinol,TP)和对苯二胺 (p-phenylenediamine,Pa-1)为单体,采用机械研磨法合成了一种席夫碱二维共价有机框架,进一步通过物理吸附法将辣椒素@壳聚糖(Capsaicin @ chitosan,CAP@CS)微胶囊负载在 2D-COFs 上,制备出复合抗菌材料,实现了辣椒素杀菌剂的 pH 值敏感控释,并将其分散在氟碳树脂中,制备出一种具有环保型长期防污性能的智能涂料(图8a)。

  • 图8 席夫碱基共价有机框架类抗菌防污材料[148-153]

  • Fig.8 Schiff base-based covalent organic framework (COFs) for antimicrobial and antifouling materials [148-153]

  • 作为高效光敏剂,席夫碱基 COFs 可产生 ROS,如具有细胞毒性的 1 O2,并应用于对细菌生长的光动力控制[149]。HYNEK 等[150]比较了二维和三维卟啉基 COF 的 1 O2 生成和抗菌特性(图8b),发现在可见光下三维 COFs 比二维 COFs 具有更佳的抗菌效果。DING 等[151]制备了一种负载布洛芬的卟啉基 COF 膜,该膜通过协同光诱导生成单线态氧 1 O2和可控释放布洛芬,表现出高效的抗菌和消炎效果。 MITRA 等[152]报告了基于卤化胍的自剥离特性制备 COFs 纳米片(Ionic covalent organic nanosheets,iCONs),该纳米片具有良好的抗菌性能。他们还将这些 iCONs 与聚合物基质混合,开发出一种抗菌膜 (图8c)。然而,关于 iCONs 的可逆剥离和细菌生长控制特性尚未见报道。为了解决这个问题,MAL 等[153]制备了基于碘化丙啶的 iCONs(图8d),他们通过控制葫芦素(Cucurbit[7]uril,CB[7])和金刚烷胺盐酸盐(1-adamantylamine hydrochloride,AD)的超分子封装,证明了碘化丙啶基 iCONs 的表面电荷变化和可逆剥离特性。此外,他们还对革兰氏阳性菌金黄色葡萄球菌和革兰氏阴性菌大肠杆菌的细菌生长进行了可逆调节。

  • 4.3 侧链型聚席夫碱抗菌防污材料

  • 小分子抗菌防污剂具有良好的抗菌防污能力,但在医药材料、海洋工程材料等应用方面受到限制,如何将其应用到工程材料中是一项重大课题。科学家们最先考虑到的是将具有抗菌防污功能的物质通过席夫碱基团接枝到聚合物材料中,形成侧链型聚席夫碱抗菌防污材料。肉桂醛是一种天然醛,由于其抗菌、抗氧化和抗炎作用,已被广泛用于提升材料的抗菌防污性能。最近学者提出一种用于抗菌食品包装的壳聚糖-肉桂醛-席夫碱基膜,席夫碱的可逆性在提供获得抗菌释放系统的方法方面发挥了重要作用,包装食品加工处理或包装内部储存过程中可以激活或延长抗菌性肉桂醛分子的释放周期[154]。在海洋防污领域,GUO 等[155]提出了一种具有双功能防污能力的超滑表面,即通过溶胶-凝胶法在多孔聚二甲基硅氧烷表面构建一层 SiO2气凝胶,随后通过席夫碱化学接枝肉桂醛,表面微结构改善了涂层的润滑液储存稳定性,提高了其抗生物粘附能力,而接枝的肉桂醛可以作为化学抗菌剂,在恶劣的污垢环境中智能释放,这对延长涂层的抗菌寿命起到关键作用。120 h 的抗菌试验和 25 d 的抗藻试验表明,涂层的抗菌率和抗藻率分别达到 99.6%和 99.9%,物理防污性能和化学防污性能的结合使该涂层具有良好的抗菌防污能力。香兰素来源于香草豆和反式肉桂醛,通过席夫碱反应增强壳聚糖涂层的抗菌性能,克服了水性介质中活性亲油剂的溶解度问题,并防止了挥发性化合物的释放[156]

  • 席夫碱反应具有良好的反应活性,且生成的亚胺具有良好的可逆性和降解性,这就促进了利用亚胺键将活性抗菌防污物质接枝到其他聚合物侧链上的研究。GAO 等[157]通过在纤维-膜结构输尿管支架上 ( Fiber-membrane structured ureteral stent,FMBUS)原位席夫碱反应生成超支化聚(酰胺-胺) (Hyperbranched poly(amideamine),HBPAA)接枝聚多巴胺(Polydopamine,PDA)微颗粒,开发了一种具有协同接触杀灭抗菌活性、抗蛋白质吸附作用和可生物降解的抗生物膜纤维膜结构输尿管支架(图9a),有效减少了宿主蛋白质的附着(溶菌酶:92.1%; 人血清白蛋白:39.4%),对多种致病菌具有很高的杀菌活性(接触杀灭率≥99.99%)和抗粘附功能(抗粘附率≥99.2%)。ZHANG 等[158]利用席夫碱化学将阳离子聚合物聚乙烯亚胺和硼烷醇相结合,制备了一种具有抗菌能力的织物,硼烷醇和聚乙烯亚胺赋予了织物杀菌活性高、抗细菌真菌粘附能力强和细胞毒性低等特点(图9b)。XIANG 等[159]利用氨基与酚羟基之间的席夫碱反应制备了接枝单宁酸的聚偏氟乙烯 / 聚酰胺中空纤维膜,增强了膜的亲水性和防污能力。XIE 等[160]基于席夫碱的逐层自组装机制,以含有大量氨基的聚酯为基材制备了银纳米粒子覆盖的防污膜表面,席夫碱接枝的齐聚物对蛋白质吸附和细菌粘附具有极佳的抗性,银纳米粒子赋予膜以杀菌活性。ZHANG 等[161]通过原位引发聚合法和席夫碱接枝法在聚氨酯(Polyurethane,PU)表面构建具有细菌触发的防污-杀菌切换特性的自适应抗菌表面,该表面由聚[2-(二甲基癸基铵)乙基甲基丙烯酸酯]刷作为杀菌下层,聚乙二醇作为防污上层,这两层均含有席夫碱结构,可被细菌的新陈代谢降解(图9c)。LI 等[162]将乙二胺、戊二醛和 3-氨基-1-丙醇依次接枝到聚酰胺(Polyamide,PA)表面,制备了一种席夫碱和亲水功能化聚酰胺反渗透膜(图9d),得益于表面丰富的亲水基团和通过席夫碱接枝的“刷状”链,改性膜对作为污垢模型的牛血清白蛋白具有出色的通量恢复能力和抗污垢能力,杀菌率达 96.3%,避免了因分离层厚度和密度增加而导致的渗透通量下降的问题。BARAN 等[163] 以 4-[[4-(二甲基氨基)亚苄基]氨基]苯酚为原料,通过氧化法合成了侧链为席夫碱的新型聚合物。抗菌测试表明,单体和目标聚合物都具有抗菌活性,且聚合物的抗菌效率高于单体。

  • 图9 侧链接枝型聚席夫碱抗菌防污材料[157-158161-162164-165]

  • Fig.9 Side chain poly Schiff base antibacterial antifouling material[157-158, 161-162, 164-165]

  • 最近,壳聚糖、纤维素、淀粉等生物多糖基席夫碱因具有生物可降解性和来源广泛的特点,引起人们的极大兴趣[166]。生物多糖大多相对稳定,整合其他活性基团需要进行化学修饰,多糖与醛基的官能化修饰通常有两种机制:①高碘酸钠介导的邻位二醇氧化裂解生成活性醛基,可以通过改变高碘酸盐的用量调整糖类上的醛基密度;②碳二亚胺化学键合含胺、羟基和羧基的分子,形成酯键或酰胺键[167]。将席夫碱键加入聚合物网络有两种典型方案:主链插入和侧链插入。主链技术可以在特殊条件下引导聚合物结构的整合和分解,从而实现降解和自愈特性;相反,侧链技术则有助于在生物识别过程中调节结合效果。诱导聚合或解聚过程可以调整主链动态聚合物的长度,而接枝到聚合物中的可逆侧链则可以附带各种官能团,产生刷状结构,不同实体之间可以进行功能切换[168]。LEE 等[164]通过席夫碱反应在原生壳聚糖中接入了多功能单宁酸,与原始壳聚糖食品包装膜相比,复合薄膜具有更好的力学、热、抗紫外线、抗氧化和抗菌性能(图9e)。FU 等[169] 报道了一种壳聚糖 / 席夫碱复合抗菌剂并将其整理到织物上,经过 20 次洗涤后,改性织物的抗菌活性仍保持在 75%以上。ELSHAARAWY 等[165] 通过席夫碱化学将壳聚糖与聚电解质功能化(图9f),随后加入涂料基质中配制成防污涂料,在地中海进行的实地静态浸泡试验表明,这种防污涂料可以有效防止生物膜的形成,防污性能良好。

  • 4.4 交联型聚席夫碱抗菌防污材料

  • 交联型聚席夫碱抗菌防污材料是指形成交联网络的一类高分子材料。交联网络通常由疏水性、静电作用、金属配位、阳离子 π 相互作用和 π-π 堆积等物理或化学键来实现,由于氨基可与醛基形成动态亚胺键,从而提高组织表面或基体材料的粘附能力和机械强度。羰基与 N-亲核物(如氨基氧基、酰肼和含伯胺基团的多糖)的缩合反应可用于构建自组装膜、水凝胶和防污涂层等交联型聚席夫碱基抗菌防污材料[170]。例如,XU 等[171]通过迈克尔加成 / 席夫碱反应为基础的逐层沉积技术(Layer by layer,LBL),将单宁酸和抗菌肽交替沉积在不锈钢上(图10a),制备的多层涂层对细菌和微藻具有良好的抗性。YUAN 等[172]设计了一种席夫碱与儿茶酚-Fe3+配位的双交联水凝胶以作为动态烧伤创面敷料,该水凝胶不仅具有自愈合能力、形状适应性和强粘附性,还有效提高了水凝胶的抗菌能力(接近 100%杀菌率)和止血性能。ZHAO 等[173]通过儿茶酚基团之间的氧化偶联以及与氨基之间的化学交联 (席夫碱和迈克尔加成反应),制备了基于聚(柠檬酸-共聚-乙二醇)-接枝-多巴胺和负载有黄芪甲苷 IV (Astragaloside,AS)的可注射、抗菌和抗氧化水凝胶粘合剂(图10b),其具有凝胶快、机械强度高、药物释放持久、抗菌活性优异、生物相容性高和可降解等特点。

  • 图10 交联型聚席夫碱抗菌防污材料[171173-174]

  • Fig.10 Cross-linked poly Schiff base antimicrobial and antifouling materials [171, 173-174]

  • 研究者最近对基于动态亚胺键的多糖交联水凝胶进行了广泛研究,通过胺基与醛基的反应形成动态亚胺键,利用动态共价化学实现了对不同刺激反应(包括温度、光、pH 值、含水量、浓度和生物目标等)的自适应水凝胶网络[175]。物理交联的敏感性、可逆性和化学交联长寿命稳定性的结合构成了这种动态共价键的本质[176]。这些利用亚胺键构建的多糖基水凝胶为有目的地吸纳其他材料的结构特征提供了绝佳的机会,同时也为其多功能性和可调性提供了无数的可能性和自由度。同样,通过胺化、酯化和羧化[177]引入氨基、酯基和羧基,也能扩大其功能特性和应用领域。此外,多糖的邻位二元醇结构也可被选择性氧化,通过引入醛基合成二醛,进而与含有胺基团的材料发生反应,从而产生所需功能的材料[178]。为了利用席夫碱和多糖的独特和互补特性,基于动态亚胺键的功能性多糖水凝胶已被用于提供靶向特定的酶 / 细胞 / 组织或改变微环境,包括抗菌水凝胶、药物递送系统、核酸递送载体和伤口愈合系统等[179-182]。例如,LIU 等[183]开发了一种由齐聚物和庆大霉素改性透明质酸制成的水凝胶敷料,通过亚胺键交联的抗生素可以根据感染伤口的酸性环境智能释放,杀死内部细菌。

  • 壳聚糖的席夫碱官能化已被广泛用于多种交联型抗菌防污材料[184]。壳聚糖在质子化后,C-2 位上的氨基与 pH 值低于 6 的带负电荷细菌表面相互作用,影响细菌膜的渗透性和细胞完整性,可导致细菌死亡。席夫碱与壳聚糖的交联复配可提高其活性,因为它增强了聚合物链的亲水性,并暴露出悬挂的氨基官能团,从而产生静电作用。据报道,通过壳聚糖中的胺基与吲哚-3-甲醛和 4-二甲氨基苯甲醛的羰基合成席夫碱,可提高抗菌活性,为促进伤口愈合提供了应用潜力[174185]。CHEN 等[174]利用羧甲基壳聚糖(Carboxymethyl chitosan,CMC)和聚六亚甲基胍(Polyhexamethylene guanidine,PHMG)改性的醛 F108(PFC)之间的席夫碱反应,开发了一种多功能水凝胶,该水凝胶利用 PHMG 和二烯丙基三硫醚(Diallyl trisulfide,DATS)的协同作用提供了高效的抗菌效果(图10c)。LIANG 等[186]通过铁 (Fe3+)、原儿茶醛和季铵化壳聚糖进行双动力键交联,开发出了一种抗氧化抗菌自愈合水凝胶,双动力键交联网络赋予了水凝胶良好的机械强度、组织粘附性和自愈能力,季铵化壳聚糖的抗菌特性和近红外辅助光热消融功能协同提高了水凝胶的抗菌效率和伤口闭合能力。HUANG 等[187]以季铵化壳聚糖、氧化右旋糖酐、妥布霉素和聚多巴胺包覆的聚吡咯纳米线为原料,制备了具有良好导电性、优异抗菌性和抗氧化活性的自愈合水凝胶。妥布霉素和氧化右旋糖酐之间的席夫碱交叉连接使妥布霉素能够缓慢释放,并对 pH 值做出反应,细菌生长过程中的酸性物质可以诱导妥布霉素按需释放,从而避免了抗生素的滥用,这种按需给药的智能释放水凝胶在细菌感染的伤口愈合方面具有优势。

