-
0 前言
-
生物污损是一个值得考虑的全球性问题,特别是在海洋工程领域,每年在运输方面花费数十亿美元[1-2]。海洋生物(藻类、细菌、藤壶和贻贝)通过分泌蛋白质吸附在船体表面[3-4],增加了船舶表面粗糙度和燃油消耗,加速了船体的腐蚀,缩短了使用寿命[5-6]。此外,随着全球化航运的持续发展,附着在船体的污垢生物增加了外来物种的侵害[7]。因此,功能化修饰人造表面以防止生物污染势在必行[8-10]。
-
海洋生物污损主要由四个阶段组成,首先是生物大分子如蛋白质的非特异性吸附[11],随后单细胞生物细菌的稀疏粘附形成生物膜[12-13],接着小型多细胞生物的繁殖粘附[14],最后是藤壶和贻贝等大型污损生物的附着[15]。目前,普遍接受的防污理论主要有水合层理论和低表面能理论[16]。亲水性聚合物材料主要依赖于材料表面形成致密的结合水层,减少蛋白质和细菌的粘附[17]。水合层由亲水基团和水之间的相互作用形成,呈现立体排斥,以减少非特异性吸附[18-19]。然而低表面能理论认为,疏水性材料界面与蛋白质之间的低结合能可以在接触表面构建出一个空气层[20],减少蛋白质与材料表面的接触,并且材料表面的污垢更易被流体冲走[21-22]。虽然越来越多的聚合物材料被用于海洋防污[23-24],但是关于聚合物侧链的官能团和长度对防污性能的影响还缺少系统化研究。
-
聚合物刷是密集接枝并通过链端连接在固体基材上的聚合物组件[25-26]。聚合物刷可以引入不同功能性官能团,而且可以接枝在任何基底上[27],因此广泛应用于界面改性,如生物防污[28-29]、能源存储[30]、渗透压发电[31-32]和生物医疗[33]。在众多表面引发可控自由基聚合(Surface-initiated controlled radical polymerization,SI-CRP)策略中,表面引发零价金属介导的可控自由基聚合(Surface-initiated zero-valent metal-mediated controlled radical polymerization,SI-Mt0 CRP)允许在开放环境条件下受控合成一系列聚合物刷[34-36],并且可以以极低的单体消耗量精确控制聚合物的结构、组成、分子量和最终的刷厚度[37-39]。迄今为止,适用于 SI-Mt0 CRP 的过渡金属已经从 Cu 拓展到 Zn、Fe 和 Sn[36,40-41],而且还实现了聚合物刷的大面积制备[37,42]。因此,大规模制备可定义的功能性聚合物刷涂层对开发海洋防污界面材料有很强的吸引力。
-
为了探究不同的聚合物刷界面的防污效果,本文采用表面引发零价铜介导的可控自由基聚合 (SI-Cu0 CRP)的策略制备三种甲基丙烯酸酯类聚合物刷:亲水性的寡聚乙二醇类、烷基类和疏水性的含氟类。根据官能团的类型和侧链的长度,系统评价了聚合物刷界面的亲疏水性。并通过耗散型石英晶体微天平( Quartz crystal microbalance with dissipation,QCM-D)定量分析不同聚合物刷对于牛血清蛋白(Bovine serum albumin,BSA)的防污性能。相较于疏水性聚合物刷界面,亲水性聚合物刷的抗蛋白吸附性能更出色,如聚(寡聚乙二醇)甲醚甲基丙烯酸酯-n20(poly(oligo(ethylene glycol)methyl ether methacrylate)-n20,pOEGMA-n20)凭借长侧链的多醚键官能团,接触角(Contact angle,CA)仅有 39.6°±0.5°,而且蛋白质吸附量低至 1.7 ng / cm2。而含氟类疏水型聚合物刷尽管可以形成空气层阻碍蛋白质的吸收,但防污效果仍远低于亲水性界面。
-
1 试验准备
-
1.1 主要试剂与仪器
-
甲醇(MeOH)、无水乙醇、盐酸(HCl,37wt.% 水溶液,分析纯,国药集团化学试剂)、二甲基亚砜 (Dimethyl sulfoxide,DMSO,分析纯)、磷酸缓冲盐溶液(Phosphate buffer saline,PBS,pH=7.2)、2-溴-2-甲基丙酸(3-三甲氧基硅基)丙酯、1,1,4,7,7-五甲基二乙烯三胺[ N,N,N′,N′,N″-pentamethyldiethylenetriamine(PMDETA),化学纯,上海阿拉丁生化科技]、甲基丙烯酸甲酯[Methyl methacrylate(MMA),化学纯,国药集团化学试剂]、甲基丙烯酸己酯[Hexyl methacrylate(HMA),化学纯,上海麦克林生化科技]、甲基丙烯酸月桂酯 [Lauryl methacrylate(LMA),化学纯,上海阿拉丁生化科技]、甲基丙烯酸甲氧基乙酯(OEGMA-n1,Molecular weight