en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

安然,男,1996年出生。主要研究方向为金属腐蚀与防护。E-mail: anran@nimte.ac.cn

刘栓,男,1986年出生,博士,硕士研究生导师。主要研究方向为海洋重防腐涂层及功能涂层研发及工程应用。E-mail: liushuan@nimte.ac.cn

通讯作者:

刘栓,男,1986年出生,博士,硕士研究生导师。主要研究方向为海洋重防腐涂层及功能涂层研发及工程应用。E-mail: liushuan@nimte.ac.cn

中图分类号:TB332;TQ638

DOI:10.11933/j.issn.1007-9289.20240325001

参考文献 1
QING Y Z,WEN J Z,YING H W.Constructing bi-functional Ce-MOF on carbon fiber endowing epoxy coating with excellent anti-corrosion and erosion wear resistance[J].Carbon,2023,214:118374.
参考文献 2
杨海霞,王梓霖,孙付宇,等.交联环氧树脂拉伸性能的分子动力学模拟[J].工程塑料应用,2022,50(12):113-117.YANG Haixia,WANG Zilin,SUN Fuyu,et al.Molecular dynamics simulation of crosslinked epoxy resin tensile properties[J].Engineering Plastics Applications,2022,50(12):113-117.(in Chinese)
参考文献 3
CHU X C,WANG G Q,DING Q J,et al.Molecular dynamics simulation of epoxy resin modified by polyimide grafted graphene oxide[J].Polymer Engineering & Science,2023,63(11):257-261.
参考文献 4
YAN Z G,WANG Z P,LIU Y Y,et al.Research on properties of silicone-modified epoxy resin and 3D printing materials[J].ACS Omega,2023,8(25):23044-23050.
参考文献 5
FERDOSIAN F,ZHANG Y S,YUAN Z S,et al.Curing kinetics and mechanical properties of bio-based epoxy composites comprising lignin-based epoxy resins[J].European Polymer Journal,2016,82:153-165.
参考文献 6
ZHAO M L,LU X Y,ZONG H,et al.Itaconic acid production in microorganisms[J].Biotechnology Letters,2018,40(3):455-464.
参考文献 7
JIA P Y,SHI Y X,SONG F,et al.Bio-based and degradable vitrimer-graphene/graphene oxide composites with self-healing ability stimulated by heat,electricity and microwave as temperature and fire warning sensors[J].Composites Science and Technology,2022,227:109573.
参考文献 8
CAO Q,WENG Z H,QI Y,et al.Achieving higher performances without an external curing agent in natural magnolol-based epoxy resin[J].Chinese Chemical Letters,2022,33(4):2195-2199.
参考文献 9
张跃宏,翟梦姣.双键化香草醇的制备及对双键功能化大豆油树脂性能的影响[J].高分子材料科学与工程,2021,37(4):13-18.ZHANG Yuehong,ZHAI Mengjiao.Preparation of double-bond functionalized vanillyl alcohol and its effect on properties of maleinated acrylated epoxidized soybean oil resin[J].Polymer Materials Science and Engineering,2021,37(4):13-18.(in Chinese)
参考文献 10
BENYAHYA S,AOUF C,CAILLOL S,et al.Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins[J].Industrial Crops and Products,2014,53:296-307.
参考文献 11
CHEN C H,TUNG S H,JENG R J,et al.A facile strategy to achieve fully bio-based epoxy ther mosets from eugenol[J].Green Chemistry,2019,21(16):4475-4488.
参考文献 12
李柱,黄橹,韩飞,等.厚朴酚环氧树脂涂层的制备及综合防护性能研究[J].材料保护,2024,57(3):70-79,97.LI Zhu,HUANG Lu,HAN Fei,et al.Preparation and comprehensive protective perdormance study of thickened magnolol epoxy resin coatings[J].Materials Protection,2024,57(3):70-79,97.(in Chinese)
参考文献 13
ZHANG Q N,SONG M Z,XU Y Y,et al.Bio-based polyesters:recent progress and future prospects[J].Progress in Polymer Science,2021,120:152-155.
参考文献 14
AN X H,CAO Y Q,LIU Q,et al.Graphitic carbon/carbon nitride hybrid as metal-free photocatalyst for enhancing hydrogen evolution[J].Applied Catalysis A:General,2017,546:30-35.
参考文献 15
陈志宇,郭小平,水晓雪,等.苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J].中国表面工程,2022,35(2):24-34.CHEN Zhiyu,GUO Xiaoping,SHUI Xiaoxue,et al.Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J].China Surface Engineering,2022,35(2):24-34.(in Chinese)
参考文献 16
LIANG X,FAN J M,LIANG D,et al.Surface hydroxyl groups functionalized graphite carbon nitride for high efficient removal of diquat dibromide from water[J].Journal of Colloid and Interface Science,2021,582:70-80.
参考文献 17
GUO F,LI L L,SHI Y X,et al.Achieving superior anticorrosion and antibiofouling performance of polyaniline/graphitic carbon nitride composite coating[J].Progress in Organic Coatings,2023,179:107512.
参考文献 18
XIA Y Q,TONG L F,FENG X F,et al.Effects of polydopamine functionalized graphitic carbon nitride-cerium oxide nanofiller on the corrosion resistance of epoxy coating[J].Progress in Organic Coatings,2024,187:108111.
参考文献 19
LV Y Q,ZHAO W J,QIANG Y J,et al.Constructing the interface of g-C3N4/epoxy composites using carbon quantum dots to achieve self-repairing,early corrosion monitoring and superior anticorrosion performance[J].Corrosion Science,2023,225:111601.
参考文献 20
YU C,ZHANG M,XU F,et al.A multiple synergistic composite coating with ultrahigh anti-corrosion performance under harsh oxygen environment[J].Corrosion Science,2022,208:110696.
参考文献 21
QIU S H,CHEN C,CUI M J,et al.Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber[J].Applied Surface Science,2017,407:213-222.
参考文献 22
陆杨,上官莉,张慧,等.碳自掺杂石墨相氮化碳纳米片的制备及其在可见光照射下的光解水产氢性能[J].无机化学学报,2021,37(4):668-674.LU Yang,SHANGGUAN Li,ZHANG Hui,et al.Preparation of carbon self-doping graphic carbon nitride nanosheets for photocataytic H2 evolution performance under visible-light lrrdiation[J].Journal of Inorganic Chemistry,2021,37(4):668-674.
参考文献 23
BHANDARI H,CHOUDHARY V,DHAWAN S K.Influence of self-doped poly(aniline-co-4-amino-3-hydroxy-naphthalene-1-sulfonic acid)on corrosion inhibition behaviour of iron in acidic medium[J].Synthetic Metals,2011,161(9-10):753-762.
参考文献 24
JUN Y S,HONG W H,ANTONIETTI M,et al.Mesoporous,2D hexagonal carbon nitride and titanium nitride/carbon composites[J].Advanced Materials,2009,21(42):4270-4274.
参考文献 25
KARBOWNIK I,RAC-RUMIJOWSKA O,FIEDOTTOBOLA M,et al.The preparation and characterization of polyacrylonitrile-polyaniline(PAN/PANI)fibers[J].Materials,2019,12(4):245-248.
参考文献 26
HAO Y S,SANI L A,GE T J,et al.Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel[J].Applied Surface Science,2017,419:826-837.
参考文献 27
KUBARKOV A V,TURKINA P I,SHEPELEVA A S,et al.Interpolyelectrolyte complexes of polyaniline and sulfonated poly(phenylene oxide)[J].Polymer Science,Series B,2020,61(6):691-697.
参考文献 28
CUI J G,QI D W,WANG X.Research on the techniques of ultrasound-assisted liquid-phase peeling,thermal oxidation peeling and acid-base chemical peeling for ultra-thin graphite carbon nitride nanosheets[J].Ultrasonics Sonochemistry,2018,48:181-187.
参考文献 29
PASELA B R,CASTILLO A P,SIMON R,et al.Synthesis and characterization of acetic acid-doped polyaniline and polyaniline-chitosan composite[J].Biomimetics,2019,4(1):145-148.
参考文献 30
MIRMOHSENI A,AZIZI M,DORRAJI M S S.Cationic graphene oxide nanosheets intercalated with polyaniline nanofibers:a promising candidate for simultaneous anticorrosion,antistatic,and antibacterial applications[J].Progress in Organic Coatings,2020,139:105419.
参考文献 31
KOZLOV G V,DOLBIN I V.The structural aspects of frictional wear of nanocomposites on the base of polyetherketone[J].Journal of Friction and Wear,2022,43(4):273-276.
参考文献 32
ZHOU Y Q,MAHMOOD S,ENGELBERG D L.A novel high throughput electrochemistry corrosion test method:bipolar electrochemistry[J].Current Opinion in Electrochemistry,2023,39:101263.
参考文献 33
XU L C,RUAN X,FANG T,et al.3D morphology reconstruction-based modelling and mechanical degradation study of corroded low alloy steel specimens[J].Construction and Building Materials,2023,400:132649.
参考文献 34
ZHOU Y Q,MAHMOOD S,ENGELBERG D L.Application of bipolar electrochemistry to assess the corrosion resistance of solution annealed lean duplex stainless steel[J].Materials & Design,2023,232:112145.
参考文献 35
WU K,RAN P L,WANG S F,et al.Confining bulk molecular O2 by inhibiting charge transfer on surface anions toward stable redox electrochemistry in layered oxide cathodes[J].Nano Energy,2023,113:108602.
参考文献 36
HASSANI S,BIELAWSKI M,BERES W,et al.Impact stress absorption and load spreading in multi-layered erosion-resistant coatings[J].Wear,2010,268(5-6):770-776.
参考文献 37
TANDEL R R,PATEL R N,JAIN S V.Correlation development of erosive wear and silt erosion failure mechanisms for pump as turbine[J].Engineering Failure Analysis,2023,153:107610.
参考文献 38
YANG P P,YUE W H,CHEN A H,et al.Influence of SiO2 and Al2O3 particles on erosion wear of aero-compressor blades[J].Wear,2023,530:204992.
参考文献 39
PADHAN M,MARATHE U,BIJWE J.A comparative assessment of nano and microparticles of carbides for performance augmentation of UHMWPE in abrasive and erosive wear modes[J].Wear,2023,514:204568.
参考文献 40
MELENTIEV R.Physical theories of solid particle erosion and abrasive jet wear[J].Journal of Manufacturing Processes,2023,106:422-452.
目录contents