  • 4.5 主链型聚席夫碱抗菌防污材料

  • 主链型聚席夫碱是指在高分子主链中含有席夫碱官能团的一类聚合物,由于亚胺键的动态可逆、优良配体和可水降解特征,促使该类材料在自修复和完全可降解材料方面独具优势[188-189]。近年来,随着环保绿色抗菌防污意识的增强,结合席夫碱基材料的本征抗菌防污特性,主链型聚席夫碱基抗菌防污材料逐渐成为研究的热点。LIU 等[114]受细菌分泌物、动物和植物提取物天然模块的启发,采用天然提取物托布霉素和原儿茶醛合成了席夫基化合物,进一步通过层层自组装方法制备了一种厚度可控、可完全降解的动态自更新席夫碱金属复合物基抗菌涂层(图11a)。与空白玻璃基底相比,该涂层的抗菌率在 24 h 后达到了 97%。此外,涂层最终降解为天然小分子单体,可避免微塑料的产生。NISHAT 等[190]通过缩合 2-羟基苯乙酮和肼衍生的单体席夫碱、甲醛和 2-硫代巴比妥酸,合成了一种席夫碱聚合物,进一步与金属醋酸盐进行配位反应获得一些新的 Mn(II)、Co(II)、Ni(II)、Cu(II)和 Zn(II)聚席夫碱金属配合物,采用琼脂井扩散法对各种微生物进行抗菌活性筛选。研究表明,所有聚合物-金属复合物都显示出良好的抗菌活性,其中 Cu(II)聚合物-金属配合物的抗菌活性显示出最高的抑菌区。他们认为聚合物骨架中金属离子的配位增强了材料的热活性和抗菌活性,相关材料有望用于生物医学应用。

  • 本课题组在主链型聚席夫碱基抗菌防污材料的设计、制备和海洋应用方面开展了大量的开创性工作[17]。基于亚胺键的可逆共价键和金属离子配体特征,通过对苯二甲醛与疏水性二元伯胺的脱水缩合反应制备了在主链结构中具有亚胺键的聚席夫碱高分子(图11b)。进一步地,利用亚胺键与金属离子的配位能力,将聚席夫碱中的亚胺官能团与金属离子发生配位反应,生成高分子金属配合物,形成动态化学交联点,在赋予材料自修复能力的同时,解决了聚席夫碱材料力学性能较差和分子量较低的问题。聚席夫碱中亚胺键的动态共价键特征使其在海水环境下可降解为具有防污能力的小分子醛类和氨类物质,可在自然界中快速降解,不产生累积效应,对环境友好的同时提高了降解产物的防污利用率。由于降解产生的四重防污机制作用(活性降解产物、界面亲水污损阻抗层、自更新界面及表面微结构) 赋予了材料高效的防污能力,相比于对照组,该材料表面难以观察到粘附的细菌和海藻的存在,对于细菌和海藻的抑制率均可达 99%以上,而且通过添加少量具有抗菌防污能力的 Cu2+、Ag+ 等金属离子 (添加量小于 3%,远小于传统防污材料中防污剂的添加量),可协同增强材料的防污能力,抗菌率和抗藻率超 99.9%。进一步利用聚脲改性聚席夫碱 (Polyurea-modified poly Schiff base polymer,PIPT) 对于镓基液态金属微纳米液滴(Gallium-based liquid metal particles,GLPs)的配位稳定作用,提出水触发降解聚席夫碱 / 镓基液态金属复合涂层的构筑方法 (图11c)[90]。PIPT 中的亚胺键和脲基可高效生成和稳定 GLPs 微滴,尺寸约为 0.6~0.7 μm,且制备方便、球形形态清晰、分散性良好。聚席夫碱 / 镓基液态金属复合涂层表现出可控的水触发降解能力,并在界面处形成亲水性水化层。基于抗菌-自我更新双重功能的水触发降解聚席夫碱 / 镓基液态金属复合涂层具有显著的抗菌(超过 99%的细菌被去除)性能。

  • 图11 主链型聚席夫碱基抗菌防污材料[1790114]

  • Fig.11 Main-chain poly-Schiff base based antimicrobial and antifouling materials [17, 90, 114]

  • 由上可知,席夫碱基抗菌防污材料主要分为席夫碱及其金属配合物、席夫碱基共价有机框架、侧链型聚席夫碱材料、交联型聚席夫碱材料和主链型聚席夫碱材料五大类。其中,席夫碱及其金属配合物主要为小分子有机物,作为生物医疗和海洋污损防护领域的杀菌 / 防污剂,无法单独作为涂层或块体材料使用。席夫碱基价有机框架通常呈现微纳米粒子 / 片层结构,是产生 ROS 和催化的良好载体,可作为块体材料或涂层的功能填料,具有较好的长期防污能力。侧链型和交联型聚席夫碱材料通常作为生物医用材料,具有良好的生物相容性。主链型聚席夫碱材料由于其多功能性和环保性,是海洋防污材料的重要研究方向。

  • 5 结论和展望

  • 5.1 结论

  • 微生物在工程装备、医疗设备及生活物品上的粘附生长对设备高效安全运行和人类健康造成巨大困扰。近百年来,使用抗菌防污材料一直是解决这一棘手问题的最佳选择。近年来,席夫碱、席夫碱金属复合物和聚席夫碱等席夫碱基抗菌防污材料因其独特的结构特征和物化性质而备受关注,是解决细菌感染与海洋生物污损的潜在材料。就当前研究结果来看:

  • (1)传统的席夫碱化学合成法具有条件温和、产率高和便于操作等优势,是当前工业生产的主流制备方法。但需要消耗大量的有机溶剂和催化剂,并伴随着大量能耗,能源利用率低,容易造成环境危害。超声辅助合成、微波辐照法、机械研磨法和水溶剂法等绿色合成方法减少了合成席夫碱过程对环境的影响,可实现对能源的高效和精准利用,为发现新的独特化合物提供了可能。

  • (2)对于席夫碱基材料在抗菌防污机理方面,探索出几种可能的抗菌防污机制,包括席夫碱作用于细胞壁 / 膜、氧化胁迫损伤菌体细胞、抑制菌体细胞内蛋白质、酶、DNA、RNA 等物质的功能及多元协同等机制。机制的揭示坚定了开展席夫碱基抗菌防污材料设计的信心,进而有望突破高性能抗菌防污材料的技术瓶颈,提升抗菌防污材料在海洋工程、生物医用和生活物品等领域下的服役性能。

  • (3)席夫碱基抗菌防污材料主要集中于席夫碱基共价有机框架(SB-COFs)和聚席夫碱材料两方面。而在席夫碱基抗菌防污材料的应用研究方向,目前主要包括医用生物材料和海洋防污涂层材料,例如抗炎和抗细菌药物、伤口敷料、海洋防污剂和防污涂层基体树脂。利用席夫碱聚合物的可降解、易于回收等环保特性,通过创制柔韧性好、强度高的聚席夫碱抗菌防污材料,未来可拓展至可降解保鲜膜、织物纤维、塑料袋、食品包装等领域。

  • 5.2 展望

  • 简要概述了席夫碱基材料在结构设计、制备、基本性质、抗菌防污机制与应用方面的研究进展,讨论主要限于席夫碱基材料在生物医学、海洋污损防护相关性高的主题与领域。在所有引用的参考报告中,尽管包括席夫碱配体及其金属络合、聚席夫碱高分子、席夫碱基共价有机框架在内的席夫碱基材料已证明其适用于具有可调功能特性的抗菌防污研究,但仍有许多挑战需要进一步解决。

  • (1)许多与抗菌防污性席夫碱及其金属配合物设计、合成和开发相关的基本原理仍不完善。随着新工艺和新方法的不断涌现,有望在未来帮助合成新的席夫碱基化合物,这为测试不同席夫碱基化合物以预测其抗菌活性提供了更多选择。鉴于此,还须要研究和破译具有不同作用模式的活性化合物的作用机理,以评估它们在不同条件下对不同生物的作用。某些金属在靶向污损物中被激活后,席夫碱及其金属配合物的选择性、低毒性和体内稳定性使其成为比其他药物更好的选择,可以对其进行探索,从而进一步改进其作为抗菌剂的用途。

  • (2)席夫碱聚合物所具有的刺激响应、可回收和可降解等特征对开发多功能抗菌防污材料意义重大,但在向更可持续和实用性的多功能抗菌防污材料开发过程中,深入研究其结构-活性关系和内在污损防护机理对于充分开发其在抗菌防污的潜力至关重要。例如,在医药材料方面,需要重点关注该类水凝胶的结构特征与机械强度、可生物降解性和亲水性的内在联系;在海洋防污方面,尽管可降解席夫碱聚合物已展现出解决传统防污材料环境危害大、实现绿色防污的巨大潜力,但该类材料的准确污损防护机制、在环境中的降解路线及其对环境生物的毒害性评估尚不明晰。另外,还应优化材料的合成制备技术,以满足大规模低成本的制造要求。

  • (3)席夫碱基 COFs 的生物医药、抗菌抗粘附类材料与生物试剂应具备更好的生物相容性、细胞吸收性和生物安全性,因此开发无细胞毒性的席夫碱基 COFs 抗菌防污药物势在必行。为此,一方面,要将 COFs 整合为有用、好用的抗菌防污材料,还必须开发出一种易于扩展的合成和修饰方法,以获得形状和形态均匀的 COFs。另一方面,为解决其降解性问题,可尝试通过在 COFs 骨架中加入更牢固的连接键来提高其水解稳定性,或采用无生物毒性的基础结构单元进 COFs 骨架构筑。

  • (4)关于席夫碱基材料杀菌机制的研究大都还集中在生理现象的变化,并没有涉及到具体的靶标、结合位点、结合作用力等研究,并不能完全解释席夫碱基材料对不同微生物抑菌活性的巨大差异,应当结合席夫碱材料的具体化学结构和抑菌效率之间的关系来研究席夫碱对不同菌种的抑制机制。尤其在海洋防污领域,对大型污损生物的抑制、损伤作用研究相对匮乏,在海洋中的完整降解 / 吸纳过程尚不清晰。

  • 在成功解决这些基本问题后,我们坚信席夫碱基材料作为一种多功能材料平台,在跨学科科学方法的帮助下,将在生物医学、制药、食品包装、生活物品和海洋防污应用领域有着更广阔的前景。

  • 参考文献

    • [1] XUAN J Q,FENG W G,WANG J Y,et al.Antimicrobial peptides for combating drug-resistant bacterial infections[J].Drug Resistance Updates Reviews,2023,68:100954-100965.

    • [2] ROMEU M J,MERGULHAO F.Development of antifouling strategies for marine applications[J].Microorganisms,2023,11(6):1568-1601.

    • [3] 楼彤,白秀琴,贺小燕,等.抗菌肽在海洋防污领域的研究进展[J].中国表面工程,2022,35(2):1-11.LOU Tong,BAI Xiuqin,HE Xiaoyan,et al.Research progress of antimicrobial peptides in the field of marine antifouling[J].China Surface Engineering,2022,35(2):1-11.(in Chinese)

    • [4] QIU H Y,FENG K,GAPEEVA A,et al.Functional polymer materials for modern marine biofouling control[J].Progress in Polymer Science,2022,127:101516-101563.

    • [5] 贺小燕,白秀琴,袁成清,等.纳米复合海洋防污涂料研究进展[J].中国表面工程,2023,36(5):37-51.HE Xiaoyan,BAI Xiuqin,YUAN Chengqing,et al.Research progress of nanomaterial-based coatings for marine antifouling applications[J].China Surface Engineering,2023,36(5):37-51.(in Chinese)

    • [6] MURRAY C J K,IKUTA K S,SHARARA F,et al.Global burden of bacterial antimicrobial resistance in 2019:A systematic analysis[J].Lancet,2022,399(10325):629-655.

    • [7] MULAR A,SHANZER A,KOZLOWSKI H,et al.Cyclic analogs of desferrioxamine e siderophore for 68Ga nuclear imaging:coordination chemistry and biological activity in Staphylococcus aureus[J].Inorganic Chemistry,2021,60(23):17846-17857.

    • [8] SCHIFF H.Mittheilungen aus dem universitätslaboratorium in pisa:eine neue reihe organischer basen[J].J Justus Liebigs Annalen der Chemie,1864,131(1):118-119.

    • [9] PATTERSON A E,BOWES E G,BOS A,et al.Anti-mycobacterial activities of copper(ii)salicylaldimine complexes derived from long-chain aliphatic amines[J].Canadian Journal of Chemistry,2013,91(11):1093-1097.

    • [10] MAJUMDAR D,BISWAS J K,MONDAL M,et al.Cd(II)pseudohalide complexes with N,N'-bis(3-ethoxysalicylidenimino)1,3-diaminopropane:crystal structures,hirshfeld surface,antibacterial and anti-biofilm properties[J].Chemistryselect,2018,3(11):2912-2925.

    • [11] LIU X,HAMON J R.Recent developments in penta-,hexa-and heptadentate Schiff base ligands and their metal complexes[J].Coordination Chemistry Reviews,2019,389:94-118.

    • [12] BOULECHFAR C,FERKOUS H,DELIMI A,et al.Schiff bases and their metal complexes:a review on the history,synthesis,and applications[J].Inorganic Chemistry Communications,2023,150:110451.

    • [13] WANG X H,SHAN M Y,ZHANG S K,et al.Stimuli-responsive antibacterial materials:molecular structures,design principles,and biomedical applications[J].Advanced Science,2022,9(13):2104843-2104867.

    • [14] ABD EL-HALIM H,EL-SAYED O Y,MOHAMED G G.Anti-carcinoma and anti-microbial behavioral studies for octahedral synthesized Schiff base metal complexes[J].Journal of the Iranian Chemical Society,2023,20(11):2713-2725.

    • [15] ABDEL-RAHMAN L H,BASHA M T,AL-FARHAN B S,et al.Synthesis,characterization,dft studies of novel Cu(II),Zn(II),Vo(II),Cr(III),and La(III)chloro-substituted Schiff base complexes:aspects of its antimicrobial,antioxidant,anti-inflammatory,and photodegradation of methylene blue[J].Molecules,2023,28(12):4777-4807.

    • [16] DEVI J,YADAV J,SINGH N.Synthesis,characterisation,in vitro antimicrobial,antioxidant and anti-inflammatory activities of diorganotin(IV)complexes derived from salicylaldehyde Schiff bases[J].Research on Chemical Intermediates,2019,45(7):3943-3968.