Mw=144)、聚乙二醇甲醚甲基丙烯酸酯(OEGMA-n9,Mw=475)、聚乙二醇甲醚甲基丙烯酸酯[(OEGMA-n20,Mw=950),化学纯,上海麦克林生化科技]、甲基丙烯酸七氟丁酯[(1H,1H-heptafluorobutyl methacrylate,F-7),化学纯,北京百灵威科技 ]、甲基丙烯酸三氟乙酯 (2,2,2-trifluoroethyl methacrylate,F-3)、全氟辛基乙基甲基丙烯酸酯[ 2-(perfluorooctyl)ethyl methacrylate(F-17),化学纯,上海皓鸿生物医药科技]、牛血清白蛋白[BSA,生物试剂级,国药集团化学试剂]、荧光蛋白(BSA-FITC,化学纯,北京索莱宝科技)、SiO2 晶圆片(≥99.99%,苏州锐材半导体)、铝片和铜片(≥99.99%,北京中诺新材科技)。
-
DCAT21 型静态接触角仪(Optical contact angle meter,OCA),宁波金茂进出口有限公司;Dimension ICON 型扫描探针显微镜( Scanning probe microscope,SPM),德国布鲁克公司;Cary660+620 型显微红外光谱仪(Micro-Fourier transform infrared spectroscopy,Micro-FTIR),安捷伦科技(中国)有限公司;Axio Observer Z1m 型荧光显微镜,德国蔡司; Q-Sense E4 型耗散型石英晶体微天平 (QCM-D),瑞典百欧林科技有限公司。
-
1.2 试验过程
-
1.2.1 引发剂基底的制备
-
将基底(具有纳米级氧化物层的硅晶片、铝片和具有 SiO2 薄层的石英晶振片)用去离子水洗涤 5 min,并在氮气流吹扫下干燥,然后用等离子体清洗机处理 10 min,紧接着将基底置于一个装有 5 μL 2-溴-2-甲基丙酸(3-三甲氧基硅基)丙酯的封闭容器中。在容器中 60℃保持 3 h 后,用去离子水和乙醇洗涤,最后用干燥的氮气流吹扫。
-
1.2.2 聚合溶液配置
-
取指定用量的单体、配体(L)PMDETA 和溶剂放入 5 mL 离心管内。使用之前需要在室温下超声 5 min,保证聚合溶液充分混合。
-
聚合溶液的配置如表1 所示,聚合单体的化学结构如图1 所示。
-
Where Vm, VL and Vs are the volumes of monomer, ligand and solvent for SI-Cu0 CRP, respectively.
-
图1 用于 SI-Cu0 CRP 的单体化学结构
-
Fig.1 Chemical structures of monomers for SI-Cu0 CRP
-
1.2.3 聚合装置及聚合过程
-
将一块用引发剂改性的基底平行于铜片(铜片使用之前用盐酸和乙醇冲洗,并用氮气流干燥)放置一定距离(如果没有特别提及,则为 0.2 mm)。将组件浸入制备的溶液中,或者将反应溶液注入板之间。在室温下聚合预定时间后,把反应装置分离,并用乙醇和去离子水冲洗硅片,最后在氮气流下干燥。
-
1.3 测试和表征
-
1.3.1 聚合物刷厚度测定
-
聚合物刷厚度通过 SPM 以轻敲模式记录。根据干净锋利的针造成划痕处的截面来分析聚合物刷表面和基底之间的高度差。误差是根据同一样品上三个单独的测量点计算得到的。
-
1.3.2 蛋白质吸附测试
-
先配置好不同浓度(1、2 和 5 mg / mL)BSA 的 PBS(pH=7.2)溶液备用。测量前,先检测石英晶振片是否能够正常震动,使用普通模块的流动池进行试验。将裸的和接枝有聚合物刷的 QCM-D 芯片插入流动室中,并暴露于 PBS 缓冲液中,以获得 25℃下流速为 50 μL / min 稳定的基线。当获得平稳的基线后,保持并记录 5 min,随后将 BSA 的 PBS 溶液引入 QCM-D 流动池中,实时监测压电石英谐振器的频率和耗散,并记录 3、5、7、9、11 和 13 倍频的谐振频率(f)和振荡能量的耗散(D)信号。在吸附 30 min 后,再次用 PBS 缓冲液冲洗流动室 10 min,得到完整的频率/耗散曲线。改变芯片和 BSA 浓度,继续上述步骤进行试验。
-
由于 ΔD / Δf 值相对较小(≤4×10−7 Hz−1),应用 Sauerbrey 方程计算表面涂层的水合吸附质量 (Δm),如式(1)所示。
-
式中,C 是与石英性质有关的常数(C=17.7 ng /(cm2 ·Hz)),Δf 是聚合物吸附前后缓冲基线的谐振频率偏移(Hz),n 为奇数倍频数。
-
1.3.3 荧光蛋白浸泡测试
-
使用的荧光蛋白为 5(6)-异硫氰酸酯(Fluorescein Isothiocyanate,FITC)标记的 BSA(BSA-FITC),其最大吸收光波长为 490~495 nm,最大发射光波长为 520~530 nm。将浓度为 0.2 mg / mL 的荧光蛋白加入到含有聚合物刷涂层功能化玻璃片的玻璃瓶中,在黑暗状态下恒温(37℃)培育 2 h 后,用荧光显微镜观察并记录荧光蛋白吸附情况。