    摘要

    海工装备暴露在腐蚀最为严重的浪花飞溅区,会遭受力学-化学 / 电化学腐蚀的耦合损伤,造成严重的金属腐蚀。涂装抗冲蚀涂层是减缓海工装备冲蚀磨损的重要手段。石墨氮化碳(g-C3N4)不仅具有良好的化学稳定性和力学性能,还具有类石墨烯的二维层状结构,可作为功能填料来提高有机涂层的综合防护性能。但 g-C3N4 易团聚,直接与环氧树脂复合会产生缺陷,导致涂层快速失效。采用磺化聚苯胺(SPANi)对 g-C3N4改性得到 g-C3N4@SPANi,并与厚朴酚基四官能环氧树脂(MTEP) 结合制备防腐和抗冲蚀涂料。采用拉伸应力应变、电化学阻抗和固 / 液 / 气三相流冲蚀机对环氧复合涂料的力学性能、防腐性能和抗冲蚀防护性能进行表征,发现在纯 MTEP 中添加 0.5wt.% g-C3N4@SPANi,其拉伸强度和断裂应变为 48.3 MPa 和 8.75%,分别比纯 MTEP 提高 68.8%和 19.05%,抗冲蚀试验后环氧复合涂层的质量损失和体积损失分别比纯 MTEP 降低了 68.41%和 66.39%,在 3.5wt.% NaCl 溶液浸泡 60 d 后环氧复合涂层低频阻抗模值为 3.25 GΩ·cm2 ,比纯 MTEP 低频阻抗模值 0.112 MΩ·cm2 提高四个数量级。环氧复合涂层防腐和抗冲蚀性能的提升,主要归功于 SPANi 在 g-C3N4 表面的接枝增加了 g-C3N4 表面粗糙度,同时 g-C3N4@SPANi 与环氧树脂兼容性好,提高了涂层的致密性和韧性,进而提高复合涂层的抗冲蚀性能。因此,通过利用 SPANi 对 g-C3N4 化学改性,能有效降低水分子向环氧涂层内部的渗透速率,为新型功能填料在环氧涂层中的应用提供新思路。

    Abstract

    As inland resources continue to be depleted, the exploration and exploitation of marine resources have expanded. However, the marine engineering equipment used in this process, including ships and deep-sea probes, undergoes corrosion, owing to the complex marine environment. Additionally, in the splash zone, the impact of seawater, oxygen, and hard solid particles causes erosion wear and chemical / electrochemical corrosion on metal equipment, which significantly reduces the service life of marine engineering equipment in marine environments. Protective coatings are applied to counteract the impact damage to marine engineering equipment. However, epoxy coatings, owing to their high cross-linking density and brittleness, are prone to delamination and failure upon impact with seawater. The curing process also generates significant shrinkage, which allows water to penetrate the coating and contact the metal substrate, thereby leading to corrosion. Therefore, enhancing the interfacial bonding strengths of epoxy coatings by incorporating functional fillers can effectively resist the adverse effects of seawater impact. Graphitic carbon nitride (g-C3N4) exhibits excellent chemical stability and mechanical properties, and its two-dimensional graphene-like layered structure effectively blocks seawater. Functionalizing g-C3N4 to improve its dispersibility and corrosion protection is beneficial. In this study, in situ polymerization was employed to graft and dope g-C3N4 surfaces with p-aminobenzenesulfonic acid (ASA) modified polyaniline (PANi) nanofibers, thereby resulting in a g-C3N4@SPANi composite functional filler. This filler was combined with a magnolia phenolic tetrafunctional epoxy resin (MTEP) to prepare anti-corrosion and anti-erosion coatings. The phase and structure of the fillers were analyzed using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The microstructure of the fillers was examined using transmission electron microscopy, and the cross-sectional morphology of the coatings was assessed using cold field emission scanning electron microscopy. The mechanical properties, corrosion resistance, and impact protection performance of the epoxy composite coatings were characterized using tensile stress-strain, electrochemical impedance, and solid / liquid / gas triphase flow erosion tests. The results showed that adding 0.5wt.% g-C3N4@SPANi to pure MTEP increased the tensile strength and elongation to 48.3 MPa and 8.75%, respectively, constituting improvements of 68.8% and 19.05% over those of pure MTEP. After soaking in a 3.5wt.% NaCl solution for 60 days, the low-frequency impedance modulus of the epoxy composite coating was 3.25 GΩ·cm2 , which is four orders of magnitude higher than that of pure MTEP at 0.112 MΩ·cm2 . The results of an analysis of the corrosion potential (Ecorr) and self-corrosion current (icorr) through dynamic potential polarization curves revealed significant increases in Ecorr and reductions in icorr in the MTEP coating after the addition of 0.5wt.% g-C3N4@SPANi, thereby demonstrating excellent corrosion resistance. Erosion tests showed that the addition of 0.5wt.% g-C3N4@SPANi reduced the mass and volume losses of the MTEP coating by 68.41% and 66.39%, respectively, while significantly reducing the depths of erosion pits. This enhancement in the anti-corrosion and anti-erosion performance of the MTEP coating is primarily because of the increase in the roughness of g-C3N4 that is caused by the grafting of sulfonated polyaniline, which also improves the compatibility of g-C3N4@SPANi with the epoxy resin, thereby enhancing the density and toughness of the coating as well as improving the impact resistance of the composite coating. This study proposes a novel modification method for graphitic carbon nitride (g-C3N4) using sulfonated polyaniline (SPANi) for surface modification, resulting in the production of a g-C3N4@SPANi composite functional filler. This modification method enhances the roughness of g-C3N4 by introducing sulfonic groups, thereby strengthening the interfacial bond with the epoxy resin. Therefore, chemically modifying graphitic carbon nitride with sulfonated polyaniline can effectively enhance the interface compatibility of g-C3N4 and enable it to be better dispersed in MTEP to thereby reduce the penetration rate of water molecules into MTEP coatings, improve the erosion resistance of MTEP coatings, and provide new insights for the application of novel functional fillers in epoxy coatings.