    • [17] YAN M L,GUO Y H,ZHAO W J.Cross-linked but self-healing and entirely degradable poly-Schiff base metal complex materials for potential anti-biofouling[J].Advanced Materials Interfaces,2022,9(9):2101920-2101929.

    • [18] 单玉兴,杨镜鑫,王进,等.具有多层结构的可拉伸可折叠自修复有机硅导电弹性体[J].中国表面工程,2021,34(5):34-41.SHAN Yuxing,YANG Jingxin,WANG Jin,et al.Stretchable and foldable self-healable conductive silicon elastomer with multi-layered structure[J].China Surface Engineering,2021,34(5):34-41.(in Chinese)

    • [19] TIAN Y C,PANG L,ZHANG R,et al.Poly-tetrahydropyrimidine antibacterial hydrogel with injectability and self-healing ability for curing the purulent subcutaneous infection[J].ACS Appled Materials & Interfaces,2020,12(45):50236-50247.

    • [20] ZHANG L Z,LIU Z H,WU X L,et al.A highly efficient self-healing elastomer with unprecedented mechanical properties[J].Advanced Materials,2019,31(23):1901402-1901409.

    • [21] LIU Z H,ZHANG L Z,GUAN Q B,et al.Biomimetic materials with multiple protective functionalities[J].Advanced Functional Materials,2019,29(28):1901058-1901067.

    • [22] ZHAO P,QIU H M,WEI Q,et al.Anti-tumor effect of novel amino acid schiff base nickel(II)complexes on oral squamous cell carcinoma cells(cal-27)in vitro[J].Molecular & Cellular Toxicology,2023,19(2):265-275.

    • [23] WANG W D,XIANG L GONG L,et al.Injectable,self-healing hydrogel with tunable optical,mechanical,and antimicrobial properties[J].Chemistry of Materials,2019,31(7):2366-2376.

    • [24] KAUFFMAN G B.Sophus mads jorgensen(1837-1914):a chapter in coordination chemistry history[J].Proceeding of the Pacific Southwest Association of Chemistry Teachers,1959,36:521-528.

    • [25] WERNER H.Alfred werner:a forerunner to modern inorganic chemistry[J].Angewandte Chemie-International Edition in English,2013,52(24):6146-53.

    • [26] PFEIFFER P,BREITH E,LUBBE E,et al.Tri-cyclical ortho-condensed side valence circles[J].Justus Liebigs Annalen Der Chemie,1933,503:84-130.

    • [27] LOOK G C,MURPHY M M,CAMPBELL D A,et al.Trimethylorthoformate:a mild and effective dehydrating reagent for solution and solid-phase imine formation[J].Tetrahedron Letters,1995,36(17):2937-2940.

    • [28] SHIRAISHI Y,IKEDA M,TSUKAMOTO D,et al.One-pot synthesis of imines from alcohols and amines with TiO2 loading Pt nanoparticles under UV irradiation[J].Chemical Communications,2011,47(16):4811-4813.

    • [29] LOVE B E,REN J H.Synthesis of sterically hindered imines[J].Journal of Organic Chemistry,1993,58(20):5556-5557.

    • [30] BULDURUN K,SARIDAĞ T.Synthesis of Pd+2 complexes of Schiff bases containing methyl 2-amino-6-benzyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxyl ate and spectral and catalytic activities[J].Journal of Molecular Structure,2023,1273:134278.

    • [31] SAVCI A,BULDURUN K,KIRKPANTUR G.A new Schiff base containing 5-Fu and its metal complexes:synthesis,characterization,and biological activities[J].Inorganic Chemistry Communications,2021,134:109060-109067.

    • [32] REDDELIEN G.Concerning the decomposition of anilene[J].Berichte Der Deutschen Chemischen Gesellschaft,1920,53:355-358.

    • [33] MOSHER H S,BLANZ E J.Reduction of ortho-bromoanisole by lithium dineopentylamide[J].Journal of Organic Chemistry,1957,22(4):445-446.

    • [34] GNANAPRAKASAM B,ZHANG J,MILSTEIN D.Direct synthesis of imines from alcohols and amines with liberation of H2[J].Angewandte Chemie-International Edition in English,2010,49(8):1510-1513.

    • [35] TIAN H W,YU X C,LI Q,et al.General,green,and scalable synthesis of imines from alcohols and amines by a mild and efficient copper-catalyzed aerobic oxidative reaction in open air at room temperature[J].Advanced Synthesis & Catalysis,2012,354(14-15):2671-2677.

    • [36] CHU G B,LI C B.Convenient and clean synthesis of imines from primary benzylamines[J].Organic & Biomolecular Chemmistry,2010,8(20):4716-4719.

    • [37] HUANG B,TIAN H W,LIN S S,et al.Cu(I)/TEMPO-catalyzed aerobic oxidative synthesis of imines directly from primary and secondary amines under ambient and neat conditions[J].Tetrahedron Letters,2013,54(22):2861-2864.

    • [38] LARGERON M.Protocols for the catalytic oxidation of primary amines to imines[J].European Journal of Organic Chemistry,2013,2013(24):5225-5235.

    • [39] LAN Y S,LIAO B S,LIU Y H,et al.Preparation of imines by oxidative coupling of benzyl alcohols with amines catalysed by dicopper complexes[J].European Journal of Organic Chemistry,2013,2013(23):5160-5164.

    • [40] MARUI K,NOMOTO A,UESHIMA M,et al.Ecofriendly copper sulfate-catalyzed oxidation of amines to imines by hydrogen peroxide in water[J].Tetrahedron Letters,2015,56(10):1200-1202.

    • [41] KAZEMNEJADI M,SHAKERI A,MOHAMMADI M,et al.Direct preparation of oximes and Schiff bases by oxidation of primary benzylic or allylic alcohols in the presence of primary amines using Mn(III)complex of polysalicylaldehyde as an efficient and selective heterogeneous catalyst by molecular oxygen[J].Journal of the Iranian Chemical Society,2017,14(9):1917-1933.

    • [42] PATIL M K,MASAND V H,MALDHURE A K.Schiff base metal complexes precursor for metal oxide nanomaterials:A review[J].Current Nanoscience,2021,17(4):634-645.

    • [43] LAYER R W.Chemistry of imines[J].Chemical Reviews,1963,63(5):489-510.

    • [44] HOESCH K.A new synthesis of aromatic ketones.I.representation of some phenol ketones[J].Berichte Der Deutschen Chemischen Gesellschaft,1915,48:1122-1133.

    • [45] PICKARD P L,TOLBERT T L.Improved method of ketimine synthesis[J].Journal of Organic Chemistry,1961,26(12):4886.

    • [46] PICKARD P L,YOUNG C W.Ketimines.III.Ι-cyclohexylalkyl alkyl type1 [J].Journal of the American Chemical Society,1951,73(1):42-43.

    • [47] BOYER J H,CANTER F C.Alkyl and aryl azides[J].Chemical Reviews,1954,54(1):1-57.

    • [48] MARESH J J,CROWE S O,RALKO A A,et al.Facile one-pot synthesis of tetrahydroisoquinolines from amino acids via hypochlorite-mediated decarboxylation and pictet-spengler condensation[J].Tetrahedron Letters,2014,55(36):5047-5051.

    • [49] SHARMA B,SHUKLA S,RATTAN R,et al.Antimicrobial agents based on metal complexes:present situation and future prospects[J].International journal of biomaterials,2022,1:6819080-6819100.

    • [50] KITAURA R,ONOYAMA G,SAKAMOTO H,et al.Immobilization of a metallo Schiff base into a microporous coordination polymer[J].Angewandte Chemie-International Edition,2004,43(20):2684-2687.

    • [51] EL-SONBATI A Z,MAHMOUD W H,MOHAMED G G,et al.Synthesis,characterization of Schiff base metal complexes and their biological investigation[J].Applied Organometallic Chemistry,2019,33(9):5048-5063.

    • [52] JEEWOTH T,BHOWON M G,WAH H L K.Synthesis,characterization and antibacterial properties of Schiff bases and Schiff base metal complexes derived from 2,3-diamino-pyridine[J].Transition Metal Chemistry,1999,24(4):445-448.

    • [53] COZZI P G.Metal-salen Schiff base complexes in catalysis:practical aspects[J].Chemical Society Reviews,2004,33(7):410-421.

    • [54] SINGH A,BARMAN P.Recent advances in Schiff base ruthenium metal complexes:synthesis and applications[J].Topics in Current Chemistry,2021,379(4):29-99.

    • [55] SEGURA J L,MANCHENO M J,ZAMORA F.Covalent organic frameworks based on Schiff-base chemistry:synthesis,properties and potential applications[J].Chemical Society Reviews,2016,45(20):5635-5671.

    • [56] SINGH H L,SINGH J,MUKHERJEE A.Synthesis,spectral,and antibacterial studies of organosilicon(IV)complexes with Schiff bases derived from amino acids[J].Bioinorganic Chemistry and Applications,2013,1:425832-425840.

    • [57] PIETRANGELO A,SIH B C,BODEN B N,et al.Nonlinear optical properties of Schiff-base-containing conductive polymer films electro-deposited in microgravity[J].Advanced Materials,2008,20(12):2280-2284.

    • [58] WANG R Y,WANG J J,ZI H M,et al.Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium(IV)Schiff base complexes on mesoporous silica with isopropanol as hydrogen source[J].Molecular Catalysis,2017,441:168-178.

    • [59] WANG Q W,SONG H B,ZI G F.Synthesis,structure,and catalytic activity of group 4 complexes with new chiral biaryl-based NO2 ligands[J].Journal of Organometallic Chemistry,2010,695(10-11):1583-1591.

    • [60] XU Y,YUAN D,WANG Y R,et al.Aluminum complexes derived from a hexadentate salen-type Schiff base:synthesis,structure,and catalysis for cyclic carbonate synthesis[J].Dalton Transactions,2017,46(18):5848-5855.

    • [61] PERVAIZ M,AHMAD I,YOUSAF M,et al.Synthesis,spectral and antimicrobial studies of amino acid derivative Schiff base metal(Co,Mn,Cu,and Cd)complexes[J].Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2019,206:642-649.

    • [62] GHOSH M K,PATHAK S,GHORAI T K.Synthesis of two mononuclear Schiff base metal(M = Fe,Cu)complexes:Mof structure,dye degradation,H2O2 sensing,and DNA binding property[J].Acs Omega,2019,4(14):16068-16079.

    • [63] JAFARPOUR M,REZAEIFARD A,GAZKAR S,et al.Catalytic activity of a zirconium(IV)Schiff base complex in facile and highly efficient synthesis of indole derivatives[J].Transition Metal Chemistry,2011,36(7):685-690.

    • [64] AL ZOUBI W,NASHRAH N,CHAOUIKI A,et al.Self-assembled molecular network formed by controlling molecular deposition of organic compounds[J].Flatchem,2021,29:100270-100280.

    • [65] BRODOWSKA K,LODYGA‐CHRUSCINSKA E J C.Schiff bases-interesting range of applications in various fields of science[J].International Journal for Research Publication and Seminar,2016,7(1):2278-6848

    • [66] ZHANG Z,HE C,RONG Y,et al.A fast and versatile cross-linking strategy via o-phthalaldehyde condensation for mechanically strengthened and functional hydrogels[J].National Science Review,2021,8(4):128-138.

    • [67] XU L R,CAO L L,GUO Z X,et al.Side-functionalized two-dimensional polymers synthesized via on-surface Schiff-base coupling[J].Chemical Communications,2015,51(41):8664-8667.

    • [68] LI H M,LI J H,THOMAS A,et al.Ultra-high surface area nitrogen-doped carbon aerogels derived from a Schiff-base porous organic polymer aerogel for CO2 storage and supercapacitors[J].Advanced Functional Materials,2019,29(40):1904785-1904793.

    • [69] VENKATESAN K,SATYANARAYANA V S V,SIVAKUMAR A.Ultrasonic assisted synthesis of naphthalene substituted Schiff base derivatives and their antioxidant activity studies[J].Journal of the Chinese Chemical Society,2011,58(5):583-589.

    • [70] MERMER A,DEMIRBAS N,USLU H,et al.Synthesis of novel Schiff bases using green chemistry techniques;antimicrobial,antioxidant,antiurease activity screening and molecular docking studies[J].Journal of Molecular Structure,2019,1181:412-422.

    • [71] SUJATHA B,MOHAN S,SUBRAMANYAM C,et al.Microwave-assisted synthesis and anti-inflammatory activity evaluation of some novel α-aminophosphonates[J].Phosphorus Sulfur and Silicon and the Related Elements,2017,192(10):1110-1113.

    • [72] MOEKETSE T N,BAKER P G,FARAO A,et al.Microwave-assisted synthesis of Schiff base metal-ligand complexes with copper and nickel centres for electrochemical in vitro sensing of nitric oxide in an aqueous solution[J].Chemosensors,2022,10(5):75-76.

    • [73] GABANO E,RAVERA M.Microwave-assisted synthesis:can transition metal complexes take advantage of this "green" method?[J].Molecules,2022,27(13):4249-4286.

    • [74] HANIF M,HASSAN M,RAFIQ M,et al.Microwave-assisted synthesis,in vivo anti-inflammatory and in vitro anti-oxidant activities,and molecular docking study of new substituted Schiff base derivatives[J].Pharmaceutical Chemistry Journal,2018,52(5):424-437.

    • [75] AL-HIYARI B A,SHAKYA A K,NAIK R R,et al.Microwave-assisted synthesis of Schiff bases of isoniazid and evaluation of their anti-proliferative and antibacterial activities[J].Molbank,2021,2021(1):1189-1195.

    • [76] BORUAH J J,BHATT Z S,NATHANI C R,et al.Green synthesis of a vanadium(V)Schiff base complex by grinding method:study on its catalytic and anti-bacterial activity[J].Journal of Coordination Chemistry,2021,74(12):2055-2068.

    • [77] ALHARBI A,ALSOLIEMY A,ALZAHRANI S O,et al.Green synthesis approach for new Schiff’s-base complexes;theoretical and spectral based characterization with in-vitro and in-silico screening[J].Journal of Molecular Liquids,2022,345:117803-117814.

    • [78] STASSEN I,STYLES M,GRENCI G,et al.Chemical vapour deposition of zeolitic imidazolate framework thin films[J].Nature Materials,2016,15(3):304-313.