-
2 结果与讨论
-
2.1 聚合物刷的合成机制
-
图2 概述了 SI-Cu0 CRP 的反应方案,将引发剂改性的 SiO2基底与 Cu 片平行放置,并且留出 0.2 mm 的间隙(G)。随后,使用移液枪将 50 μL 聚合溶液注射到 SiO2基底和 Cu 片之间的间隙中,并及时将反应装置放入装有聚合溶液的 5 mL 离心管内。其中溶剂和单体没有脱氧,完全在环境条件下进行[35]。
-
在 SI-Cu0 CRP 的三明治结构中,铜物种(CuⅠ 活化剂和 CuⅡ失活剂)主要是在配体(L)存在的条件下通过金属铜(Cu0)耗氧腐蚀形成的。CuⅠ物种作为活化剂从 Cu0 板解离,并在聚合溶液内扩散。当 CuⅠ / L 络合物在引发剂层(SiO2)附近生成时,将会与引发剂反应,并生成自由基,进而催化单体聚合形成均匀的聚合物刷[26,34,37]。
-
值得注意的是,这些 CuI 物种可以被溶解氧氧化为 CuII物种,而 CuII物种可以通过归中反应被 Cu0板再次还原为 CuI 物种。通过两种可能的方式, SI-Cu0 CRP 表现出高的耐氧性。此外,CuI 物种也可以通过歧化形成 Cu0 纳米颗粒和 CuII物种,即在铜板和基底之间存在歧化/归中平衡[38]。
-
图2 通过 SI-Cu0 CRP 合成聚合物刷的机制
-
Fig.2 Synthesis mechanism of polymer brushes by SI-Cu0 CRP
-
2.2 聚合物刷生长动力学和表征
-
由于单体的侧链不同,根据官能团类型和侧链长度将单体分为寡聚乙二醇类(OEGMA-n1、 OEGMA-n9 和 OEGMA-n20)、烷基类(MMA、HMA 和 LMA)和含氟类单体(F-3、F-7 和 F-17)。通过 SPM 对聚合物刷生长动力学进行表征,并用红外光谱确认聚合物刷在引发剂基底上的有效接枝。图3a 的生长动力学曲线展示了聚合物刷在不同时间段的接枝情况。由于聚合单体的官能团结构和链长度不同,聚合物刷在 SiO2 表面接枝的厚度也略有不同。值得注意的是,pOEGMA-n1、pHMA 和 pF-17 刷在各个体系内展现出优越的活性,聚合物刷在聚合 180 min 后,厚度分别可以达到 265±4、247±6.9和 50±5.4 nm。如图3b 所示,通过在 Al 基底上接枝聚合物刷用于红外表征,可以看到在 1 157~1 218 cm−1 出现的醚(C-O-C)键、1 128 cm−1 出现的 C=O 键以及 1 187~1 245cm−1 出现的 C-F 键都随着分子量的增加逐渐增强,所得结果表明不同结构的聚合物刷被成功接枝。
-
图3 不同结构的聚合物刷生长动力学和相应的红外光谱
-
Fig.3 Growth kinetics of polymer brushes with different structures and corresponding infrared spectra
-
2.3 聚合物刷的抗蛋白粘附性能
-
QCM-D 作为一种灵敏的工具,常用于原位检测蛋白质的吸附[43-44]。通过记录频率和耗散响应,模拟分析蛋白质与不同聚合物刷之间的相互作用过程。选用 BSA 作为吸附样本,由于聚合物刷的侧链长度和官能团类型的差异,当 BSA 水溶液流经被聚合物刷改性过的 SiO2 晶振片时,一部分蛋白质将会被聚合物刷吸附在表面。图4a 展示了 pOEGMA-n1、 pOEGMA-n9 和 pOEGMA-n20 三种不同侧链长度的聚合物刷的抗蛋白吸附效果。随着单体分子量的提高,pOEGMA 刷展现出极高的抗蛋白粘附性能,从 pOEGMA-n1 刷的 31.88 ng / cm2 降低至 pOEGMAn-20 刷的 1.7 ng / cm2 (图4b)。由于 pOEGMA-n20 刷的强亲水性,其表面会形成一层稳定的水合层,极好地阻碍了蛋白质与聚合物刷表面的接触[17-18]。经过对 pOEGMA 刷的水接触角测试,pOEGMA-n20 刷表现出强烈的水合度[45],接触角仅有 39.6°± 0.5°(图4c),远低于其他两种聚合物刷。
-
图4 不同聚合物刷的 QCM-D 数据、蛋白粘附量和接触角 (Δf、ΔD 和Δm 分别为频率转移、能量的耗散、涂层水合质量的变化)
-
Fig.4 QCM-D date, protein adhesion and contact angle of different polymer brushes (Δf, ΔD and Δm are frequency shift, dissipation shift, and change in coating hydration mass, respectively.)