  • 0 前言

  • 近年来为实现建设海洋强国的战略目标,我国加大了对海洋资源的开发与利用,海工装备在海洋工程中已广泛应用。然而,海工钢结构在苛刻海洋环境服役时受到海水冲刷及飞溅区固体颗粒冲击,会发生电化学腐蚀和冲蚀磨损[1]。海工钢结构在受到冲击后会产生形变和破损,使腐蚀介质更易侵蚀金属基体。因此,为了提升海工装备的服役寿命,通常采用喷涂防护涂层进行保护,所喷涂的防护涂层在抵抗冲蚀磨损腐蚀过程中应具备以下特性:① 强附着力。与基材之间的强附着力能保证在冲蚀过程中涂层不会脱落和失效;② 耐摩擦磨损性。涂层在受到海水冲击的过程中会产生摩擦磨损,因此涂层具有优异的耐摩擦磨损性能可极大提升涂层的防护效果;③优异阻隔性能。海水和泥沙在冲击涂层过程中会携带大量的腐蚀介质,涂层具有优异的阻隔性能,可有效抑制腐蚀介质渗透涂层,提高对防护基材的防护效果。海洋环境中抗冲蚀涂层优选环氧树脂为主要成膜物质,主要是由于环氧树脂分子结构中含有活泼的环氧基团,可与多种类型的固化剂发生交联反应,形成多维网状结构的高聚物。环氧涂层具有以下优点:①附着力强,对各种基材均有优良的黏结性,同时固化收缩率低;②耐化学品性优异,耐碱性尤其突出;③兼容性好,能同各种树脂、助剂互溶,填料在环氧树脂中的分散性好;④制得的涂膜坚硬,兼具一定韧性,同时环氧树脂的相对分子质量不高,有利于配制成无溶剂涂料。但是纯环氧涂层由于高交联密度,其脆性大,耐冲击性能和摩擦磨损性能差,通过添加功能填料是提升环氧涂层抗冲击性能和摩擦磨损性能最直接有效的方法[2]

  • 环氧树脂具有优异的化学稳定性和力学性能,被广泛应用于复合材料、涂料、粘接剂、电子元件等领域[3]。在环氧树脂中,目前大多数商业化双酚 A 型环氧树脂(GEBA)是由二缩水甘油醚合成的[4]。然而双酚 A 是以石油为原料制备,近年来石油资源的大量消耗造成严重的能源短缺和环境污染,引起全球关注[5]。因此,在双碳背景下,开发出一种可再生生物基原料代替石油原料,制备出生物基环氧树脂是减少石油资源消耗的有效方法。目前,研究较多的生物基化合物包括衣康酸[6]、香兰素[7]、木兰素[8]、香草醇[9]、绿茶单宁[10]、丁香酚[11]等。此类生物基原料制备的生物基环氧树脂,其部分性能优于双酚 A 型缩水甘油醚环氧树脂(DGEBA)。李柱等[12]探讨了不同聚醚胺固化剂对 DGEBA 涂层拉伸应力应变和抗冲蚀性能的影响,发现聚醚胺 T403 固化剂固化的 DGEBA 涂层表现出更优的抗冲蚀性能。但迄今为止,四官能生物基环氧树脂力学性能仍不能与传统的 N,N,N′,N′-四环氧丙基-4,4′-二氨基二苯甲烷(TGDDM)相媲美[13]。因此可以尝试通过功能性填料对生物基四官能环氧树脂进行复合[14-15],其中二维材料作为功能填料的应用最为广泛,具体包括云母片、石墨烯、氮化硼等,其中石墨氮化碳(g-C3N4)具有易于制造、成本低廉、无毒、较高的物理化学稳定性以及环境友好等特点,并具有优异的耐腐蚀性,这表明 g-C3N4 在腐蚀防护领域中具有巨大潜力[16]。但是 g-C3N4自身也存在缺陷,如比表面积小、易于团聚等。可通过尝试对 g-C3N4 进行改性以提高其在防腐涂料中的应用[17]。 XIA 等[18]通过用聚多巴胺功能化石墨氮化碳-氧化铈作为纳米填料,提升石墨氮化碳-氧化铈与环氧树脂的相容性,延缓了腐蚀介质向金属基材的扩散进程,延长了环氧涂层的防护寿命;LV 等[19]用碳量子点构建了石墨氮化碳 / 环氧涂层界面,试验发现该涂层具有优异的自修复性能和腐蚀防护性能。目前利用 g-C3N4 作为填料在净水腐蚀防护中得到了部分应用,但在冲蚀领域却鲜有报道。

  • 为了提高海工装备在苛刻海洋腐蚀环境下的服役寿命,采用原位聚合法在 g-C3N4表面接枝掺杂邻氨基苯磺酸(ASA)化的聚苯胺(PANi)纳米纤维,得到g-C3N4@SPANi复合填料。再将g-C3N4@SPANi 作为功能填料添加到环氧树脂中,提高其防腐性能和抗冲蚀性能。g-C3N4 表面丰富的官能团可以为苯胺单体提供活性位点[20],有利于 PANi 纳米纤维在 g-C3N4 表面的生长,这种结构可提高环氧树脂与 g-C3N4 之间的兼容性。采用 ASA 作为掺杂酸,可进一步提高复合填料的分散性。因此,制备的功能填料 g-C3N4@SPANi 具有 g-C3N4 的阻隔性能、PANi 独特的可逆氧化还原性能,可赋予环氧涂层超高的防腐性能[21],同时,在 g-C3N4 表面接枝 SPANi,增加了 g-C3N4 表面粗糙度,提高了 g-C3N4 表面与环氧树脂接触面积,有利于提高复合涂层的抗冲蚀性能。

  • 1 试验

  • 1.1 材料与试剂

  • 试验过程需要材料与试剂:Q235 碳钢、厚朴酚 (纯度>98%,成都瑷集萃生物科技有限公司)、环氧氯丙烷(纯度≥99.5%,上海阿拉丁生化科技股份有限公司)、四丁基溴化铵(分析纯≥99.0%,上海麦克林生化科技有限公司)、氢氧化钠(97%,上海阿拉丁生化科技股份有限公司)、间氯过氧苯甲酸 (分析纯≥85.0%,上海麦克林生化科技有限公司)、无水亚硫酸钠(98%,上海麦克林生化科技有限公司)、二氯甲烷(99.5%,上海麦克林生化科技有限公司)、聚醚胺固化剂(上海阿拉丁生化科技有限公司)、石墨氮化碳(纯度≥99.5%,南京先丰纳米材料科技有限公司)、苯胺(分析纯≥99.0%,上海麦克林生化科技有限公司)。