    • [79] MAHMOOD A A.Green synthesis of Schiff bases:A review study[J].Iraqi Journal of Pharmacy,2022,18(2):180-193.

    • [80] KATOUAH H,HAMEED A M,ALHARBI A,et al.Green synthesis strategy for new Schiff-base complexes:characterization,conductometry,in vitro assay confirmed by in silico approach[J].Chemistryselect,2020,5(33):10256-10268.

    • [81] SACHDEVA H,SAROJ R,KHATURIA S,et al.Green route for efficient synthesis of novel amino acid Schiff bases as potent antibacterial and antifungal agents and evaluation of cytotoxic effects[J].Journal of Chemistry,2014,2014(1):848543-848554.

    • [82] SHAMLY P,NELSON M,ANTONY A,et al.Synthesis of salicylaldehyde based Schiff bases and their metal complexes in aqueous media-characterization and antibacterial study[J].Journal of Recent Scientific Research,2018,9(5):26566-26570.

    • [83] CARNE-SANCHEZ A,IMAZ I,CANO-SARABIA M,et al.A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures[J].Nature Chemistry,2013,5(3):203-213.

    • [84] ZHANG Z,HE C L,CHEN X S.Hydrogels based on ph-responsive reversible carbon-nitrogen double-bond linkages for biomedical applications[J].Materials Chemistry Frontiers,2018,2(10):1765-1778.

    • [85] SHEKHAR S,CHAUDHARY V,SHARMA B,et al.Sustainable polysaccharide hydrogels based on dynamic Schiff base linkages as versatile building blocks for fabricating advanced functional materials[J].Journal of Polymers and the Environment,2023,31(4):1257-1278.

    • [86] BELOWICH M E,STODDART J F.Dynamic imine chemistry[J].Chemical Society Reviews,2012,41(6):2003-2024.

    • [87] GARCÍA F,SMULDERS M M J.Dynamic covalent polymers[J].Journal of Polymer Science Part a-Polymer Chemistry,2016,54(22):3551-3577.

    • [88] ZHANG H,WANG D,LIU W X,et al.Recyclable polybutadiene elastomer based on dynamic imine bond[J].Journal of Polymer Science Part A:Polymer Chemistry,2017,55(12):2011-2018.

    • [89] ZHANG H S,SU Z P,WANG X H.Starch-based rehealable and degradable bioplastic enabled by dynamic imine chemistry[J].Acs Sustainable Chemistry & Engineering,2022,10(26):8650-8657.

    • [90] YAN M L,LAN X J,ZHAO W J.Self-renewal poly-Schiff base/gallium-based liquid metal composite coatings triggered via water for superior antimicrobial performance under water[J].Progress in Organic Coatings,2024,186:108075-108085.

    • [91] KUMAR R,SINGH A A,KUMAR U,et al.Recent advances in synthesis of heterocyclic Schiff base transition metal complexes and their antimicrobial activities especially antibacterial and antifungal[J].Journal of Molecular Structure,2023,1294:136346.

    • [92] ASHRAF T,ALI B,QAYYUM H,et al.Pharmacological aspects of Schiff base metal complexes:A critical review[J].Inorganic Chemistry Communications,2023,150:110449.

    • [93] MURTAZA G,MUMTAZ A,KHAN F A,et al.Recent pharmacological advancements in Schiff bases:A review[J].Acta Poloniae Pharmaceutica,2014,71(4):531-535.

    • [94] CHEN S,ALADEJANA J T,LI X,et al.A strong,antimildew,and fully bio-based adhesive fabricated by soybean meal and dialdehyde chitosan[J].Industrial Crops and Products,2023,194:116277-116285.

    • [95] CHEN Y,MI Y Q,LI Q,et al.Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications[J].International Journal of Biological Macromolecules,2020,143:714-723.

    • [96] NAZIRKAR B,MANDEWALE M,YAMGAR R.Synthesis,characterization and antibacterial activity of Cu(II)and Zn(II)complexes of 5-aminobenzofuran-2-carboxylate Schiff base ligands[J].Journal of Taibah University for Science,2019,13(1):440-449.

    • [97] BOYLE T J,SEARS J M,GREATHOUSE J A,et al.Synthesis and characterization of structurally diverse alkaline-earth salen compounds for subterranean fluid flow tracking[J].Inorganic Chemistry Communications,2018,57(5):2402-2415.

    • [98] WANG L Y,HUANG C Y,HU F L,et al.Preparation and antitumor application of N-phenylcarbazole/triphenylamine-modified fluorescent half-sandwich iridium(III)Schiff base complexes[J].Dalton Transactions,2021,50(43):15888-15899.

    • [99] ZHUANG Y F,ZHU L P,CHEN X P,et al.Synthesis of carbon dot based Schiff bases and selective anticancer activity in glioma cells[J].Rsc Advances,2024,14(3):1952-1961.

    • [100] KENAWY E,EL-KHALAFY S H,ABOSHARAF H A,et al.Synthesis,characterization,and anticancer potency of branched poly(p-hydroxy styrene)Schiff-bases[J].Macromolecular Bioscience,2023,23(11):2300090-2300103.

    • [101] HASSAN A,ASKAR A,NOSSIER E,et al.Antibacterial evaluation,in silico characters and molecular docking of Schiff bases derived from 5-aminopyrazoles[J].Molecules,2019,24(17):3130-3141.

    • [102] ARAGON-MURIEL A,LISCANO Y,UPEGUI Y,et al.In vitro evaluation of the potential pharmacological activity and molecular targets of new benzimidazole-based Schiff base metal complexes[J].Antibiotics(Basel),2021,10(6):728-754.

    • [103] CAROCCI A,CATALANO A,BRUNO C,et al.Synthesis and in vitro sodium channel blocking activity evaluation of novel homochiral mexiletine analogs[J].Chirality,2009,22(3):299-307.

    • [104] ROSENBERG B,VANCAMP L,TROSKO J E,et al.Platinum compounds:a new class of potent antitumour agents[J].Nature,1969,222(5191):385-390.

    • [105] PAGES B J,ANG D L,WRIGHT E P,et al.Metal complex interactions with DNA[J].Dalton Transactions,2015,44(8):3505-3526.

    • [106] ANUPAMA B.DNA binding interactions,docking and antioxidative studies of ternary copper(II)complexes[J].Journal of Molecular Structure,2020,1210:127988-127996.

    • [107] MANUS L M,HOLBROOK R J,ATESIN T A,et al.Axial ligand exchange of n-heterocyclic cobalt(III)Schiff base complexes:molecular structure and nmr solution dynamics[J].Inorganic Chemistry Communications,2013,52(2):1069-1076.

    • [108] CHENNAM K P,RAVI M,USHAIAH B,et al.Synthesis,characterization,DNA interactions,DNA cleavage,radical scavenging activity,antibacterial,anti-proliferative and docking studies of new transition metal complexes[J].Journal of Fluorescence,2016,26(1):189-205.

    • [109] PASDAR H,HEDAYATI S B,FOROUGHIFAR N,et al.Synthesis,characterization and antibacterial activity of novel 1,3-diethyl-1,3-bis(4-nitrophenyl)urea and its metal(II)complexes[J].Molecules,2017,22(12):2125-2136.

    • [110] GUO Z Y,XING R,LIU S,et al.Antifungal properties of Schiff bases of chitosan,N-substituted chitosan and quaternized chitosan[J].Carbohydrate Research,2007,342(10):1329-1332.

    • [111] JIN X X,WANG J T,BAI J.Synthesis and antimicrobial activity of the Schiff base from chitosan and citral[J].Carbohydrate Research,2009,344(6):825-829.

    • [112] HAMED A A,ABDELHAMID I A,SAAD G R,et al.Synthesis,characterization and antimicrobial activity of a novel chitosan Schiff bases based on heterocyclic moieties[J].International Journal of Biological Macromolecules,2020,153:492-501.

    • [113] LIU D,SHU H B,ZHOU J W,et al.Research progress on new environmentally friendly antifouling coatings in marine settings:A review[J].Biomimetics,2023,8(2):200-227.

    • [114] LIU W J,YAN M L,ZHAO W J.Antibacterial-renew dual-function anti-biofouling strategy:self-assembled Schiff-base metal complex coatings built from natural products[J].Journal of Colloid and Interface Science,2023,629:496-507.

    • [115] 戴胜,刘鲁英,王致钘,等.具有增强光催化和抗菌活性的 TiO2@Ag-GO 复合材料[J].中国表面工程,2024,37(1):118-125.DAI Sheng,LIU Luying,WANG Zhixing,et al.TiO2@Ag-GO composite materials with enhanced photocatalytic and antimicrobial activities[J].China Surface Engineering,2024,37(1):118-125.(in Chinese)

    • [116] MOUSSA S N,BOUHIDEL Z,CHEROUANA A.A new crystal form and anti-microbial activity of(e)-1-3-(2-hy-droxy-benzyl-idene-amino)-phen-yl ethanone[J].Acta Crystallographic,2018,74(7):884-888.

    • [117] JOSE A P,SANKARGANESH M,RAJA D J,et al.Pyrimidine derivative Schiff base ligand stabilized copper and nickel nanoparticles by two step phase transfer method;in vitro anticancer,antioxidant,anti-microbial and DNA interactions[J].Journal of Fluorescence,2020,30(3):471-482.

    • [118] OBASI L N,KAIOR G U,RHYMAN L,et al.Synthesis,characterization,antimicrobial screening and computational studies of 4-[3-(4-methoxy-phenyl)-allylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihyd ro-pyrazol-3-one[J].Journal of Molecular Structure,2016,1120:180-186.

    • [119] WANG Z Q,GAO J Q,WANG J,et al.Spectroscopic analyses on interaction of amantadine-salicylaldehyde,amantadine-5-chloro-salicylaldehyde and amantadine-o-vanillin Schiff-bases with bovine serum albumin(bsa)[J].Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2011,83(1):511-517.

    • [120] KARTHIKEYAN M S,PRASAD D J,POOJARY B,et al.Synthesis and biological activity of Schiff and mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety[J].Bioorganic & Medicinal Chemistry,2006,14(22):7482-7489.

    • [121] MAKAWANA J A,SUN J,ZHU H L.Schiff’s base derivatives bearing nitroimidazole moiety:new class of antibacterial,anticancer agents and potential egfr tyrosine kinase inhibitors[J].Bioorganic & Medicinal Chemistry Letters,2013,23:6264-6268.

    • [122] ABOUL-FADL T,BIN-JUBAIR F A,ABOUL-WAFA O.Schiff bases of indoline-2,3-dione(isatin)derivatives and nalidixic acid carbohydrazide,synthesis,antitubercular activity and pharmacophoric model building[J].European Journal of Medicinal Chemistry,2010,45(10):4578-4586.

    • [123] PRAKASH C R,RAJA S.Synthesis,characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and mannich base of isatin derivatives[J].Journal of Saudi Chemical Society,2013,17(3):337-344.

    • [124] ELSHAARAWY R F M,MUSTAFA F H A,SOFY A R,et al.A new synthetic antifouling coatings integrated novel aminothiazole-functionalized ionic liquids motifs with enhanced antibacterial performance[J].Journal of Environmental Chemical Engineering,2019,7(1):102800-10289.

    • [125] KARGAR H,FALLAH-MEHRJARDI M,BEHJATMANESH-ARDAKANI R,et al.Synthesis,spectral characterization,crystal structures,biological activities,theoretical calculations and substitution effect of salicylidene ligand on the nature of mono and dinuclear Zn(II)Schiff base complexes[J].Polyhedron,2022,213:115636-115647.

    • [126] NATH B D,ISLAM M M,KARIM M R,et al.Recent progress in metal-incorporated acyclic Schiff-base derivatives:biological aspects[J].Chemistryselect,2022,7(14):202104290-202104312.

    • [127] PERVAIZ M,SADIQ S,SADIQ A,et al.Azo-Schiff base derivatives of transition metal complexes as antimicrobial agents[J].Coordination Chemistry Reviews,2021,447:214128-214170.

    • [128] SAKIYAN I,ÖZDEMIR R,ÖGÜTCÜ H.Synthesis,characterization,and antimicrobial activities of new n-(2-hydroxy-1-naphthalidene)-amino acid(l-tyrosine,l-arginine,and l-lysine)Schiff bases and their manganese(III)complexes[J].Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry,2014,44(3):417-423.

    • [129] XU Y J,SHI Y,LEI F,et al.A novel and green cellulose-based Schiff base-Cu(II)complex and its excellent antibacterial activity[J].Carbohydrate Polymers,2020,230:115671-115678.

    • [130] ABBASI TYULA Y,GOUDARZIAFSHAR H,YOUSEFI S,et al.Template synthesis,characterization and antibacterial activity of D10(Zn2+,Cd2+,Hg2+)Schiff base complexes:a novel supramolecular Cd2+ complex with two 1D helical chains,and its hirshfeld surface analysis[J].Journal of Molecular Structure,2023,1272:134051-134059.

    • [131] LIANG J,SUN D J,YANG Y Y,et al.Discovery of metal-based complexes as promising antimicrobial agents[J].European Journal of Medicinal Chemistry,2021,224:214128-214141.

    • [132] LOBANA T S,KAUSHAL M,BALA R,et al.Di-2-pyridylketone-n(1)-substituted thiosemicarbazone derivatives of copper(II):biosafe antimicrobial potential and high anticancer activity against immortalized l6 rat skeletal muscle cells[J].Journal of Inorganic Biochemistry,2020,212:111205-111215.

    • [133] LIN Y,BETTS H,KELLER S,et al.Recent developments of metal-based compounds against fungal pathogens[J].Chemical Society Reviews,2021,50(18):10346-10402.

    • [134] MORRISON C N,PROSSER K E,STOKES R W,et al.Expanding medicinal chemistry into 3d space:metallofragments as 3d scaffolds for fragment based drug discovery[J].Chemical Science,2020,11(5):1216-1225.

    • [135] ZALTARIOV M F,VLAD A,CAZACU M,et al.Silicon-containing bis-azomethines:synthesis,structural characterization,evaluation of the photophysical properties and biological activity[J].Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2015,138:38-48.

    • [136] SOROCEANU A,VACAREANU L,VORNICU N,et al.Assessment of some application potentials for copper complexes of the ligands containing siloxane moiety:antimicrobial,antifungal,antioxidant and redox activity[J].Inorganica Chimica Acta,2016,442:119-123.