-
为了排除单一性,根据聚合物刷的水合度不同,对烷基类聚合物刷进行测试(图4a),如 pMMA、 pHMA 和 pLMA 刷,不同于 OEGMA 类单体,烷基类单体由于缺少亲水性官能团,随着单体的链长增加,其相应的聚合物刷的疏水性也逐渐提高[46],如 pLMA 刷的接触角高达 98.2°±0.7°(图4f)。经过 Q-CMD 测试, pLMA 刷的蛋白粘附量为 232.4 ng / cm2,而略显亲水的 pMMA 刷仅为 3.26 ng / cm2 (图4e)。
-
含氟甲基丙烯酸脂类小分子常用于合成疏水性聚合物,针对含氟量的不同,探究 pF-3、pF-7 和 pF-17 这三种聚合物刷的抗蛋白吸附效果。值得注意的是,相较于其他聚合物刷,pF-3 刷在表现出相对低的疏水性(97.4°±0.4°)的同时并没有获得相应较低的蛋白粘附量(图4g)。而疏水较高的 pF-17 刷(122.8°±0.2°)表现出略高的抗蛋白性能至 256.3 ng / cm2 (图4h~4i)。这种现象和之前测试的寡聚乙二醇类和烷基类聚合物完全不同,这是因为 pF-3、pF-7 和 pF-17 刷是含氟类疏水类聚合物,水合度远低于寡聚乙二醇类和烷基类聚合物。由于其疏水性,在短时间内,蛋白质在流动界面会构建出一个空气平台层,减少蛋白质与聚合物刷之间的接触面积。而含氟量增加会提高聚合物刷表面的疏水性,也增强了空气平台的强度和稳定性,从而减少蛋白质的吸附。但是这个空气层不具有长期稳定性,随着时间推移,空气层可能会被破坏,从而失去防污性能[20-22]。
-
此外,考虑 BSA 浓度的影响,设置了 1、2 和 5 mg / mL 三个梯度来观察 pOEGMA-n20 刷的抗蛋白粘附效果。从图3 中可以看到,pOEGMA-n20 借出色的水合度,表现出优异的抗蛋白效果。当 BSA 浓度达到 5 mg / mL 时,pOEGMA-n20 刷蛋白粘附量仅为 6.8 ng / cm2,仍远高于其他聚合物刷的防污效果(图5)。
-
图5 pOEGMA-n20 的 QCM-D 测试和蛋白粘附量(Δf、ΔD 和Δm 分别为频率转移、能量的耗散、涂层水合质量的变化)
-
Fig.5 QCM-D test of pOEGMA-n20 and protein adhesion (Δf, ΔD and Δm are frequency shift, dissipation shift, and change in coating hydration mass, respectively.)