  • 1.2 厚朴酚基四官能环氧树脂(MTEP)的合成

  • 如图1 合成步骤所示:将厚朴酚(Magnolol) 与环氧氯丙烷(Epichlorohydrin)按照质量比 1∶8 比例混合,同时添加 3wt.%的四丁基溴化铵(TBAB) 作为催化剂,在 75℃下反应 3 h,然后滴加 50wt.% NaOH 溶液搅拌 24 h。将产物用去离子水洗涤 10 次至溶液呈中性,在 60℃真空水泵下旋蒸 3 h,得到产物厚朴酚基环氧树脂(DGEM)。将 DGEM 缓慢滴入间氯过氧苯甲酸(PCBA),保持室温反应 48 h,升温至 50℃再反应 4 h,反复过滤、蒸发溶剂,用低浓度 NaOH 洗涤三次以上,得到目标产物厚朴酚基四官能环氧树脂(MTEP)。

  • 图1 MTEP 合成路径

  • Fig.1 Synthesis path of MTEP

  • 1.3 g-C3N4@SPANi 的制备

  • 如图2a 所示,通过原位聚合制备 g-C3N4@SPANi。首先,将 1.84 mL 苯胺(Aniline) 转移至三颈烧瓶,并将烧瓶置于冰水混合物中,连续搅拌下将 1 g g-C3N4 加入到上述溶液。随后,将 10 mL 1.0 mol / L ASA 溶液加入到混合物溶液,并添加 25 mL 1 mol / L HCl 溶液,缓慢搅拌 30 min。为了触发反应,将新制备的含有 1.0 g 过硫酸铵 (APS)的 HCl(10 mL,1 mol / L)快速加入烧瓶中。在 0~5℃冰浴中反应 4 h,然后静置 48 h。去离子水洗涤 5 次,过滤和冷冻干燥后,即得到 g-C3N4@SPANi。图2b 为苯胺在 ASA 溶液中氧化聚合生成 SPANi 的反应过程。

  • 图2 g-C3N4@SPANi 涂层的制备

  • Fig.2 Preparation of g-C3N4@SPANi coating

  • 1.4 不同复合环氧涂层的制备

  • 将 0.375 g 填料(g-C3N4、PANi、g-C3N4@PANi、 g-C3N4@SPANi)加入到 50 g MTEP 中,搅拌均匀后加入聚醚胺 T403 固化剂(质量比 MTEP∶ T403=2∶1.1)和 5 g 二甲苯稀释剂,将混合物超声搅拌均匀,涂敷在碳钢 Q235 基材表面,室温25℃表干 30 min 后,在 80℃烘箱中固化 4 h,控制干膜厚度 50±5 µm,不同填料在复合涂层中的含量均为 0.5wt.%。

  • 1.5 表征与性能测试

  • 利用 X 射线粉末衍射仪(XRD)、智能型傅立叶红外变换光谱仪(FT-IR)和 X 射线光电子能谱仪(XPS)对填料的相和结构进行分析。利用透射电子显微镜(TEM)对填料的微观形貌进行分析。利用冷场扫描电镜(SEM)对涂层截面形貌进行分析。

  • 采用对偶试样拉力测试法测定 MTEP 样条的抗拉强度,将添加固化剂后的不同 MTEP 复合涂料均匀倒入 2 mm×4 mm 的聚四氟乙烯(PTFE)哑铃凹槽模具中,通过真空干燥箱抽走涂料中的气泡,并移入干燥烘干箱内,在 80℃固化 4 h。采用万能材料试验机(兹韦克罗睿试验机科技有限公司,德国) 以 50 mm / min 的速度对样条进行拉伸测试。

  • 使用多功能高温摩擦磨损试验机(UMT-3,美国)评价不同复合涂层的摩擦性能。选择 Al2O3 对摩小球(φ 44 mm),载荷为 2 N,摩擦速度为 1.2 mm / min,摩擦时间为 30 min,单向滑动距离为 1 mm。

  • 采用电化学工作站(Gamry Reference600+,美国)测试不同环氧复合涂层在 3.5wt.% NaCl 溶液中的电化学阻抗谱和动电位极化曲线。采用三电极体系,工作电极为涂有复合环氧涂层的 Q235 碳钢(暴露面积 1 cm2),饱和甘汞电极为参比电极,对电极为铂电极(1 cm×1 cm×2 mm)。EIS 测试扰动电位为 20 mV,频率测试范围为 10−2~105 Hz,Tafel 极化扫描范围为相对开路电位−0.5~0.5 V,扫描速度为 1 mV / s。

  • 采用固 / 液 / 气三相流的冲蚀磨损试验机对涂层进行抗冲蚀性能测试。冲蚀剂由 SiC 颗粒和水按照质量比 1∶4 组成(其中 SiC 为球状,直径为 100~150 μm),射流速度为 2.36 m / s(气压为 0.2 MPa),撞击角为 90°,每个样品冲蚀时间为 30 min。在测试前后,用乙醇清洁每个样品后干燥,并使用精确度为 0.1 mg 的分析天平称重来分析质量损失,冲蚀坑体积变化通过激光共聚焦显微镜(VK-X1000,日本)直接记录数据得到,最后采用 SEM 观察样品冲蚀区域的微观形貌变化。

  • 2 结果与讨论

  • 2.1 复合填料的相和结构分析

  • 图3a 是不同功能填料的 XRD 谱图。g-C3N4 在 13.0°和27.4°处显示出明显的衍射峰,其中13.0° 代表 g-C3N4(100)晶面衍射,归因于面内聚合物单元的有序排列[22],27.4°的衍射峰是(002)晶面中芳环的逐层堆积。当引入纳米 PANi 后,g-C3N4@SPANi 在 27.4°的衍射峰位置基本没有变化,但 g-C3N4 半结晶行为受到纳米 PANi 约束效应的影响,衍射信号强度有所减弱,这是由于 PANi 的加入导致 g-C3N4 结构单元有序性下降[23]。图3b 为不同功能填料的 FT-IR 谱图。对于纯 g-C3N4,1 244 cm−1 是 C-N 伸缩振动吸收峰,812 cm−1 是 C-H 面内弯曲振动吸收峰,1 476 cm−1 是 N-H 拉伸振动吸收峰[24];对于纯 PANi,1 244 和 1 476 cm−1 处归因于 C-N 键伸缩振动和 N-H 拉伸振动,812 cm−1 处峰值为 C-H 拉伸振动[25],3 467 cm−1 处的峰值为 O-H 伸缩振动。除了 g-C3N4 和 PANi 的特征峰外,g-C3N4@SPANi 显示新的特征峰,峰值在 616、1 146 和 1 303 cm−1 分别对应的是 C-S 拉伸振动峰、S-O 拉伸振动峰和 S=O 拉伸振动峰,说明磺酸基团已成功引入聚苯胺链[26]。通过 XPS 测定复合材料的元素和化学状态,如图3c~3d 所示。可以观察到 N 与 S 的原子浓度比约为 2∶1,证实了 ASA 与苯胺共聚而不是自聚合。将 g-C3N4@SPANi 中 S 2p 中心水平积成双峰,以确定 g-C3N4@SPANi 中 H 基的组成。其中一个峰最高值为 167.5 eV,分配给 SO3 与苯基环相关的基团。非离子型 SO3 在聚合物链上的 H 基在 168.45 eV 处产生了另一个峰值[21]

  • 图3 不同功能填料的结构分析

  • Fig.3 Structural analysis of different functional fillers

  • 为了更加清楚地观察 PANi、SPANi 是否成功接枝到 g-C3N4表面,通过 TEM 对不同功能填料进行微观形貌分析。图4a 中可以清晰地观察到 g-C3N4 表现出二维片层状结构,比表面积较小。图4b 为 PANi 纳米纤维,直径为 50 nm 左右,出现聚集现象。图4c 为g-C3N4@PANi 在 TEM 下的分散状态,g-C3N4表面仅部分接枝了 PANi,团聚现象较为严重。图4d 为 g-C3N4@SPANi 的微观形貌照片,PANi 纳米纤维可均匀接枝在 g-C3N4表面,整体团聚不明显,这主要是由于磺化后的 PANi 提高了 g-C3N4的分散性能[27]