    • [137] PAHONTU E,JULEA F,ROSU T,et al.Antibacterial,antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones[J].Journal of Cellular and Molecular Medicine,2015,19(4):865-878.

    • [138] MORE M S,JOSHI P G,MISHRA Y K,et al.Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications:A review[J].Materials Today Chemistry,2019,14:100195-100216.

    • [139] MANJULA B,ANTONY S A,DHANARAJ C J.Synthesis,spectral characterization,and antimicrobial activities of Schiff base complexes derived from 4-aminoantipyrine[J].Spectroscopy Letters,2014,47(7):518-526.

    • [140] RAMAN N,UTTHRA P P,CHELLAPANDI T.Insight into the in vitro anticancer screening,molecular docking and biological efficiency of pyridine-based transition metal(II)complexes[J].Journal of Coordination Chemistry,2020,73(1):103-119.

    • [141] FERNÁNDEZ G J M,RIO-PORTILLA F D,QUIROZ-GARCı́ A B,et al.The structures of some ortho-hydroxy Schiff base ligands[J].Journal of Molecular Structure,2001,561(1-3):197-207.

    • [142] MAL A,DING H M,LI M S,et al.Covalent organic frameworks with nanopores for biological applications:A review[J].Acs Applied Nano Materials,2022,5(10):13972-13984.

    • [143] SHINDE D B,KANDAMBETH S,PACHFULE P,et al.Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores[J].Chemical Communications,2015,51(2):310-313.

    • [144] CHEN X,ADDICOAT M,JIN E Q,et al.Locking covalent organic frameworks with hydrogen bonds:general and remarkable effects on crystalline structure,physical properties,and photochemical activity[J].Journal of the American Chemical Society,2015,137(9):3241-3248

    • [145] CHANDRA S,KUNDU T,KANDAMBETH S,et al.Phosphoric acid loaded azo(-N=N-)based covalent organic framework for proton conduction[J].Journal of the American Chemical Society,2014,136(18):6570-6573.

    • [146] CHEN X,HUANG N,GAO J,et al.Towards covalent organic frameworks with predesignable and aligned open docking sites[J].Chemical Communications,2014,50(46):6161-6163.

    • [147] ZHANG H X,MA J,LIU C,et al.Antibacterial activity of guanidinium-based ionic covalent organic framework anchoring ag nanoparticles[J].Journal of Hazardous Materials,2022,435:128965-128973.

    • [148] ZHAO Z P,FENG H M,QIN D,et al.Ph-responsive intelligent antibacterial coatings based on 2D-COF for controlled release of capsaicin[J].Acs Applied Polymer Materials,2023,5:2124-2135.

    • [149] LIU T T,HU X Y,WANG Y F,et al.Triazine-based covalent organic frameworks for photodynamic inactivation of bacteria as type-II photosensitizers[J].Journal of Photochemistry and Photobiology B,2017,175:156-162.

    • [150] HYNEK J,ZELENKA J,RATHOUSKY J,et al.Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria[J].Acs Applied Materials & Interfaces,2018,10:8527-8535.

    • [151] DING L G,WANG S,YAO B J,et al.Synergistic antibacterial and anti-inflammatory effects of a drug-loaded self-standing porphyrin-COF membrane for efficient skin wound healing[J].Advanced Healthcare Materials,2021,10(8):2001821-2001832.

    • [152] MITRA S,KANDAMBETH S,BISWAL B P,et al.Self-exfoliated guanidinium-based ionic covalent organic nanosheets(iCONS)[J].Journal of the American Chemical Society,2016,138:2823-2828.

    • [153] MAL A,VIJAYAKUMAR S,MISHRA R K,et al.Supramolecular surface charge regulation in ionic covalent organic nanosheets:reversible exfoliation and controlled bacterial growth[J].Angewandte Chemie-International Edition in English,2020,59:8713-8719.

    • [154] HIGUERAS L,LÓPEZ-CARBALLO G,GAVARA R,et al.Reversible covalent immobilization of cinnamaldehyde on chitosan films via Schiff base formation and their application in active food packaging[J].Food and Bioprocess Technology,2015,8(3):526-538.

    • [155] GUO Y H,YAN M L,ZHAO W J.Cinnamaldehyde grafted porous aerogel-organ gel liquid infused surface for achieving difunctional long-term dynamic antifouling[J].Journal of Colloid and Interface Science,2024,653:833-843.

    • [156] ARNON-RIPS H,COHEN Y,SAIDI L,et al.Covalent linkage of bioactive volatiles to a polysaccharide support as a potential approach for preparing active edible coatings and delivery systems for food products[J].Food Chemistry,2021,338:127822-127830.

    • [157] GAO L H,LIU X X,XU M X,et al.Biodegradable anti-biofilm fiber-membrane ureteral stent constructed with a robust biomimetic superhydrophilic polycationic hydration surface exhibiting synergetic antibacterial and antiprotein properties[J].Small,2021,17(20):2006815-2006828.

    • [158] ZHANG P F,CHEN X Y,BU F Q,et al.Dual coordination between stereochemistry and cations endows polyethylene terephthalate fabrics with diversiform antimicrobial abilities for attack and defense[J].Acs Applied Materials & Interfaces,2023,15(7):9926-9939.

    • [159] XIANG S,YANG J,CUI Z,et al.Preparation of hollow fiber membrane via grafting tannic acid and its influence on microstructure,permeability and anti-fouling[J].Materials Letters,2021,285:129095-129099.

    • [160] XIE Y,CHEN L T,ZHANG X,et al.Integrating zwitterionic polymer and ag nanoparticles on polymeric membrane surface to prepare antifouling and bactericidal surface via Schiff-based layer-by-layer assembly[J].Journal of Colloid and Interface Science,2018,510:308-317.

    • [161] ZHANG Y D,ZHANG X,ZHAO Y Q,et al.Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties[J].Biomaterials Science,2020,8(3):997-1006.

    • [162] LI Q,ZHANG X T,YU H,et al.A facile surface modification strategy for improving the separation,antifouling and antimicrobial performances of the reverse osmosis membrane by hydrophilic and Schiff-base functionalizations[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2020,587:124326-124334.

    • [163] BARAN N Y,SACAK M.Preparation of highly thermally stable and conductive Schiff base polymer:molecular weight monitoring and investigation of antimicrobial properties[J].Journal of Molecular Structure,2018,1163:22-32.

    • [164] LEE S J,GWAK M A,CHATHURANGA K,et al.Multifunctional chitosan/tannic acid composite films with improved anti-UV,antioxidant,and antimicrobial properties for active food packaging[J].Food Hydrocolloids,2023,136:108249-108260.

    • [165] ELSHAARAWY R F M,MUSTAFA F H A,VAN GEELEN L,et al.Mining marine shell wastes for polyelectrolyte chitosan anti-biofoulants:fabrication of high-performance economic and ecofriendly anti-biofouling coatings[J].Carbohydrate Polymers,2017,172:352-364.

    • [166] PAWARIYA V,DE S,DUTTA J.Chitosan-based Schiff bases:promising materials for biomedical and industrial applications[J].Carbohydrate Polymers,2024,323:121395-121419.

    • [167] NASROLLAHZADEH M,SHAFIEI N,NEZAFAT Z,et al.Recent progresses in the application of cellulose,starch,alginate,gum,pectin,chitin and chitosan based(nano)catalysts in sustainable and selective oxidation reactions:A review[J].Carbohydrate Polymers,2020,241:116353-116377.

    • [168] ZHANG Y,QI Y C,ULRICH S,et al.Dynamic covalent polymers for biomedical applications[J].Materials Chemistry Frontiers,2020,4(2):489-506.

    • [169] FU X R,SHEN Y,JIANG X,et al.Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics[J].Carbohydrate Polymers,2011,85(1):221-227.

    • [170] OMIDI S,KAKANEJADIFARD A.A review on biological activities of Schiff base,hydrazone,and oxime derivatives of curcumin[J].Rsc Advances,2020,10(50):30186-30202.

    • [171] XU G,PRANANTYO D,ZHANG B,et al.Tannic acid anchored layer-by-layer covalent deposition of parasin I peptide for antifouling and antimicrobial coatings[J].Rsc Advances,2016,6(18):14809-14818.

    • [172] YUAN Y,SHEN S H,FAN D D.A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing:shape adaptability,injectable self-healing property and enhanced adhesion[J].Biomaterials,2021,276:120838-120854.

    • [173] ZHAO X,LUO J L,HUANG Y,et al.Injectable antiswelling and high-strength bioactive hydrogels with a wet adhesion and rapid gelling process to promote sutureless wound closure and scar-free repair of infectious wounds[J].Acs Nano,2023,17(21):22015-22034.

    • [174] CHEN J L,MU Z X,CHEN D F,et al.H2S-releasing versatile hydrogel dressing with potent antimicrobial,anti-inflammatory,epithelialization and angiogenic capabilities for diabetic wound healing[J].Chemical Engineering Journal,2023,469:143985-141001.

    • [175] ZHANG Y,PHAM C Y,YU R,et al.Dynamic hydrogels based on double imine connections and application for delivery of fluorouracil[J].Frontiers in Chemistry,2020,8:739-746

    • [176] YE J,FU S W,ZHOU S Y,et al.Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application[J].European Polymer Journal,2020,139:110024-110039.

    • [177] AL Z W,KHAN M E,KO Y G.A simple method to functionalize the surface of plasma electrolysis produced inorganic coatings for growing different organic structure[J].Progress in Organic Coatings,2022,171:107008-107013.

    • [178] DING W,WU Y B.Sustainable dialdehyde polysaccharides as versatile building blocks for fabricating functional materials:An overview[J].Carbohydrate Polymers,2020,248:116801-116815.

    • [179] WEI L J,TAN W Q,WANG G,et al.The antioxidant and antifungal activity of chitosan derivatives bearing Schiff bases and quaternary ammonium salts[J].Carbohydrate Polymers,2019,226:115256-115266.

    • [180] QIAN C,ZHANG T B,GRAVESANDE J,et al.Injectable and self-healing polysaccharide-based hydrogel for ph-responsive drug release[J].International Journal of Biological Macromolecules,2019,123:140-148.

    • [181] ZHU Y,WANG Y M,SUN Y,et al.In situ self imine-crosslinked nanocomplexes loaded with small noncoding RNA for efficient osteoarthritis attenuation[J].Chemical Engineering Journal,2021,420:127631-127639.

    • [182] AMIRIAN J,ZENG Y,SHEKH M I,et al.In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosan as potential wound dressing for skin repairing[J].Carbohydrate Polymers,2021,251:117005-117017.

    • [183] LIU J Q,WU M M,LU J,et al.Janus intelligent antibacterial hydrogel dressings for chronic wound healing in diabetes[J].Acs Applied Polymer Materials,2023,5(4):2596-2606.

    • [184] OZAY H,ILGIN P,OZAY O.Novel hydrogels based on crosslinked chitosan with formyl-phosphazene using Schiff-base reaction[J].International Journal of Polymeric Materials and Polymeric Biomaterials,2021,70(4):246-255.

    • [185] HASSAN M A,OMER A M,ABBAS E,et al.Preparation,physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives[J].Scientific Reports,2018,8:11416-11429.

    • [186] LIANG Y Q,LI Z L,HUANG Y,et al.Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing[J].Acs Nano,2021,15(4):7078-7093.

    • [187] HUANG Y,MU L,ZHAO X,et al.Bacterial growth-induced tobramycin smart release self-healing hydrogel for pseudomonas aeruginosa-infected burn wound healing[J].Acs Nano,2022,16(8):13022-13036.

    • [188] FUKUDA K,SHIMODA M,SUKEGAWA M,et al.Doubly degradable dynamers:dynamic covalent polymers based on reversible imine connections and biodegradable polyester units[J].Green Chemistry,2012,14(10):2907-2911.

    • [189] HOU S T,SUO X,CHEN N Q,et al.Facile synthesis of a linear porous organic polymer via Schiff-base chemistry for propyne/propylene separation[J].Polymer Chemistry,2020,11(27):4382-4386.

    • [190] NISHAT N,KHAN S A,PARVEEN S,et al.Antimicrobial agents:synthesis,spectral,thermal,and biological aspects of a polymeric Schiff base and its polymer metal(II)complexes[J].Journal of Coordination Chemistry,2010,63(22):3944-3955.

  • 参考文献

    • [1] XUAN J Q,FENG W G,WANG J Y,et al.Antimicrobial peptides for combating drug-resistant bacterial infections[J].Drug Resistance Updates Reviews,2023,68:100954-100965.

    • [2] ROMEU M J,MERGULHAO F.Development of antifouling strategies for marine applications[J].Microorganisms,2023,11(6):1568-1601.

    • [3] 楼彤,白秀琴,贺小燕,等.抗菌肽在海洋防污领域的研究进展[J].中国表面工程,2022,35(2):1-11.LOU Tong,BAI Xiuqin,HE Xiaoyan,et al.Research progress of antimicrobial peptides in the field of marine antifouling[J].China Surface Engineering,2022,35(2):1-11.(in Chinese)

    • [4] QIU H Y,FENG K,GAPEEVA A,et al.Functional polymer materials for modern marine biofouling control[J].Progress in Polymer Science,2022,127:101516-101563.

    • [5] 贺小燕,白秀琴,袁成清,等.纳米复合海洋防污涂料研究进展[J].中国表面工程,2023,36(5):37-51.HE Xiaoyan,BAI Xiuqin,YUAN Chengqing,et al.Research progress of nanomaterial-based coatings for marine antifouling applications[J].China Surface Engineering,2023,36(5):37-51.(in Chinese)

    • [6] MURRAY C J K,IKUTA K S,SHARARA F,et al.Global burden of bacterial antimicrobial resistance in 2019:A systematic analysis[J].Lancet,2022,399(10325):629-655.

    • [7] MULAR A,SHANZER A,KOZLOWSKI H,et al.Cyclic analogs of desferrioxamine e siderophore for 68Ga nuclear imaging:coordination chemistry and biological activity in Staphylococcus aureus[J].Inorganic Chemistry,2021,60(23):17846-17857.

    • [8] SCHIFF H.Mittheilungen aus dem universitätslaboratorium in pisa:eine neue reihe organischer basen[J].J Justus Liebigs Annalen der Chemie,1864,131(1):118-119.

    • [9] PATTERSON A E,BOWES E G,BOS A,et al.Anti-mycobacterial activities of copper(ii)salicylaldimine complexes derived from long-chain aliphatic amines[J].Canadian Journal of Chemistry,2013,91(11):1093-1097.