-
2.4 荧光蛋白浸泡测试
-
为了探究不同侧链长度的聚合物刷的抗蛋白吸附性能,在玻璃基底上接枝聚合物刷涂层,并浸泡在用异硫氰酸荧光素标记的牛血清蛋白 ( BSA-FITC)中。当接枝聚合物刷的玻璃与1 mg / mL 的 BSA-FITC 溶液一起培育 2 h 后,通过荧光显微镜观察聚合物刷表面的蛋白粘附程度。如图6 所示,相较于裸玻璃片,pOEGMA 系聚合物刷凭借优异的水合度,表现出更强的抗蛋白吸附性能。随着亲水侧链长度的增加,这更有利于聚合物刷形成水合层,进而更好地阻碍蛋白质的吸收。
-
图6 蛋白吸附在不同聚合物刷上的荧光显微镜图像
-
Fig.6 Fluorescence microscopy images of protein adsorption onto different polymer brushes
-
对于疏水性聚合物刷而言,由于基底浸泡试验处于静止的溶液中,随着聚合物刷的水合性能降低,疏水性聚合物刷界面很难形成空气平台层,相应的抗蛋白粘附性能也相对减弱。除了较为亲水的 pMMA 刷和 pF-3 刷有微弱的抗蛋白吸附效果以外,其他聚合物刷都有明显的荧光标记。特别是超疏水pF-17刷,相较于裸玻璃片,甚至有吸附蛋白的反作用。
-
3 结论
-
主要探究了不同侧链长度和官能团类型的聚合物刷的防污性能。基于聚合物单体的侧链官能团类型和长度,筛选了三类不同亲疏水性的单体:寡聚乙二醇类、烷基类和含氟类。基于 SI-Cu0 CRP 的方法对不同类型聚合物刷的生长动力学和水合度进行了研究,并通过 QCM-D 的频率、耗散变化以及荧光蛋白吸附图像来表征聚合物刷对 BSA 的吸附差异,得出以下结论:
-
(1)聚合物刷的亲疏水性取决于侧链长度和官能团数量,这决定了其形成水合层的难易程度,亲水性的聚合物刷抗蛋白吸附性能远高于疏水性聚合物刷。
-
(2)聚合物刷的亲水性越好,水合的能力就越强,抗蛋白吸附能力越出色。
-
(3)疏水性聚合物刷在流动界面易形成空气层,可以减少蛋白质和材料界面的接触,但具有长期不稳定的抗蛋白吸附效果。在静态液体环境下,疏水性聚合物刷因为难以形成空气层,特别是长侧链的 p-F17,几乎不存在防污效果。
-
参考文献
-
[1] JIN H,TIAN L,BING W,et al.Bioinspired marine antifouling coatings:status,prospects,and future[J].Progress in Materials Science,2022,124:100889.
-
[2] LI Y,NING C.Latest research progress of marine microbiological corrosion and bio-fouling,and new approaches of marine anti-corrosion and anti-fouling[J].Bioactive Materials,2019,4:189-195.
-
[3] 赵文杰,陈子飞,莫梦婷,等.绿色海洋防污材料的表面构筑研究进展[J].中国表面工程,2014,27(5):14-31.ZHAO Wenjie,CHEN Zifei,MO Mengting,et al.Progress in surface lailoring for enviroment-friendly anti-biofouling materials[J].China Surface Engineering,2014,27(5):14-31.(in Chinese)
-
[4] 谢庆宜,马春风,张广照.海洋防污材料[J].科学,2017,69(1):27-31.XIE Qingyi,MA Chunfeng,ZHANG Guangzhao.Marine antifouling materials[J].Science,2017,69(1):27-31.(in Chinese)
-
[5] CAO S,WANG J,CHEN H,et al.Progress of marine biofouling and antifouling technologies[J].Chinese Science Bulletin,2011,56(7):598-612.
-
[6] KIM D H,ALAYANDE A B,LEE J M,et al.Emerging marine environmental pollution and ecosystem disturbance in ship hull cleaning for biofouling removal[J].Science of the Total Environment,2024,906:167459.
-
[7] HUGHES K A,CONVEY P,PERTIERRA L R,et al.Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions:a preliminary risk assessment[J].Journal of Environmental Management,2019,232:73-89.
-
[8] PAN J,AI X,MA C,et al.Degradable vinyl polymers for combating marine biofouling[J].Accounts of Chemical Research,2022,55(11):1586-1598.
-
[9] 陈子飞,许季海,赵文杰,等.仿甲鱼壳织构化有机硅改性丙烯酸酯涂层的制备及其防污行为[J].中国表面工程,2013,26(6):80-85.CHEN Zifei,XU Jihai,ZHAO Wenjie,et al.Preparation and antifouling performance of organic silicone coatings with turtle bionic texture[J].China Surface Engineering,2013,26(6):80-85.(in Chinese)
-
[10] 贺小燕,白秀琴,袁成清,等.纳米复合海洋防污涂料研究进展[J].中国表面工程,2023,36(5):37-51.HE Xiaoyan,BAI Xiuqin,YUAN Chengqing,et al.Research progress of nanomaterial-based coatings for marine antifouling applications[J].China Surface Engineering,2023,36(5):37-51.(in Chinese)
-
[11] XU X,HUANG X,CHANG Y,et al.Antifouling surfaces enabled by surface grafting of highly hydrophilic sulfoxide polymer brushes[J].Biomacromolecules,2021,22(2):330-339.