  • 图4 不同功能填料的 TEM 照片

  • Fig.4 TEM photos of different functional fillers

  • 2.2 复合涂层的截面扫描

  • 图5 是纯厚朴酚基四官能环氧树脂涂层(MTEP 涂层)、在 MTEP 中添加 0.5wt.% g-C3N4填料的涂层 (g-C3N4 / MTEP 涂层)、在MTEP 中添加 0.5wt.% PANi 填料的涂层(PANi / MTEP 涂层)、在 MTEP 中添加 0.5wt.% g-C3N4@PANi 填料的涂层(g-C3N4@PANi / MTEP 涂层)和在 MTEP 中添加 0.5wt.% g-C3N4@SPANi 填料的涂层(g-C3N4@SPANi / MTEP 涂层)的截面电子扫描照片。由图5b、5d 可知,g-C3N4 / MTEP和g-C3N4@PANi / MTEP涂层截面上的 g-C3N4呈片层聚集,片层之间堆叠紧密,表明 g-C3N4 和g-C3N4@PANi 在MTEP 中的分散性差,导致g-C3N4 与 MTEP 之间的相容性差。PANi 纳米纤维加入 MTEP 中(图5c),PANi 纳米纤维会团聚在一起。 g-C3N4@SPANi 加入 MTEP 后(图5e),g-C3N4能较为均匀地分散在树脂中,这主要是由于 SPANi 能有效改善 g-C3N4 在 MTEP 的分散性,增强 g-C3N4 与 MTEP 的相容性。

  • 图5 MTEP、g-C3N4 / MTEP、PANi / MTEP、g-C3N4@PANi / MTEP 和 g-C3N4@SPAN / METP 涂层的截面扫描照片

  • Fig.5 Cross-sectional scan photos of MTEP, g-C3N4 / MTEP, PANi / MTEP, g-C3N4@PANi / MTEP and g-C3N4@SPANi / MTEP coatings

  • 2.3 复合涂层的拉伸强度

  • 图6 是在 MTEP 涂层中添加不同功能填料后的应力-应变曲线,不同填料在 MTEP 涂层中的添加量均为 0.5wt.%。纯 MTEP 拉伸强度为 28.6 MPa,断裂应变为 7.35%;当 MTEP 中加入填料 g-C3N4后,复合涂层的拉伸强度显著提升,达到 45.1 MPa,比纯 MTEP 提高了 57.7%,但是断裂应变仅为 4.19%; 当 MTEP 中加入填料 PANi 后,复合涂层表现出更低的拉伸强度,仅为 21.5 MPa,但其断裂应变增大到 8.85%;当 MTEP 中加入 g-C3N4@PANi 后,复合涂层的拉伸强度为 41.9 MPa,比 g-C3N4 为填料时的拉伸强度低,原因可能是 g-C3N4与 PANi 分散性较差,导致漆膜的力学性能降低;当 MTEP 中加入 g-C3N4@SPANi 后,复合涂层的拉伸强度达到 48.3 MPa,比纯 MTEP 样条拉伸强度提高 68.8%,并且断裂应变达到 8.75%,说明以 g-C3N4@SPANi 为功能填料制备的复合涂层具有最优异的力学性能。主要是因为将 g-C3N4@SPANi 掺入 MTEP 中, g-C3N4@SPANi 具有多重协同防护效果。在接枝过程中,g-C3N4 表面丰富的官能团可以为苯胺单体提供活性位点,有利于 PANi 纳米纤维在 g-C3N4表面的定向生长[28]。这种独特结构不仅可以有效抑制 PANi 团聚,而且增加了 MTEP 与 g-C3N4之间界面结合强度。采用 ASA 作为掺杂酸,可进一步提高功能填料的分散性[29]

  • 图6 不同复合涂层的应力-应变曲线

  • Fig.6 Stress-strain curves of different composite coatings

  • 2.4 涂层的摩擦磨损性能

  • 为了探究复合涂层摩擦性能,对复合涂层的摩擦因数和磨损率进行测试分析,结果如图7 所示。纯 MTEP 涂层的摩擦因数为 0.039 1,在不同复合涂层中,g-C3N4@SPANi / MTEP 涂层的摩擦因数最低,为 0.023,PANi / MTEP 涂层的摩擦因数最高,为 0.052 1,这可能是 PANi 分散性较差,出现团聚现象,导致填料在 MTEP 涂层内壁分布不均匀[30]。在 MTEP 涂层中添加 g-C3N4 后,复合涂层的摩擦因数降低,是由于 g-C3N4具有特殊结构,其中石墨相的二维片层具有润滑效果,因此涂层表现出较低的摩擦因数。但 g-C3N4分散性较差,使得涂层本身缺陷增加,表现出较高的磨损率( 2.655 × 10−2 mm 3 /(N·m))。通过对 PANi 磺化作用后接枝在 g-C3N4 表面上,得到的 g-C3N4@SPANi 填料在 MTEP 中具有更好的分散性,涂层的摩擦因数与磨损率均表现出更优的效果,磨损率仅为 1.34× 10−2 mm 3 /(N·m),涂层不容易被磨损[31],这一测试结果与复合涂层抗拉伸强度一致。

  • 图7 不同复合涂层摩擦因数和磨损率

  • Fig.7 Friction factor and wear rate of different composite coatings

  • 2.5 腐蚀防护性能

  • 图8 是纯 MTEP 涂层和不同填料复合 MTEP 涂层在 3.5wt.% NaCl 溶液中浸泡不同时间后的 EIS 图谱。在 Nyquist 图8a1~8e1 中,容抗弧的直径可表征涂层的防护性能,容抗弧直径越大,其阻抗越高,涂层防腐性能越好[32]。所有涂层容抗弧半径随着浸泡时间的延长逐渐减小,表明水分子逐渐渗入到涂层内部,使涂层的防护性能下降。浸泡 10 d 后,纯 MTEP 涂层容抗弧直径明显降低,添加功能填料的复合涂层容抗弧直径远大于纯 MTEP 涂层,说明添加功能填料可提高环氧涂层的防护效果。单独添加 PANi 和 g-C3N4@PANi 的 MTEP 复合涂层浸泡 10 d 后,容抗弧直径减小,是由于 PANi 分散性较差,接枝在 g-C3N4 表面时出现团聚,使得 MTEP 涂层内部缺陷增多,腐蚀介质更易渗透,并与金属基底接触引起腐蚀[33]。在 3.5wt.% NaCl 溶液中浸泡 60 d 后,以 g-C3N4@SPANi 为填料的涂层容抗弧直径最大,是由于对 PANi 进行磺化作用后,得到的 SPANi 分散性好,能均匀接枝在 g-C3N4表面,添加到环氧涂层中可提高复合涂层的致密性,减缓了水在涂层内部的渗透速率。

  • 图8 不同 MTEP 复合涂层在 3.5wt.% NaCl 溶液中浸泡不同时间的 EIS 图谱

  • Fig.8 EIS patterns of different MTEP composite coatings immersed in 3.5wt.% NaCl solution after different times