    • [10] MAJUMDAR D,BISWAS J K,MONDAL M,et al.Cd(II)pseudohalide complexes with N,N'-bis(3-ethoxysalicylidenimino)1,3-diaminopropane:crystal structures,hirshfeld surface,antibacterial and anti-biofilm properties[J].Chemistryselect,2018,3(11):2912-2925.

    • [11] LIU X,HAMON J R.Recent developments in penta-,hexa-and heptadentate Schiff base ligands and their metal complexes[J].Coordination Chemistry Reviews,2019,389:94-118.

    • [12] BOULECHFAR C,FERKOUS H,DELIMI A,et al.Schiff bases and their metal complexes:a review on the history,synthesis,and applications[J].Inorganic Chemistry Communications,2023,150:110451.

    • [13] WANG X H,SHAN M Y,ZHANG S K,et al.Stimuli-responsive antibacterial materials:molecular structures,design principles,and biomedical applications[J].Advanced Science,2022,9(13):2104843-2104867.

    • [14] ABD EL-HALIM H,EL-SAYED O Y,MOHAMED G G.Anti-carcinoma and anti-microbial behavioral studies for octahedral synthesized Schiff base metal complexes[J].Journal of the Iranian Chemical Society,2023,20(11):2713-2725.

    • [15] ABDEL-RAHMAN L H,BASHA M T,AL-FARHAN B S,et al.Synthesis,characterization,dft studies of novel Cu(II),Zn(II),Vo(II),Cr(III),and La(III)chloro-substituted Schiff base complexes:aspects of its antimicrobial,antioxidant,anti-inflammatory,and photodegradation of methylene blue[J].Molecules,2023,28(12):4777-4807.

    • [16] DEVI J,YADAV J,SINGH N.Synthesis,characterisation,in vitro antimicrobial,antioxidant and anti-inflammatory activities of diorganotin(IV)complexes derived from salicylaldehyde Schiff bases[J].Research on Chemical Intermediates,2019,45(7):3943-3968.

    • [17] YAN M L,GUO Y H,ZHAO W J.Cross-linked but self-healing and entirely degradable poly-Schiff base metal complex materials for potential anti-biofouling[J].Advanced Materials Interfaces,2022,9(9):2101920-2101929.

    • [18] 单玉兴,杨镜鑫,王进,等.具有多层结构的可拉伸可折叠自修复有机硅导电弹性体[J].中国表面工程,2021,34(5):34-41.SHAN Yuxing,YANG Jingxin,WANG Jin,et al.Stretchable and foldable self-healable conductive silicon elastomer with multi-layered structure[J].China Surface Engineering,2021,34(5):34-41.(in Chinese)

    • [19] TIAN Y C,PANG L,ZHANG R,et al.Poly-tetrahydropyrimidine antibacterial hydrogel with injectability and self-healing ability for curing the purulent subcutaneous infection[J].ACS Appled Materials & Interfaces,2020,12(45):50236-50247.

    • [20] ZHANG L Z,LIU Z H,WU X L,et al.A highly efficient self-healing elastomer with unprecedented mechanical properties[J].Advanced Materials,2019,31(23):1901402-1901409.

    • [21] LIU Z H,ZHANG L Z,GUAN Q B,et al.Biomimetic materials with multiple protective functionalities[J].Advanced Functional Materials,2019,29(28):1901058-1901067.

    • [22] ZHAO P,QIU H M,WEI Q,et al.Anti-tumor effect of novel amino acid schiff base nickel(II)complexes on oral squamous cell carcinoma cells(cal-27)in vitro[J].Molecular & Cellular Toxicology,2023,19(2):265-275.

    • [23] WANG W D,XIANG L GONG L,et al.Injectable,self-healing hydrogel with tunable optical,mechanical,and antimicrobial properties[J].Chemistry of Materials,2019,31(7):2366-2376.

    • [24] KAUFFMAN G B.Sophus mads jorgensen(1837-1914):a chapter in coordination chemistry history[J].Proceeding of the Pacific Southwest Association of Chemistry Teachers,1959,36:521-528.

    • [25] WERNER H.Alfred werner:a forerunner to modern inorganic chemistry[J].Angewandte Chemie-International Edition in English,2013,52(24):6146-53.

    • [26] PFEIFFER P,BREITH E,LUBBE E,et al.Tri-cyclical ortho-condensed side valence circles[J].Justus Liebigs Annalen Der Chemie,1933,503:84-130.

    • [27] LOOK G C,MURPHY M M,CAMPBELL D A,et al.Trimethylorthoformate:a mild and effective dehydrating reagent for solution and solid-phase imine formation[J].Tetrahedron Letters,1995,36(17):2937-2940.

    • [28] SHIRAISHI Y,IKEDA M,TSUKAMOTO D,et al.One-pot synthesis of imines from alcohols and amines with TiO2 loading Pt nanoparticles under UV irradiation[J].Chemical Communications,2011,47(16):4811-4813.

    • [29] LOVE B E,REN J H.Synthesis of sterically hindered imines[J].Journal of Organic Chemistry,1993,58(20):5556-5557.

    • [30] BULDURUN K,SARIDAĞ T.Synthesis of Pd+2 complexes of Schiff bases containing methyl 2-amino-6-benzyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxyl ate and spectral and catalytic activities[J].Journal of Molecular Structure,2023,1273:134278.

    • [31] SAVCI A,BULDURUN K,KIRKPANTUR G.A new Schiff base containing 5-Fu and its metal complexes:synthesis,characterization,and biological activities[J].Inorganic Chemistry Communications,2021,134:109060-109067.

    • [32] REDDELIEN G.Concerning the decomposition of anilene[J].Berichte Der Deutschen Chemischen Gesellschaft,1920,53:355-358.

    • [33] MOSHER H S,BLANZ E J.Reduction of ortho-bromoanisole by lithium dineopentylamide[J].Journal of Organic Chemistry,1957,22(4):445-446.

    • [34] GNANAPRAKASAM B,ZHANG J,MILSTEIN D.Direct synthesis of imines from alcohols and amines with liberation of H2[J].Angewandte Chemie-International Edition in English,2010,49(8):1510-1513.

    • [35] TIAN H W,YU X C,LI Q,et al.General,green,and scalable synthesis of imines from alcohols and amines by a mild and efficient copper-catalyzed aerobic oxidative reaction in open air at room temperature[J].Advanced Synthesis & Catalysis,2012,354(14-15):2671-2677.

    • [36] CHU G B,LI C B.Convenient and clean synthesis of imines from primary benzylamines[J].Organic & Biomolecular Chemmistry,2010,8(20):4716-4719.

    • [37] HUANG B,TIAN H W,LIN S S,et al.Cu(I)/TEMPO-catalyzed aerobic oxidative synthesis of imines directly from primary and secondary amines under ambient and neat conditions[J].Tetrahedron Letters,2013,54(22):2861-2864.

    • [38] LARGERON M.Protocols for the catalytic oxidation of primary amines to imines[J].European Journal of Organic Chemistry,2013,2013(24):5225-5235.

    • [39] LAN Y S,LIAO B S,LIU Y H,et al.Preparation of imines by oxidative coupling of benzyl alcohols with amines catalysed by dicopper complexes[J].European Journal of Organic Chemistry,2013,2013(23):5160-5164.

    • [40] MARUI K,NOMOTO A,UESHIMA M,et al.Ecofriendly copper sulfate-catalyzed oxidation of amines to imines by hydrogen peroxide in water[J].Tetrahedron Letters,2015,56(10):1200-1202.

    • [41] KAZEMNEJADI M,SHAKERI A,MOHAMMADI M,et al.Direct preparation of oximes and Schiff bases by oxidation of primary benzylic or allylic alcohols in the presence of primary amines using Mn(III)complex of polysalicylaldehyde as an efficient and selective heterogeneous catalyst by molecular oxygen[J].Journal of the Iranian Chemical Society,2017,14(9):1917-1933.

    • [42] PATIL M K,MASAND V H,MALDHURE A K.Schiff base metal complexes precursor for metal oxide nanomaterials:A review[J].Current Nanoscience,2021,17(4):634-645.

    • [43] LAYER R W.Chemistry of imines[J].Chemical Reviews,1963,63(5):489-510.

    • [44] HOESCH K.A new synthesis of aromatic ketones.I.representation of some phenol ketones[J].Berichte Der Deutschen Chemischen Gesellschaft,1915,48:1122-1133.

    • [45] PICKARD P L,TOLBERT T L.Improved method of ketimine synthesis[J].Journal of Organic Chemistry,1961,26(12):4886.

    • [46] PICKARD P L,YOUNG C W.Ketimines.III.Ι-cyclohexylalkyl alkyl type1 [J].Journal of the American Chemical Society,1951,73(1):42-43.

    • [47] BOYER J H,CANTER F C.Alkyl and aryl azides[J].Chemical Reviews,1954,54(1):1-57.

    • [48] MARESH J J,CROWE S O,RALKO A A,et al.Facile one-pot synthesis of tetrahydroisoquinolines from amino acids via hypochlorite-mediated decarboxylation and pictet-spengler condensation[J].Tetrahedron Letters,2014,55(36):5047-5051.

    • [49] SHARMA B,SHUKLA S,RATTAN R,et al.Antimicrobial agents based on metal complexes:present situation and future prospects[J].International journal of biomaterials,2022,1:6819080-6819100.

    • [50] KITAURA R,ONOYAMA G,SAKAMOTO H,et al.Immobilization of a metallo Schiff base into a microporous coordination polymer[J].Angewandte Chemie-International Edition,2004,43(20):2684-2687.

    • [51] EL-SONBATI A Z,MAHMOUD W H,MOHAMED G G,et al.Synthesis,characterization of Schiff base metal complexes and their biological investigation[J].Applied Organometallic Chemistry,2019,33(9):5048-5063.

    • [52] JEEWOTH T,BHOWON M G,WAH H L K.Synthesis,characterization and antibacterial properties of Schiff bases and Schiff base metal complexes derived from 2,3-diamino-pyridine[J].Transition Metal Chemistry,1999,24(4):445-448.

    • [53] COZZI P G.Metal-salen Schiff base complexes in catalysis:practical aspects[J].Chemical Society Reviews,2004,33(7):410-421.

    • [54] SINGH A,BARMAN P.Recent advances in Schiff base ruthenium metal complexes:synthesis and applications[J].Topics in Current Chemistry,2021,379(4):29-99.

    • [55] SEGURA J L,MANCHENO M J,ZAMORA F.Covalent organic frameworks based on Schiff-base chemistry:synthesis,properties and potential applications[J].Chemical Society Reviews,2016,45(20):5635-5671.

    • [56] SINGH H L,SINGH J,MUKHERJEE A.Synthesis,spectral,and antibacterial studies of organosilicon(IV)complexes with Schiff bases derived from amino acids[J].Bioinorganic Chemistry and Applications,2013,1:425832-425840.

    • [57] PIETRANGELO A,SIH B C,BODEN B N,et al.Nonlinear optical properties of Schiff-base-containing conductive polymer films electro-deposited in microgravity[J].Advanced Materials,2008,20(12):2280-2284.

    • [58] WANG R Y,WANG J J,ZI H M,et al.Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium(IV)Schiff base complexes on mesoporous silica with isopropanol as hydrogen source[J].Molecular Catalysis,2017,441:168-178.

    • [59] WANG Q W,SONG H B,ZI G F.Synthesis,structure,and catalytic activity of group 4 complexes with new chiral biaryl-based NO2 ligands[J].Journal of Organometallic Chemistry,2010,695(10-11):1583-1591.

    • [60] XU Y,YUAN D,WANG Y R,et al.Aluminum complexes derived from a hexadentate salen-type Schiff base:synthesis,structure,and catalysis for cyclic carbonate synthesis[J].Dalton Transactions,2017,46(18):5848-5855.

    • [61] PERVAIZ M,AHMAD I,YOUSAF M,et al.Synthesis,spectral and antimicrobial studies of amino acid derivative Schiff base metal(Co,Mn,Cu,and Cd)complexes[J].Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2019,206:642-649.

    • [62] GHOSH M K,PATHAK S,GHORAI T K.Synthesis of two mononuclear Schiff base metal(M = Fe,Cu)complexes:Mof structure,dye degradation,H2O2 sensing,and DNA binding property[J].Acs Omega,2019,4(14):16068-16079.

    • [63] JAFARPOUR M,REZAEIFARD A,GAZKAR S,et al.Catalytic activity of a zirconium(IV)Schiff base complex in facile and highly efficient synthesis of indole derivatives[J].Transition Metal Chemistry,2011,36(7):685-690.

    • [64] AL ZOUBI W,NASHRAH N,CHAOUIKI A,et al.Self-assembled molecular network formed by controlling molecular deposition of organic compounds[J].Flatchem,2021,29:100270-100280.

    • [65] BRODOWSKA K,LODYGA‐CHRUSCINSKA E J C.Schiff bases-interesting range of applications in various fields of science[J].International Journal for Research Publication and Seminar,2016,7(1):2278-6848

    • [66] ZHANG Z,HE C,RONG Y,et al.A fast and versatile cross-linking strategy via o-phthalaldehyde condensation for mechanically strengthened and functional hydrogels[J].National Science Review,2021,8(4):128-138.

    • [67] XU L R,CAO L L,GUO Z X,et al.Side-functionalized two-dimensional polymers synthesized via on-surface Schiff-base coupling[J].Chemical Communications,2015,51(41):8664-8667.

    • [68] LI H M,LI J H,THOMAS A,et al.Ultra-high surface area nitrogen-doped carbon aerogels derived from a Schiff-base porous organic polymer aerogel for CO2 storage and supercapacitors[J].Advanced Functional Materials,2019,29(40):1904785-1904793.

    • [69] VENKATESAN K,SATYANARAYANA V S V,SIVAKUMAR A.Ultrasonic assisted synthesis of naphthalene substituted Schiff base derivatives and their antioxidant activity studies[J].Journal of the Chinese Chemical Society,2011,58(5):583-589.

    • [70] MERMER A,DEMIRBAS N,USLU H,et al.Synthesis of novel Schiff bases using green chemistry techniques;antimicrobial,antioxidant,antiurease activity screening and molecular docking studies[J].Journal of Molecular Structure,2019,1181:412-422.