-
[12] GAW S L,SAKALA G,NIR S,et al.Rational design of amphiphilic peptides and its effect on antifouling performance[J].Biomacromolecules,2018,19(9):3620-3627.
-
[13] ZHANG Y,GE T,LI Y,et al.Anti-fouling and anti-biofilm performance of self-polishing waterborne polyurethane with gemini quaternary ammonium salts[J].Polymers,2023,15(2):317-331.
-
[14] CLARE A S,RITTSCHOF D,GERHART D J,et al.Molecular approaches to nontoxic antifouling[J].Invertebrate Reproduction & Development,1992,22(1-3):67-76.
-
[15] 夏一夫,王騊.氮氧自由基功能性聚合物涂层用于抗贻贝粘附[J].现代纺织技术,2023,31(4):201-207.XIA Yifu,WANG Tao.Application of nitroxide radical functional polymer coating to resist mussel adhesion[J].Advanced Textile Technology,2023,31(4):201-207.(in Chinese)
-
[16] MARMUR A.Super-hydrophobicity fundamentals:implications to biofouling prevention[J].Biofouling,2006,22(2):107-115.
-
[17] BANERJEE I,PANGULE R C,KANE R S.Antifouling coatings:recent developments in the design of surfaces that prevent fouling by proteins,bacteria,and marine organisms[J].Advanced Materials,2011,23(6):690-718.
-
[18] KIM D,KANG S M.Red algae-derived carrageenan coatings for marine antifouling applications[J].Biomacromolecules,2020,21(12):5086-5092.
-
[19] XIANG Y,XU R G,LENG Y.Molecular simulations of the hydration behavior of a zwitterion brush array and its antifouling property in an aqueous environment[J].Langmuir,2018,34(6):2245-2257.
-
[20] ZHANG Z,LIU Y,WEI X,et al.Engineering antifouling membrane with surface segregation agents bearing crosslinked low surface energy segments[J].Journal of Membrane Science,2024,691:122252.
-
[21] JEUNG Y,YONG K.Underwater superoleophobicity of a superhydrophilic surface with unexpected drag reduction driven by electrochemical water splitting[J].Chemical Engineering Journal,2020,381:122734.
-
[22] SHEN Y,WU Z,TAO J,et al.Spraying preparation of eco-friendly superhydrophobic coatings with ultralow water adhesion for effective anticorrosion and antipollution[J].ACS Applied Materials & Interfaces,2020,12(22):25484-25493.
-
[23] 解来勇,洪飞,刘剑洪,等.海洋防污高分子材料的综合设计和研究[J].高分子学报,2012,22(1):1-13.XIE Laiyong,HONG Fei,LIU Jianhong,et al.Intergrated design and study of marine antifouling polymer materials[J].Acta Polymerica Sinica,2012,22(1):1-13.(in Chinese)
-
[24] TAWALBEH M,ALJAGHOUB H,QASIM M,et al.Surface modification techniques of membranes to improve their antifouling characteristics:recent advancements and developments[J].Frontiers of Chemical Science and Engineering,2023,17(12):1837-1865.
-
[25] FENG C,HUANG X.Polymer brushes:efficient synthesis and applications[J].Accounts of Chemical Research,2018,51(9):2314-2323.
-
[26] ZHANG T,BENETTI E M,JORDAN R.Surface-initiated Cu(0)-mediated CRP for the rapid and controlled synthesis of quasi-3D structured polymer brushes[J].ACS Macro Letters,2019,8(2):145-153.
-
[27] 李斌,于波,周峰.表面引发聚合新进展及应用[J].高分子学报,2016,10:1312-1329.LI Bin,YU Bo,ZHOU Feng.New progress and applications of surface-initiated polymerization[J].Acta Polymerica Sinica,2016,10:1312-1329.(in Chinese)
-
[28] TAN R,HAO P,WU D,et al.Ice-inspired polymeric slippery surface with excellent smoothness,stability,and antifouling properties[J].ACS Applied Materials & Interfaces,2023,15(34):41193-41200.
-
[29] 李晓菊,刘霞,崔树勋.表面接枝仿生聚合物刷的润滑性能研究进展[J].中国表面工程,2023,35(6):26-38.LI Xiaoju,LIU Xia,CUI Shuxun.Research progress on the lubrication properties of surface-grafted biomimetic polymer brushes[J].China Surface Engineering,2023,35(6):26-38.(in Chinese)
-
[30] SVIRELIS J,ADALI Z,EMILSSON G,et al.Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates[J].Nature Communications,2023,14(1):5131.