  • Bode 图中的低频阻抗模值(|Z|0.01 Hz)可用于评价涂层的综合防护性能,阻抗模量越大,涂层阻抗越高,涂层防护性能越好[34]。根据图8a2~8e2 可知,所有涂层的阻抗模量随浸泡时间的延长都呈现下降趋势。以 g-C3N4 为填料的涂层初始低频阻抗为 0.532 TΩ·cm 2,其他三组含有填料的涂层的低频阻抗在 0.3 TΩ·cm 2 左右,而纯 MTEP 涂层低频阻抗为 10 GΩ·cm 2 。在 3.5wt.% NaCl 溶液中浸泡 60 d 后,以 g-C3N4@SPANi 为填料的涂层低频阻抗模值下降了两个数量级,保持在 3.25 GΩ·cm 2,添加其他填料的各复合涂层低频阻抗模值明显下降,为 0.2 GΩ·cm 2 数量级。纯 MTEP 涂层浸泡 60 d 后,低频阻抗仅为 0.112 MΩ·cm 2,这表明在长期浸泡过程中,纯 MTEP 涂层内部缺陷使其更容易被水分子渗透,从而引起金属基体腐蚀。当加入 g-C3N4、PANi 和 g-C3N4@PANi 填料后,弥补了涂层内部的缺陷,但 g-C3N4和 PANi 本身易于聚集,分散性较差,导致 g-C3N4 对水分子阻隔能力削弱。通过在 PANi 中引入磺酸基团得到 SPANi,进而在 g-C3N4 表面接枝得到 g-C3N4@SPANi 填料,改善了填料在树脂中的分散性,提高了复合涂层的致密性,有效减缓水分子在涂层中的渗透性能[17]

  • 图9 是不同 MTEP 复合涂层在 3.5wt.% NaCl 溶液中浸泡 60 d 后的动电位极化曲线。通过 Tafel 外推法可拟合得到金属基体表面腐蚀反应过程的电化学参数,包括腐蚀电位(Ecorr)、腐蚀电流密度(icorr) 和 Tafel 斜率(阳极斜率|βa|和阴极斜率|βc|)等,拟合结果如表1 所示。icorr值代表金属基体表面腐蚀电流的大小,icorr 越低,表明自腐蚀速率越小[35],在 MTEP 涂层中添加 0.5wt.% g-C3N4@SPANi 的复合涂层的 icorr值最小,为 25.9 pA·cm−2 ,具有最小的腐蚀速率,其自腐蚀电位最正。纯 MTEP 涂层的 icorr 值为 3.42 nA·cm−2,其腐蚀速率最大,自腐蚀电位最负。极化曲线结果表明,MTEP 涂层中添加 g-C3N4@SPANi 功能填料具有最佳的防护效果。

  • 图9 不同 MTEP 复合涂层在 3.5wt.% NaCl 溶液中浸泡 60 d 后的极化曲线

  • Fig.9 Polarization curves of the different MTEP composite coatings immersed in 3.5wt.% NaCl solution after 60 d

  • 表1 Tafel 外推法得到的电化学参数

  • Table1 Electrochemical parameters obtained by Tafel extrapolation

  • Where Ecorr is corrosion potential, icorr is corrosion current, |βa| is Tafel anode slope, |βc| is Tafel cathode slope.

  • 2.6 冲蚀形态及机理研究

  • 通过固 / 液 / 气三相流冲蚀机来测试不同 MTEP 复合涂层的抗冲蚀性能,图10 是各复合涂层的冲蚀坑形貌、质量损失、体积损失以及冲蚀坑深度。图10a 为复合涂层冲蚀测试的冲蚀坑形貌,不同颜色代表不同深度。纯 MTEP 涂层的冲蚀坑深度最大,为 0.75 mm,添加 g-C3N4@SPANi 为填料的涂层冲蚀坑深度最小,为 0.33 mm。图10b 是复合涂层的质量损失,纯 MTEP 涂层质量损失最大,为 271.23 mg,其次是添加 PANi 复合涂层的质量损失为 191.46 mg,添加 g-C3N4@SPANi 复合涂层质量损失最小,为 85.69 mg。图10c 是复合涂层的体积损失,纯 MTEP 涂层的体积损失最大,为 104.93 mm3,其次是添加 PANi、g-C3N4@PANi、g-C3N4 为填料的复合涂层的体积损失分别为 94.04、 60.88、 54.07 mm3,添加 g-C3N4@SPANi 复合涂层体积损失最小,仅为 35.271 mm3。主要是因为在抗冲蚀过程中,纯 MTEP 涂层因其内部较多缺陷,在 SiC 颗粒持续冲击作用下,涂层因力学性能较差逐渐脱落。添加 PANi、g-C3N4@PANi、g-C3N4 为填料的复合涂层填补了涂层内部部分缺陷,但因分散性差,出现团聚,可能会使得部分缺陷处增大,抗冲蚀性能有限。添加 g-C3N4@SPANi 的环氧复合涂层,由于 g-C3N4 与 SPANi 协同作用,提高了涂层的致密性和韧性,进而提高其抗冲蚀性能[36]

  • 图10 不同 MTEP 复合涂层的冲蚀坑形貌、质量损失、体积损失、冲蚀深度

  • Fig.10 Morphology, mass loss, volume loss, and erosion depth of erosion pits in different MTEP composite coatings

  • 为了探究涂层在固 / 液 / 气三相流冲击作用下的冲蚀防护机理,对涂层表面冲蚀区域进行形貌分析。g-C3N4@SPANi 功能填料在复合 MTEP 时,涂层冲蚀失效主要以树脂基体的局部去除以及硬质填料脱落两种模式发生[37],其中 SiC 颗粒冲击压力的垂直分量使其压入材料表面,水平动能分量使其沿基材表面的水平方向移动,并切出微体积基材,这种微体积基材损失称为微切削[38]

  • 如图11 所示,纯 MTEP 在三相流冲蚀作用下,基材表面出现明显的凹坑和裂纹,树脂基体局部被去除,形成光滑的表面。当以 g-C3N4 为填料时,与纯 MTEP 相似,基材表面出现波纹状损坏,孔洞大小明显变小,并且数量有所减少。这是由于 g-C3N4 是保护基材主要的抗冲蚀相[39],g-C3N4 硬度比 SiC 颗粒的硬度高,能够有效保护基体,提高涂层抗冲蚀性能,但其硬度过高和分散性不好,导致涂层的韧性下降,这样在SiC颗粒持续冲击作用下,g-C3N4 逐渐脱落,同时团聚的 g-C3N4 就会在涂层中形成微孔洞,降低了 MTEP 涂层的整体抗冲蚀性能 (图11b1~11b3)。当加入 PANi 纳米纤维时(图11c1~11c3),冲蚀区域具有大量的裂纹以及大量不规则形貌的冲蚀坑。在高倍率电镜下,甚至可以观察到涂层开裂成沟壑形貌,这是由于纳米 PANi 纤维分散性较差,产生团聚现象,导致涂层在受到外界作用力时外应力不能有效传递,应力集中,使涂层进一步破坏,产生沟壑状裂纹以及孔洞。当以 g-C3N4@PANi 作为填料时,如图11d1~11d3, MTEP 复合涂层冲蚀区域分散着细小裂纹和大量孔洞以及不规则丘陵状,这归因于 g-C3N4 表面接枝 PANi,产生团聚现象,与树脂基材粘结性较差。在 SiC 颗粒持续冲击作用下,容易产生界面破坏或界面内聚破坏,导致漆膜脱落,进而降低复合涂层的抗冲蚀磨损性能。当 MTEP 涂层中添加 g-C3N4@SPANi 时(图11e1~11e3),由于 SPANi 在 g-C3N4 表面接枝,增加了 g-C3N4 表面粗糙度,为环氧树脂与纤维粘接提供粘接位点,与环氧树脂兼容性好。同时环氧树脂与 g-C3N4@SPANi 存在类似齿轮间的“啮合效应”,相互牵制,提高了 MTEP 复合涂层的抗冲蚀性能[40]

  • 图11 不同放大倍数下复合涂层的冲蚀微观形貌

  • Fig.11 Erosion micromorphologies of composite coatings at different magnifications

  • 3 结论

  • (1)通过 SPANi 对 g-C3N4表面改性,制备分散性良好的 g-C3N4@SPANi,将其作为功能填料添加到 MTEP 中,提高了 g-C3N4@SPANi / MTEP 涂层的力学性能。复合涂层的拉伸强度为 48.3 MPa,断裂应变为 8.75%,相较纯 MTEP 涂层提高了 68.8% 和 19.05%。