    • [71] SUJATHA B,MOHAN S,SUBRAMANYAM C,et al.Microwave-assisted synthesis and anti-inflammatory activity evaluation of some novel α-aminophosphonates[J].Phosphorus Sulfur and Silicon and the Related Elements,2017,192(10):1110-1113.

    • [72] MOEKETSE T N,BAKER P G,FARAO A,et al.Microwave-assisted synthesis of Schiff base metal-ligand complexes with copper and nickel centres for electrochemical in vitro sensing of nitric oxide in an aqueous solution[J].Chemosensors,2022,10(5):75-76.

    • [73] GABANO E,RAVERA M.Microwave-assisted synthesis:can transition metal complexes take advantage of this "green" method?[J].Molecules,2022,27(13):4249-4286.

    • [74] HANIF M,HASSAN M,RAFIQ M,et al.Microwave-assisted synthesis,in vivo anti-inflammatory and in vitro anti-oxidant activities,and molecular docking study of new substituted Schiff base derivatives[J].Pharmaceutical Chemistry Journal,2018,52(5):424-437.

    • [75] AL-HIYARI B A,SHAKYA A K,NAIK R R,et al.Microwave-assisted synthesis of Schiff bases of isoniazid and evaluation of their anti-proliferative and antibacterial activities[J].Molbank,2021,2021(1):1189-1195.

    • [76] BORUAH J J,BHATT Z S,NATHANI C R,et al.Green synthesis of a vanadium(V)Schiff base complex by grinding method:study on its catalytic and anti-bacterial activity[J].Journal of Coordination Chemistry,2021,74(12):2055-2068.

    • [77] ALHARBI A,ALSOLIEMY A,ALZAHRANI S O,et al.Green synthesis approach for new Schiff’s-base complexes;theoretical and spectral based characterization with in-vitro and in-silico screening[J].Journal of Molecular Liquids,2022,345:117803-117814.

    • [78] STASSEN I,STYLES M,GRENCI G,et al.Chemical vapour deposition of zeolitic imidazolate framework thin films[J].Nature Materials,2016,15(3):304-313.

    • [79] MAHMOOD A A.Green synthesis of Schiff bases:A review study[J].Iraqi Journal of Pharmacy,2022,18(2):180-193.

    • [80] KATOUAH H,HAMEED A M,ALHARBI A,et al.Green synthesis strategy for new Schiff-base complexes:characterization,conductometry,in vitro assay confirmed by in silico approach[J].Chemistryselect,2020,5(33):10256-10268.

    • [81] SACHDEVA H,SAROJ R,KHATURIA S,et al.Green route for efficient synthesis of novel amino acid Schiff bases as potent antibacterial and antifungal agents and evaluation of cytotoxic effects[J].Journal of Chemistry,2014,2014(1):848543-848554.

    • [82] SHAMLY P,NELSON M,ANTONY A,et al.Synthesis of salicylaldehyde based Schiff bases and their metal complexes in aqueous media-characterization and antibacterial study[J].Journal of Recent Scientific Research,2018,9(5):26566-26570.

    • [83] CARNE-SANCHEZ A,IMAZ I,CANO-SARABIA M,et al.A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures[J].Nature Chemistry,2013,5(3):203-213.

    • [84] ZHANG Z,HE C L,CHEN X S.Hydrogels based on ph-responsive reversible carbon-nitrogen double-bond linkages for biomedical applications[J].Materials Chemistry Frontiers,2018,2(10):1765-1778.

    • [85] SHEKHAR S,CHAUDHARY V,SHARMA B,et al.Sustainable polysaccharide hydrogels based on dynamic Schiff base linkages as versatile building blocks for fabricating advanced functional materials[J].Journal of Polymers and the Environment,2023,31(4):1257-1278.

    • [86] BELOWICH M E,STODDART J F.Dynamic imine chemistry[J].Chemical Society Reviews,2012,41(6):2003-2024.

    • [87] GARCÍA F,SMULDERS M M J.Dynamic covalent polymers[J].Journal of Polymer Science Part a-Polymer Chemistry,2016,54(22):3551-3577.

    • [88] ZHANG H,WANG D,LIU W X,et al.Recyclable polybutadiene elastomer based on dynamic imine bond[J].Journal of Polymer Science Part A:Polymer Chemistry,2017,55(12):2011-2018.

    • [89] ZHANG H S,SU Z P,WANG X H.Starch-based rehealable and degradable bioplastic enabled by dynamic imine chemistry[J].Acs Sustainable Chemistry & Engineering,2022,10(26):8650-8657.

    • [90] YAN M L,LAN X J,ZHAO W J.Self-renewal poly-Schiff base/gallium-based liquid metal composite coatings triggered via water for superior antimicrobial performance under water[J].Progress in Organic Coatings,2024,186:108075-108085.

    • [91] KUMAR R,SINGH A A,KUMAR U,et al.Recent advances in synthesis of heterocyclic Schiff base transition metal complexes and their antimicrobial activities especially antibacterial and antifungal[J].Journal of Molecular Structure,2023,1294:136346.

    • [92] ASHRAF T,ALI B,QAYYUM H,et al.Pharmacological aspects of Schiff base metal complexes:A critical review[J].Inorganic Chemistry Communications,2023,150:110449.

    • [93] MURTAZA G,MUMTAZ A,KHAN F A,et al.Recent pharmacological advancements in Schiff bases:A review[J].Acta Poloniae Pharmaceutica,2014,71(4):531-535.

    • [94] CHEN S,ALADEJANA J T,LI X,et al.A strong,antimildew,and fully bio-based adhesive fabricated by soybean meal and dialdehyde chitosan[J].Industrial Crops and Products,2023,194:116277-116285.

    • [95] CHEN Y,MI Y Q,LI Q,et al.Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications[J].International Journal of Biological Macromolecules,2020,143:714-723.

    • [96] NAZIRKAR B,MANDEWALE M,YAMGAR R.Synthesis,characterization and antibacterial activity of Cu(II)and Zn(II)complexes of 5-aminobenzofuran-2-carboxylate Schiff base ligands[J].Journal of Taibah University for Science,2019,13(1):440-449.

    • [97] BOYLE T J,SEARS J M,GREATHOUSE J A,et al.Synthesis and characterization of structurally diverse alkaline-earth salen compounds for subterranean fluid flow tracking[J].Inorganic Chemistry Communications,2018,57(5):2402-2415.

    • [98] WANG L Y,HUANG C Y,HU F L,et al.Preparation and antitumor application of N-phenylcarbazole/triphenylamine-modified fluorescent half-sandwich iridium(III)Schiff base complexes[J].Dalton Transactions,2021,50(43):15888-15899.

    • [99] ZHUANG Y F,ZHU L P,CHEN X P,et al.Synthesis of carbon dot based Schiff bases and selective anticancer activity in glioma cells[J].Rsc Advances,2024,14(3):1952-1961.

    • [100] KENAWY E,EL-KHALAFY S H,ABOSHARAF H A,et al.Synthesis,characterization,and anticancer potency of branched poly(p-hydroxy styrene)Schiff-bases[J].Macromolecular Bioscience,2023,23(11):2300090-2300103.

    • [101] HASSAN A,ASKAR A,NOSSIER E,et al.Antibacterial evaluation,in silico characters and molecular docking of Schiff bases derived from 5-aminopyrazoles[J].Molecules,2019,24(17):3130-3141.

    • [102] ARAGON-MURIEL A,LISCANO Y,UPEGUI Y,et al.In vitro evaluation of the potential pharmacological activity and molecular targets of new benzimidazole-based Schiff base metal complexes[J].Antibiotics(Basel),2021,10(6):728-754.

    • [103] CAROCCI A,CATALANO A,BRUNO C,et al.Synthesis and in vitro sodium channel blocking activity evaluation of novel homochiral mexiletine analogs[J].Chirality,2009,22(3):299-307.

    • [104] ROSENBERG B,VANCAMP L,TROSKO J E,et al.Platinum compounds:a new class of potent antitumour agents[J].Nature,1969,222(5191):385-390.

    • [105] PAGES B J,ANG D L,WRIGHT E P,et al.Metal complex interactions with DNA[J].Dalton Transactions,2015,44(8):3505-3526.

    • [106] ANUPAMA B.DNA binding interactions,docking and antioxidative studies of ternary copper(II)complexes[J].Journal of Molecular Structure,2020,1210:127988-127996.

    • [107] MANUS L M,HOLBROOK R J,ATESIN T A,et al.Axial ligand exchange of n-heterocyclic cobalt(III)Schiff base complexes:molecular structure and nmr solution dynamics[J].Inorganic Chemistry Communications,2013,52(2):1069-1076.

    • [108] CHENNAM K P,RAVI M,USHAIAH B,et al.Synthesis,characterization,DNA interactions,DNA cleavage,radical scavenging activity,antibacterial,anti-proliferative and docking studies of new transition metal complexes[J].Journal of Fluorescence,2016,26(1):189-205.

    • [109] PASDAR H,HEDAYATI S B,FOROUGHIFAR N,et al.Synthesis,characterization and antibacterial activity of novel 1,3-diethyl-1,3-bis(4-nitrophenyl)urea and its metal(II)complexes[J].Molecules,2017,22(12):2125-2136.

    • [110] GUO Z Y,XING R,LIU S,et al.Antifungal properties of Schiff bases of chitosan,N-substituted chitosan and quaternized chitosan[J].Carbohydrate Research,2007,342(10):1329-1332.

    • [111] JIN X X,WANG J T,BAI J.Synthesis and antimicrobial activity of the Schiff base from chitosan and citral[J].Carbohydrate Research,2009,344(6):825-829.

    • [112] HAMED A A,ABDELHAMID I A,SAAD G R,et al.Synthesis,characterization and antimicrobial activity of a novel chitosan Schiff bases based on heterocyclic moieties[J].International Journal of Biological Macromolecules,2020,153:492-501.

    • [113] LIU D,SHU H B,ZHOU J W,et al.Research progress on new environmentally friendly antifouling coatings in marine settings:A review[J].Biomimetics,2023,8(2):200-227.

    • [114] LIU W J,YAN M L,ZHAO W J.Antibacterial-renew dual-function anti-biofouling strategy:self-assembled Schiff-base metal complex coatings built from natural products[J].Journal of Colloid and Interface Science,2023,629:496-507.

    • [115] 戴胜,刘鲁英,王致钘,等.具有增强光催化和抗菌活性的 TiO2@Ag-GO 复合材料[J].中国表面工程,2024,37(1):118-125.DAI Sheng,LIU Luying,WANG Zhixing,et al.TiO2@Ag-GO composite materials with enhanced photocatalytic and antimicrobial activities[J].China Surface Engineering,2024,37(1):118-125.(in Chinese)

    • [116] MOUSSA S N,BOUHIDEL Z,CHEROUANA A.A new crystal form and anti-microbial activity of(e)-1-3-(2-hy-droxy-benzyl-idene-amino)-phen-yl ethanone[J].Acta Crystallographic,2018,74(7):884-888.

    • [117] JOSE A P,SANKARGANESH M,RAJA D J,et al.Pyrimidine derivative Schiff base ligand stabilized copper and nickel nanoparticles by two step phase transfer method;in vitro anticancer,antioxidant,anti-microbial and DNA interactions[J].Journal of Fluorescence,2020,30(3):471-482.

    • [118] OBASI L N,KAIOR G U,RHYMAN L,et al.Synthesis,characterization,antimicrobial screening and computational studies of 4-[3-(4-methoxy-phenyl)-allylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihyd ro-pyrazol-3-one[J].Journal of Molecular Structure,2016,1120:180-186.

    • [119] WANG Z Q,GAO J Q,WANG J,et al.Spectroscopic analyses on interaction of amantadine-salicylaldehyde,amantadine-5-chloro-salicylaldehyde and amantadine-o-vanillin Schiff-bases with bovine serum albumin(bsa)[J].Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2011,83(1):511-517.

    • [120] KARTHIKEYAN M S,PRASAD D J,POOJARY B,et al.Synthesis and biological activity of Schiff and mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety[J].Bioorganic & Medicinal Chemistry,2006,14(22):7482-7489.

    • [121] MAKAWANA J A,SUN J,ZHU H L.Schiff’s base derivatives bearing nitroimidazole moiety:new class of antibacterial,anticancer agents and potential egfr tyrosine kinase inhibitors[J].Bioorganic & Medicinal Chemistry Letters,2013,23:6264-6268.

    • [122] ABOUL-FADL T,BIN-JUBAIR F A,ABOUL-WAFA O.Schiff bases of indoline-2,3-dione(isatin)derivatives and nalidixic acid carbohydrazide,synthesis,antitubercular activity and pharmacophoric model building[J].European Journal of Medicinal Chemistry,2010,45(10):4578-4586.

    • [123] PRAKASH C R,RAJA S.Synthesis,characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and mannich base of isatin derivatives[J].Journal of Saudi Chemical Society,2013,17(3):337-344.

    • [124] ELSHAARAWY R F M,MUSTAFA F H A,SOFY A R,et al.A new synthetic antifouling coatings integrated novel aminothiazole-functionalized ionic liquids motifs with enhanced antibacterial performance[J].Journal of Environmental Chemical Engineering,2019,7(1):102800-10289.

    • [125] KARGAR H,FALLAH-MEHRJARDI M,BEHJATMANESH-ARDAKANI R,et al.Synthesis,spectral characterization,crystal structures,biological activities,theoretical calculations and substitution effect of salicylidene ligand on the nature of mono and dinuclear Zn(II)Schiff base complexes[J].Polyhedron,2022,213:115636-115647.

    • [126] NATH B D,ISLAM M M,KARIM M R,et al.Recent progress in metal-incorporated acyclic Schiff-base derivatives:biological aspects[J].Chemistryselect,2022,7(14):202104290-202104312.

    • [127] PERVAIZ M,SADIQ S,SADIQ A,et al.Azo-Schiff base derivatives of transition metal complexes as antimicrobial agents[J].Coordination Chemistry Reviews,2021,447:214128-214170.

    • [128] SAKIYAN I,ÖZDEMIR R,ÖGÜTCÜ H.Synthesis,characterization,and antimicrobial activities of new n-(2-hydroxy-1-naphthalidene)-amino acid(l-tyrosine,l-arginine,and l-lysine)Schiff bases and their manganese(III)complexes[J].Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry,2014,44(3):417-423.