-
[31] YIN X,WU D,YANG H,et al.Galvanicreplacement-assisted surface-initiated atom transfer radical polymerization for functional polymer brush engineering[J].ACS Macro Letters,2022,11(3):296-302.
-
[32] YIN X,WU D,YANG H,et al.Seawater-boosting surface-initiated atom transfer radical polymerization for functional polymer brush engineering[J].ACS Macro Letters,2022,11(5):693-698.
-
[33] UNSAL H,ONBULAK S,CALIK F,et al.Interplay between molecular packing,drug loading,and core cross-linking in bottlebrush copolymer micelles[J].Macromolecules,2017,50(4):1342-1352.
-
[34] WU D,LI W,ZHANG T.Surface-initiated zerovalent metal-mediated controlled radical polymerization(SI-Mt0 CRP)for brush engineering[J].Accounts of Chemical Research,2023,56(17):2329-2340.
-
[35] ZHANG T,DU Y,MÜLLER F,et al.Surface-initiated Cu(0)mediated controlled radical polymerization(SI-CuCRP)using a copper plate[J].Polymer Chemistry,2015,6(14):2726-2733.
-
[36] LAYADI A,KESSEL B,YAN W,et al.Oxygen tolerant and cytocompatible iron(0)-mediated ATRP enables the controlled growth of polymer brushes from mammalian cell cultures[J].Journal of the American Chemical Society,2020,142(6):3158-3164.
-
[37] ZHANG T,DU Y,KALBACOVA J,et al.Wafer-scale synthesis of defined polymer brushes under ambient conditions[J].Polymer Chemistry,2015,6(47):8176-8183.
-
[38] LI W,SHENG W,JORDAN R,et al.Boosting or moderating surface-initiated Cu(0)-mediated controlled radical polymerization with external additives[J].Polymer Chemistry,2020,11(43):6971-6977.
-
[39] LI W,SHENG W,WEGENER E,et al.Capillary microfluidic-assisted surface structuring[J].ACS Macro Letters,2020,9(3):328-333.
-
[40] WU D,YIN X,ZHAO Y,et al.Tinware-inspired aerobic surface-initiated controlled radical polymerization(SI-Sn0 CRP)for biocompatible surface engineering[J].ACS Macro Letters,2023,12(1):71-76.
-
[41] ALBERS R F,YAN W,ROMIO M,et al.Mechanism and application of surface-initiated ATRP in the presence of a Zn0 plate[J].Polymer Chemistry,2020,11(44):7009-7014.
-
[42] LI W,SHENG W,LI B,et al.Surface grafting “band-aid” for “everyone”:filter paper-assisted surface-initiated polymerization in the presence of air[J].Angewandte Chemie International Edition,2021,60(24):13621-13625.
-
[43] SUN X,WU C,HU J,et al.Antifouling surfaces based on fluorine-containing asymmetric polymer brushes:effect of chain length of fluorinated side chain[J].Langmuir,2019,35(5):1235-1241.
-
[44] 袁海洋,马春风,刘光明,等.石英晶体微天平在高分子研究中的应用[J].高分子学报,2021,52(7):806-821.YUAN Haiyang,MA Chunfeng,LIU Guangming,et al.Applications of quartz crystal microbalance in polymer studies[J].Acta Polymerica Sinica,2021,52(7):806-821.(in Chinese)
-
[45] CHEN G,ZHANG Y,ZHU Y,et al.Grafting of PEG400 onto the surface of LLDPE/SMA film[J].Frontiers of Chemical Engineering in China,2007,1(2):128-131.
-
[46] CHEN W,KARDE V,CHENG T N H,et al.Surface hydrophobicity:effect of alkyl chain length and network homogeneity[J].Frontiers of Chemical Science and Engineering,2021,15(1):90-98.