  • (2)当 MTEP 中添加 0.5wt.% g-C3N4@SPANi 功能填料时,在 3.5wt.% NaCl 溶液中浸泡 60 d 后,其低频阻抗模值为 3.25 GΩ·cm 2 ,相较纯 MTEP 涂层低频阻抗模值 0.112 MΩ·cm 2 提升了四个数量级,说明 g-C3N4@SPANi 可显著提高 MTEP 的防腐性能。

  • (3)当 MTEP 中添加 0.5wt.% g-C3N4@SPANi 时,由于 SPANi 在 g-C3N4 表面接枝增加了 g-C3N4 表面粗糙度,同时提升了与环氧树脂的相容性和 MTEP 复合涂层的抗冲蚀性能,在冲蚀后其质量损失 85.69 mg、体积损失 35.27 mm3 和冲蚀坑深度 0.33 mm,相较纯 MTEP 涂层分别降低了 185.54 mg、6 9.66 mm3 和 0.42 mm,说明添加 g-C3N4@SPANi 可提高纯 MTEP 涂层的抗冲蚀性能。

  • 参考文献

    • [1] QING Y Z,WEN J Z,YING H W.Constructing bi-functional Ce-MOF on carbon fiber endowing epoxy coating with excellent anti-corrosion and erosion wear resistance[J].Carbon,2023,214:118374.

    • [2] 杨海霞,王梓霖,孙付宇,等.交联环氧树脂拉伸性能的分子动力学模拟[J].工程塑料应用,2022,50(12):113-117.YANG Haixia,WANG Zilin,SUN Fuyu,et al.Molecular dynamics simulation of crosslinked epoxy resin tensile properties[J].Engineering Plastics Applications,2022,50(12):113-117.(in Chinese)

    • [3] CHU X C,WANG G Q,DING Q J,et al.Molecular dynamics simulation of epoxy resin modified by polyimide grafted graphene oxide[J].Polymer Engineering & Science,2023,63(11):257-261.

    • [4] YAN Z G,WANG Z P,LIU Y Y,et al.Research on properties of silicone-modified epoxy resin and 3D printing materials[J].ACS Omega,2023,8(25):23044-23050.

    • [5] FERDOSIAN F,ZHANG Y S,YUAN Z S,et al.Curing kinetics and mechanical properties of bio-based epoxy composites comprising lignin-based epoxy resins[J].European Polymer Journal,2016,82:153-165.

    • [6] ZHAO M L,LU X Y,ZONG H,et al.Itaconic acid production in microorganisms[J].Biotechnology Letters,2018,40(3):455-464.

    • [7] JIA P Y,SHI Y X,SONG F,et al.Bio-based and degradable vitrimer-graphene/graphene oxide composites with self-healing ability stimulated by heat,electricity and microwave as temperature and fire warning sensors[J].Composites Science and Technology,2022,227:109573.

    • [8] CAO Q,WENG Z H,QI Y,et al.Achieving higher performances without an external curing agent in natural magnolol-based epoxy resin[J].Chinese Chemical Letters,2022,33(4):2195-2199.

    • [9] 张跃宏,翟梦姣.双键化香草醇的制备及对双键功能化大豆油树脂性能的影响[J].高分子材料科学与工程,2021,37(4):13-18.ZHANG Yuehong,ZHAI Mengjiao.Preparation of double-bond functionalized vanillyl alcohol and its effect on properties of maleinated acrylated epoxidized soybean oil resin[J].Polymer Materials Science and Engineering,2021,37(4):13-18.(in Chinese)

    • [10] BENYAHYA S,AOUF C,CAILLOL S,et al.Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins[J].Industrial Crops and Products,2014,53:296-307.

    • [11] CHEN C H,TUNG S H,JENG R J,et al.A facile strategy to achieve fully bio-based epoxy ther mosets from eugenol[J].Green Chemistry,2019,21(16):4475-4488.

    • [12] 李柱,黄橹,韩飞,等.厚朴酚环氧树脂涂层的制备及综合防护性能研究[J].材料保护,2024,57(3):70-79,97.LI Zhu,HUANG Lu,HAN Fei,et al.Preparation and comprehensive protective perdormance study of thickened magnolol epoxy resin coatings[J].Materials Protection,2024,57(3):70-79,97.(in Chinese)

    • [13] ZHANG Q N,SONG M Z,XU Y Y,et al.Bio-based polyesters:recent progress and future prospects[J].Progress in Polymer Science,2021,120:152-155.

    • [14] AN X H,CAO Y Q,LIU Q,et al.Graphitic carbon/carbon nitride hybrid as metal-free photocatalyst for enhancing hydrogen evolution[J].Applied Catalysis A:General,2017,546:30-35.

    • [15] 陈志宇,郭小平,水晓雪,等.苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J].中国表面工程,2022,35(2):24-34.CHEN Zhiyu,GUO Xiaoping,SHUI Xiaoxue,et al.Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J].China Surface Engineering,2022,35(2):24-34.(in Chinese)

    • [16] LIANG X,FAN J M,LIANG D,et al.Surface hydroxyl groups functionalized graphite carbon nitride for high efficient removal of diquat dibromide from water[J].Journal of Colloid and Interface Science,2021,582:70-80.

    • [17] GUO F,LI L L,SHI Y X,et al.Achieving superior anticorrosion and antibiofouling performance of polyaniline/graphitic carbon nitride composite coating[J].Progress in Organic Coatings,2023,179:107512.

    • [18] XIA Y Q,TONG L F,FENG X F,et al.Effects of polydopamine functionalized graphitic carbon nitride-cerium oxide nanofiller on the corrosion resistance of epoxy coating[J].Progress in Organic Coatings,2024,187:108111.

    • [19] LV Y Q,ZHAO W J,QIANG Y J,et al.Constructing the interface of g-C3N4/epoxy composites using carbon quantum dots to achieve self-repairing,early corrosion monitoring and superior anticorrosion performance[J].Corrosion Science,2023,225:111601.

    • [20] YU C,ZHANG M,XU F,et al.A multiple synergistic composite coating with ultrahigh anti-corrosion performance under harsh oxygen environment[J].Corrosion Science,2022,208:110696.

    • [21] QIU S H,CHEN C,CUI M J,et al.Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber[J].Applied Surface Science,2017,407:213-222.

    • [22] 陆杨,上官莉,张慧,等.碳自掺杂石墨相氮化碳纳米片的制备及其在可见光照射下的光解水产氢性能[J].无机化学学报,2021,37(4):668-674.LU Yang,SHANGGUAN Li,ZHANG Hui,et al.Preparation of carbon self-doping graphic carbon nitride nanosheets for photocataytic H2 evolution performance under visible-light lrrdiation[J].Journal of Inorganic Chemistry,2021,37(4):668-674.

    • [23] BHANDARI H,CHOUDHARY V,DHAWAN S K.Influence of self-doped poly(aniline-co-4-amino-3-hydroxy-naphthalene-1-sulfonic acid)on corrosion inhibition behaviour of iron in acidic medium[J].Synthetic Metals,2011,161(9-10):753-762.

    • [24] JUN Y S,HONG W H,ANTONIETTI M,et al.Mesoporous,2D hexagonal carbon nitride and titanium nitride/carbon composites[J].Advanced Materials,2009,21(42):4270-4274.

    • [25] KARBOWNIK I,RAC-RUMIJOWSKA O,FIEDOTTOBOLA M,et al.The preparation and characterization of polyacrylonitrile-polyaniline(PAN/PANI)fibers[J].Materials,2019,12(4):245-248.

    • [26] HAO Y S,SANI L A,GE T J,et al.Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel[J].Applied Surface Science,2017,419:826-837.