    • [129] XU Y J,SHI Y,LEI F,et al.A novel and green cellulose-based Schiff base-Cu(II)complex and its excellent antibacterial activity[J].Carbohydrate Polymers,2020,230:115671-115678.

    • [130] ABBASI TYULA Y,GOUDARZIAFSHAR H,YOUSEFI S,et al.Template synthesis,characterization and antibacterial activity of D10(Zn2+,Cd2+,Hg2+)Schiff base complexes:a novel supramolecular Cd2+ complex with two 1D helical chains,and its hirshfeld surface analysis[J].Journal of Molecular Structure,2023,1272:134051-134059.

    • [131] LIANG J,SUN D J,YANG Y Y,et al.Discovery of metal-based complexes as promising antimicrobial agents[J].European Journal of Medicinal Chemistry,2021,224:214128-214141.

    • [132] LOBANA T S,KAUSHAL M,BALA R,et al.Di-2-pyridylketone-n(1)-substituted thiosemicarbazone derivatives of copper(II):biosafe antimicrobial potential and high anticancer activity against immortalized l6 rat skeletal muscle cells[J].Journal of Inorganic Biochemistry,2020,212:111205-111215.

    • [133] LIN Y,BETTS H,KELLER S,et al.Recent developments of metal-based compounds against fungal pathogens[J].Chemical Society Reviews,2021,50(18):10346-10402.

    • [134] MORRISON C N,PROSSER K E,STOKES R W,et al.Expanding medicinal chemistry into 3d space:metallofragments as 3d scaffolds for fragment based drug discovery[J].Chemical Science,2020,11(5):1216-1225.

    • [135] ZALTARIOV M F,VLAD A,CAZACU M,et al.Silicon-containing bis-azomethines:synthesis,structural characterization,evaluation of the photophysical properties and biological activity[J].Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2015,138:38-48.

    • [136] SOROCEANU A,VACAREANU L,VORNICU N,et al.Assessment of some application potentials for copper complexes of the ligands containing siloxane moiety:antimicrobial,antifungal,antioxidant and redox activity[J].Inorganica Chimica Acta,2016,442:119-123.

    • [137] PAHONTU E,JULEA F,ROSU T,et al.Antibacterial,antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones[J].Journal of Cellular and Molecular Medicine,2015,19(4):865-878.

    • [138] MORE M S,JOSHI P G,MISHRA Y K,et al.Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications:A review[J].Materials Today Chemistry,2019,14:100195-100216.

    • [139] MANJULA B,ANTONY S A,DHANARAJ C J.Synthesis,spectral characterization,and antimicrobial activities of Schiff base complexes derived from 4-aminoantipyrine[J].Spectroscopy Letters,2014,47(7):518-526.

    • [140] RAMAN N,UTTHRA P P,CHELLAPANDI T.Insight into the in vitro anticancer screening,molecular docking and biological efficiency of pyridine-based transition metal(II)complexes[J].Journal of Coordination Chemistry,2020,73(1):103-119.

    • [141] FERNÁNDEZ G J M,RIO-PORTILLA F D,QUIROZ-GARCı́ A B,et al.The structures of some ortho-hydroxy Schiff base ligands[J].Journal of Molecular Structure,2001,561(1-3):197-207.

    • [142] MAL A,DING H M,LI M S,et al.Covalent organic frameworks with nanopores for biological applications:A review[J].Acs Applied Nano Materials,2022,5(10):13972-13984.

    • [143] SHINDE D B,KANDAMBETH S,PACHFULE P,et al.Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores[J].Chemical Communications,2015,51(2):310-313.

    • [144] CHEN X,ADDICOAT M,JIN E Q,et al.Locking covalent organic frameworks with hydrogen bonds:general and remarkable effects on crystalline structure,physical properties,and photochemical activity[J].Journal of the American Chemical Society,2015,137(9):3241-3248

    • [145] CHANDRA S,KUNDU T,KANDAMBETH S,et al.Phosphoric acid loaded azo(-N=N-)based covalent organic framework for proton conduction[J].Journal of the American Chemical Society,2014,136(18):6570-6573.

    • [146] CHEN X,HUANG N,GAO J,et al.Towards covalent organic frameworks with predesignable and aligned open docking sites[J].Chemical Communications,2014,50(46):6161-6163.

    • [147] ZHANG H X,MA J,LIU C,et al.Antibacterial activity of guanidinium-based ionic covalent organic framework anchoring ag nanoparticles[J].Journal of Hazardous Materials,2022,435:128965-128973.

    • [148] ZHAO Z P,FENG H M,QIN D,et al.Ph-responsive intelligent antibacterial coatings based on 2D-COF for controlled release of capsaicin[J].Acs Applied Polymer Materials,2023,5:2124-2135.

    • [149] LIU T T,HU X Y,WANG Y F,et al.Triazine-based covalent organic frameworks for photodynamic inactivation of bacteria as type-II photosensitizers[J].Journal of Photochemistry and Photobiology B,2017,175:156-162.

    • [150] HYNEK J,ZELENKA J,RATHOUSKY J,et al.Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria[J].Acs Applied Materials & Interfaces,2018,10:8527-8535.

    • [151] DING L G,WANG S,YAO B J,et al.Synergistic antibacterial and anti-inflammatory effects of a drug-loaded self-standing porphyrin-COF membrane for efficient skin wound healing[J].Advanced Healthcare Materials,2021,10(8):2001821-2001832.

    • [152] MITRA S,KANDAMBETH S,BISWAL B P,et al.Self-exfoliated guanidinium-based ionic covalent organic nanosheets(iCONS)[J].Journal of the American Chemical Society,2016,138:2823-2828.

    • [153] MAL A,VIJAYAKUMAR S,MISHRA R K,et al.Supramolecular surface charge regulation in ionic covalent organic nanosheets:reversible exfoliation and controlled bacterial growth[J].Angewandte Chemie-International Edition in English,2020,59:8713-8719.

    • [154] HIGUERAS L,LÓPEZ-CARBALLO G,GAVARA R,et al.Reversible covalent immobilization of cinnamaldehyde on chitosan films via Schiff base formation and their application in active food packaging[J].Food and Bioprocess Technology,2015,8(3):526-538.

    • [155] GUO Y H,YAN M L,ZHAO W J.Cinnamaldehyde grafted porous aerogel-organ gel liquid infused surface for achieving difunctional long-term dynamic antifouling[J].Journal of Colloid and Interface Science,2024,653:833-843.

    • [156] ARNON-RIPS H,COHEN Y,SAIDI L,et al.Covalent linkage of bioactive volatiles to a polysaccharide support as a potential approach for preparing active edible coatings and delivery systems for food products[J].Food Chemistry,2021,338:127822-127830.

    • [157] GAO L H,LIU X X,XU M X,et al.Biodegradable anti-biofilm fiber-membrane ureteral stent constructed with a robust biomimetic superhydrophilic polycationic hydration surface exhibiting synergetic antibacterial and antiprotein properties[J].Small,2021,17(20):2006815-2006828.

    • [158] ZHANG P F,CHEN X Y,BU F Q,et al.Dual coordination between stereochemistry and cations endows polyethylene terephthalate fabrics with diversiform antimicrobial abilities for attack and defense[J].Acs Applied Materials & Interfaces,2023,15(7):9926-9939.

    • [159] XIANG S,YANG J,CUI Z,et al.Preparation of hollow fiber membrane via grafting tannic acid and its influence on microstructure,permeability and anti-fouling[J].Materials Letters,2021,285:129095-129099.

    • [160] XIE Y,CHEN L T,ZHANG X,et al.Integrating zwitterionic polymer and ag nanoparticles on polymeric membrane surface to prepare antifouling and bactericidal surface via Schiff-based layer-by-layer assembly[J].Journal of Colloid and Interface Science,2018,510:308-317.

    • [161] ZHANG Y D,ZHANG X,ZHAO Y Q,et al.Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties[J].Biomaterials Science,2020,8(3):997-1006.

    • [162] LI Q,ZHANG X T,YU H,et al.A facile surface modification strategy for improving the separation,antifouling and antimicrobial performances of the reverse osmosis membrane by hydrophilic and Schiff-base functionalizations[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2020,587:124326-124334.

    • [163] BARAN N Y,SACAK M.Preparation of highly thermally stable and conductive Schiff base polymer:molecular weight monitoring and investigation of antimicrobial properties[J].Journal of Molecular Structure,2018,1163:22-32.

    • [164] LEE S J,GWAK M A,CHATHURANGA K,et al.Multifunctional chitosan/tannic acid composite films with improved anti-UV,antioxidant,and antimicrobial properties for active food packaging[J].Food Hydrocolloids,2023,136:108249-108260.

    • [165] ELSHAARAWY R F M,MUSTAFA F H A,VAN GEELEN L,et al.Mining marine shell wastes for polyelectrolyte chitosan anti-biofoulants:fabrication of high-performance economic and ecofriendly anti-biofouling coatings[J].Carbohydrate Polymers,2017,172:352-364.

    • [166] PAWARIYA V,DE S,DUTTA J.Chitosan-based Schiff bases:promising materials for biomedical and industrial applications[J].Carbohydrate Polymers,2024,323:121395-121419.

    • [167] NASROLLAHZADEH M,SHAFIEI N,NEZAFAT Z,et al.Recent progresses in the application of cellulose,starch,alginate,gum,pectin,chitin and chitosan based(nano)catalysts in sustainable and selective oxidation reactions:A review[J].Carbohydrate Polymers,2020,241:116353-116377.

    • [168] ZHANG Y,QI Y C,ULRICH S,et al.Dynamic covalent polymers for biomedical applications[J].Materials Chemistry Frontiers,2020,4(2):489-506.

    • [169] FU X R,SHEN Y,JIANG X,et al.Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics[J].Carbohydrate Polymers,2011,85(1):221-227.

    • [170] OMIDI S,KAKANEJADIFARD A.A review on biological activities of Schiff base,hydrazone,and oxime derivatives of curcumin[J].Rsc Advances,2020,10(50):30186-30202.

    • [171] XU G,PRANANTYO D,ZHANG B,et al.Tannic acid anchored layer-by-layer covalent deposition of parasin I peptide for antifouling and antimicrobial coatings[J].Rsc Advances,2016,6(18):14809-14818.

    • [172] YUAN Y,SHEN S H,FAN D D.A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing:shape adaptability,injectable self-healing property and enhanced adhesion[J].Biomaterials,2021,276:120838-120854.

    • [173] ZHAO X,LUO J L,HUANG Y,et al.Injectable antiswelling and high-strength bioactive hydrogels with a wet adhesion and rapid gelling process to promote sutureless wound closure and scar-free repair of infectious wounds[J].Acs Nano,2023,17(21):22015-22034.

    • [174] CHEN J L,MU Z X,CHEN D F,et al.H2S-releasing versatile hydrogel dressing with potent antimicrobial,anti-inflammatory,epithelialization and angiogenic capabilities for diabetic wound healing[J].Chemical Engineering Journal,2023,469:143985-141001.

    • [175] ZHANG Y,PHAM C Y,YU R,et al.Dynamic hydrogels based on double imine connections and application for delivery of fluorouracil[J].Frontiers in Chemistry,2020,8:739-746

    • [176] YE J,FU S W,ZHOU S Y,et al.Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application[J].European Polymer Journal,2020,139:110024-110039.

    • [177] AL Z W,KHAN M E,KO Y G.A simple method to functionalize the surface of plasma electrolysis produced inorganic coatings for growing different organic structure[J].Progress in Organic Coatings,2022,171:107008-107013.

    • [178] DING W,WU Y B.Sustainable dialdehyde polysaccharides as versatile building blocks for fabricating functional materials:An overview[J].Carbohydrate Polymers,2020,248:116801-116815.

    • [179] WEI L J,TAN W Q,WANG G,et al.The antioxidant and antifungal activity of chitosan derivatives bearing Schiff bases and quaternary ammonium salts[J].Carbohydrate Polymers,2019,226:115256-115266.

    • [180] QIAN C,ZHANG T B,GRAVESANDE J,et al.Injectable and self-healing polysaccharide-based hydrogel for ph-responsive drug release[J].International Journal of Biological Macromolecules,2019,123:140-148.

    • [181] ZHU Y,WANG Y M,SUN Y,et al.In situ self imine-crosslinked nanocomplexes loaded with small noncoding RNA for efficient osteoarthritis attenuation[J].Chemical Engineering Journal,2021,420:127631-127639.

    • [182] AMIRIAN J,ZENG Y,SHEKH M I,et al.In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosan as potential wound dressing for skin repairing[J].Carbohydrate Polymers,2021,251:117005-117017.

    • [183] LIU J Q,WU M M,LU J,et al.Janus intelligent antibacterial hydrogel dressings for chronic wound healing in diabetes[J].Acs Applied Polymer Materials,2023,5(4):2596-2606.

    • [184] OZAY H,ILGIN P,OZAY O.Novel hydrogels based on crosslinked chitosan with formyl-phosphazene using Schiff-base reaction[J].International Journal of Polymeric Materials and Polymeric Biomaterials,2021,70(4):246-255.

    • [185] HASSAN M A,OMER A M,ABBAS E,et al.Preparation,physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives[J].Scientific Reports,2018,8:11416-11429.

    • [186] LIANG Y Q,LI Z L,HUANG Y,et al.Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing[J].Acs Nano,2021,15(4):7078-7093.

    • [187] HUANG Y,MU L,ZHAO X,et al.Bacterial growth-induced tobramycin smart release self-healing hydrogel for pseudomonas aeruginosa-infected burn wound healing[J].Acs Nano,2022,16(8):13022-13036.

    • [188] FUKUDA K,SHIMODA M,SUKEGAWA M,et al.Doubly degradable dynamers:dynamic covalent polymers based on reversible imine connections and biodegradable polyester units[J].Green Chemistry,2012,14(10):2907-2911.

    • [189] HOU S T,SUO X,CHEN N Q,et al.Facile synthesis of a linear porous organic polymer via Schiff-base chemistry for propyne/propylene separation[J].Polymer Chemistry,2020,11(27):4382-4386.

    • [190] NISHAT N,KHAN S A,PARVEEN S,et al.Antimicrobial agents:synthesis,spectral,thermal,and biological aspects of a polymeric Schiff base and its polymer metal(II)complexes[J].Journal of Coordination Chemistry,2010,63(22):3944-3955.

  • 手机扫一扫看