-
摘要
聚合物刷是指大分子链通过物理作用力或共价键牢固地束缚在基材上,并具有可定义功能化的刷状结构,多用于表面防污改性。然而,系统地对不同链长和官能团类型的聚合物刷在防污能力方面的评价工作依然较少。通过表面引发零价铜介导的可控自由基聚合(SI-Cu0 CRP)制备一系列不同侧链结构的甲基丙烯酸酯类聚合物刷(如亲水性的寡聚乙二醇类、烷基类和疏水性的含氟类),并利用红外光谱(IR)和接触角(CA)表征其结构和表面性质。此外,使用耗散型石英晶体微天平(QCM-D)原位监测聚合物刷界面的蛋白质粘附,并通过荧光蛋白浸泡试验模拟蛋白质的非特异性吸附。结果表明:聚合物刷的侧链长度决定了其界面的水合能力,如聚(寡聚乙二醇)甲醚甲基丙烯酸酯-n20 (pOEGMA-n20)的 CA 仅为 39.6°±0.5°;长侧链结构的亲水性聚合物刷更易形成水合界面,抗蛋白吸附能力远高于疏水性聚合物刷界面(低至 1.7 ng / cm2 );多氟长链结构的疏水性界面可以在动态流速下构建出一个空气层,通过减少蛋白质与材料表面的接触而展现出一定的防污能力。研究结果系统分析了聚合物刷侧链长度和官能团对其界面防污性能的影响,为聚合物刷改性的防污涂层提供参考依据。
Abstract
Polymer brushes are a class of functionalized brush-like structures with macromolecular chains firmly tethered to the substrate through physical forces or covalent bonds, which are widely used for surface antifouling because their chain lengths and types of functional groups can be customized. However, limited research has been performed on the intrinsic relationship between the chain length, functional group type, and antifouling performance. The preparation of these functional polymer brushes is highly dependent on versatile surface-initiated controlled radical polymerization (SI-CRP) strategies. In this study, a series of methacrylate polymer brushes with different side-chain structures (hydrophilic oligo(ethylene glycol), alkyl groups, and hydrophobic fluorinated polymers) were prepared by surface-initiated zero-valent copper-mediated controlled radical polymerization (SI-Cu0 CRP), and the relationship between these brushes and their antifouling properties was explored. The thicknesses of the polymer brushes were recorded by scanning probe microscopy (SPM), where the poly(oligo(ethylene glycol) methyl ether methacrylate)-n20 (pOEGMA-n20) brush thickness reached 265 nm after 180 min of polymerization. The structure and surface properties of polymer brushes were characterized by infrared (IR) spectroscopy and contact angle (CA). The CA of poly(2-(perfluorooctyl)ethyl methacrylate) (pF-17) has been significantly increased to 122.8°±0.2°from 39.6°±0.5°of pOEGMA-n20, which suggests that the side-chain length and functional groups of the polymer brush determines its interfacial hydration capacity. To understand the antifouling properties of the polymer brushes across the flow interface, the protein adhesion behavior was monitored in situ by the quartz crystal microbalance with dissipation (QCM-D). Among hydrophilic pOEGMA brushes, the hydration capacity of the interface was proportional to its protein adsorption resistance, such as the protein adhesion content of pOEGMA-n20 brush (39.6°±0.5°) was only 1.7 ng / cm2 , while that of pOEGMA-n1 brush (66.6°±0.3°) was up to 31.88 ng / cm2 . Unlike hydrophilic brushes, the antifouling properties of hydrophobic brushes are highly dependent on air layers at the flow interface. The protein adhesion content of pF-17 was 256.3 ng / cm2 , higher than 301.7 ng / cm2 of poly(2,2,2-trifluoroethyl methacrylate) (pF-3). Notably, the poly(1H,1H-heptafluorobutyl methacrylate) (pF-7) brush with asurface wettability between the pF-3 and the pF-17 brushes, has a protein adhesion content of 363 ng / cm2 , which is mainly attributed to the unstable air layer at the interface. Compared to hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) brushes and hydrophobic fluorinated brushes, the antifouling properties of alkyl brushes remain higher than fluorinated brushes regardless of being at mediocre surface properties, which are more favorable to the hydration layer theory, and the poly(methyl methacrylate) (pMMA) brush with a CA of 73.9°±0.1°only adhered to 3.26 ng / cm2 of the protein. To investigate the protein adhesion kinetics, the adhesion content of the pOEGMA-n20 brush surface at different concentrations of bovine serum albumin (BSA) was monitored by QCM-D. The protein adhesion content of the pOEGMA-n20 brush surface was only 6.8 ng / cm2 despite the BSA solubility being as high as 5 mg / mL. Finally, based on the fluorescent protein immersion experiments, the nonspecific adsorption of proteins was simulated under steady-state conditions. From the analysis of the optical images recorded by fluorescence microscopy, the hydrophilic polymer brush interface showed extremely high antifouling performance, especially the superhydrophilic pOEGMA-n20 brush. However, the interface of the most hydrophobic pF-17 brush had a high protein content, which was mainly attributed to the air layer between the hydrophobic interface and the liquid being difficult to construct in a static environment, leading to more protein deposition (higher than that of the substrate without modification by the polymer brush). This investigation systematically analyzes the effects of the polymer brush side-chain length and functional groups on the interfacial antifouling properties and provides a reference for polymer brush-modified antifouling coatings.
关键词
聚合物刷 ; 生物防污 ; 表面引发零价铜介导的可控自由基聚合(SI-Cu0 CRP) ; 耗散型石英晶体微天平(QCM-D) ; 侧链长度 ; 水合界面 ; 空气层