    • [27] KUBARKOV A V,TURKINA P I,SHEPELEVA A S,et al.Interpolyelectrolyte complexes of polyaniline and sulfonated poly(phenylene oxide)[J].Polymer Science,Series B,2020,61(6):691-697.

    • [28] CUI J G,QI D W,WANG X.Research on the techniques of ultrasound-assisted liquid-phase peeling,thermal oxidation peeling and acid-base chemical peeling for ultra-thin graphite carbon nitride nanosheets[J].Ultrasonics Sonochemistry,2018,48:181-187.

    • [29] PASELA B R,CASTILLO A P,SIMON R,et al.Synthesis and characterization of acetic acid-doped polyaniline and polyaniline-chitosan composite[J].Biomimetics,2019,4(1):145-148.

    • [30] MIRMOHSENI A,AZIZI M,DORRAJI M S S.Cationic graphene oxide nanosheets intercalated with polyaniline nanofibers:a promising candidate for simultaneous anticorrosion,antistatic,and antibacterial applications[J].Progress in Organic Coatings,2020,139:105419.

    • [31] KOZLOV G V,DOLBIN I V.The structural aspects of frictional wear of nanocomposites on the base of polyetherketone[J].Journal of Friction and Wear,2022,43(4):273-276.

    • [32] ZHOU Y Q,MAHMOOD S,ENGELBERG D L.A novel high throughput electrochemistry corrosion test method:bipolar electrochemistry[J].Current Opinion in Electrochemistry,2023,39:101263.

    • [33] XU L C,RUAN X,FANG T,et al.3D morphology reconstruction-based modelling and mechanical degradation study of corroded low alloy steel specimens[J].Construction and Building Materials,2023,400:132649.

    • [34] ZHOU Y Q,MAHMOOD S,ENGELBERG D L.Application of bipolar electrochemistry to assess the corrosion resistance of solution annealed lean duplex stainless steel[J].Materials & Design,2023,232:112145.

    • [35] WU K,RAN P L,WANG S F,et al.Confining bulk molecular O2 by inhibiting charge transfer on surface anions toward stable redox electrochemistry in layered oxide cathodes[J].Nano Energy,2023,113:108602.

    • [36] HASSANI S,BIELAWSKI M,BERES W,et al.Impact stress absorption and load spreading in multi-layered erosion-resistant coatings[J].Wear,2010,268(5-6):770-776.

    • [37] TANDEL R R,PATEL R N,JAIN S V.Correlation development of erosive wear and silt erosion failure mechanisms for pump as turbine[J].Engineering Failure Analysis,2023,153:107610.

    • [38] YANG P P,YUE W H,CHEN A H,et al.Influence of SiO2 and Al2O3 particles on erosion wear of aero-compressor blades[J].Wear,2023,530:204992.

    • [39] PADHAN M,MARATHE U,BIJWE J.A comparative assessment of nano and microparticles of carbides for performance augmentation of UHMWPE in abrasive and erosive wear modes[J].Wear,2023,514:204568.

    • [40] MELENTIEV R.Physical theories of solid particle erosion and abrasive jet wear[J].Journal of Manufacturing Processes,2023,106:422-452.

  • 参考文献

    • [1] QING Y Z,WEN J Z,YING H W.Constructing bi-functional Ce-MOF on carbon fiber endowing epoxy coating with excellent anti-corrosion and erosion wear resistance[J].Carbon,2023,214:118374.

    • [2] 杨海霞,王梓霖,孙付宇,等.交联环氧树脂拉伸性能的分子动力学模拟[J].工程塑料应用,2022,50(12):113-117.YANG Haixia,WANG Zilin,SUN Fuyu,et al.Molecular dynamics simulation of crosslinked epoxy resin tensile properties[J].Engineering Plastics Applications,2022,50(12):113-117.(in Chinese)

    • [3] CHU X C,WANG G Q,DING Q J,et al.Molecular dynamics simulation of epoxy resin modified by polyimide grafted graphene oxide[J].Polymer Engineering & Science,2023,63(11):257-261.

    • [4] YAN Z G,WANG Z P,LIU Y Y,et al.Research on properties of silicone-modified epoxy resin and 3D printing materials[J].ACS Omega,2023,8(25):23044-23050.

    • [5] FERDOSIAN F,ZHANG Y S,YUAN Z S,et al.Curing kinetics and mechanical properties of bio-based epoxy composites comprising lignin-based epoxy resins[J].European Polymer Journal,2016,82:153-165.

    • [6] ZHAO M L,LU X Y,ZONG H,et al.Itaconic acid production in microorganisms[J].Biotechnology Letters,2018,40(3):455-464.

    • [7] JIA P Y,SHI Y X,SONG F,et al.Bio-based and degradable vitrimer-graphene/graphene oxide composites with self-healing ability stimulated by heat,electricity and microwave as temperature and fire warning sensors[J].Composites Science and Technology,2022,227:109573.

    • [8] CAO Q,WENG Z H,QI Y,et al.Achieving higher performances without an external curing agent in natural magnolol-based epoxy resin[J].Chinese Chemical Letters,2022,33(4):2195-2199.

    • [9] 张跃宏,翟梦姣.双键化香草醇的制备及对双键功能化大豆油树脂性能的影响[J].高分子材料科学与工程,2021,37(4):13-18.ZHANG Yuehong,ZHAI Mengjiao.Preparation of double-bond functionalized vanillyl alcohol and its effect on properties of maleinated acrylated epoxidized soybean oil resin[J].Polymer Materials Science and Engineering,2021,37(4):13-18.(in Chinese)

    • [10] BENYAHYA S,AOUF C,CAILLOL S,et al.Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins[J].Industrial Crops and Products,2014,53:296-307.

    • [11] CHEN C H,TUNG S H,JENG R J,et al.A facile strategy to achieve fully bio-based epoxy ther mosets from eugenol[J].Green Chemistry,2019,21(16):4475-4488.

    • [12] 李柱,黄橹,韩飞,等.厚朴酚环氧树脂涂层的制备及综合防护性能研究[J].材料保护,2024,57(3):70-79,97.LI Zhu,HUANG Lu,HAN Fei,et al.Preparation and comprehensive protective perdormance study of thickened magnolol epoxy resin coatings[J].Materials Protection,2024,57(3):70-79,97.(in Chinese)

    • [13] ZHANG Q N,SONG M Z,XU Y Y,et al.Bio-based polyesters:recent progress and future prospects[J].Progress in Polymer Science,2021,120:152-155.

    • [14] AN X H,CAO Y Q,LIU Q,et al.Graphitic carbon/carbon nitride hybrid as metal-free photocatalyst for enhancing hydrogen evolution[J].Applied Catalysis A:General,2017,546:30-35.

    • [15] 陈志宇,郭小平,水晓雪,等.苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J].中国表面工程,2022,35(2):24-34.CHEN Zhiyu,GUO Xiaoping,SHUI Xiaoxue,et al.Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J].China Surface Engineering,2022,35(2):24-34.(in Chinese)

    • [16] LIANG X,FAN J M,LIANG D,et al.Surface hydroxyl groups functionalized graphite carbon nitride for high efficient removal of diquat dibromide from water[J].Journal of Colloid and Interface Science,2021,582:70-80.

    • [17] GUO F,LI L L,SHI Y X,et al.Achieving superior anticorrosion and antibiofouling performance of polyaniline/graphitic carbon nitride composite coating[J].Progress in Organic Coatings,2023,179:107512.

    • [18] XIA Y Q,TONG L F,FENG X F,et al.Effects of polydopamine functionalized graphitic carbon nitride-cerium oxide nanofiller on the corrosion resistance of epoxy coating[J].Progress in Organic Coatings,2024,187:108111.

    • [19] LV Y Q,ZHAO W J,QIANG Y J,et al.Constructing the interface of g-C3N4/epoxy composites using carbon quantum dots to achieve self-repairing,early corrosion monitoring and superior anticorrosion performance[J].Corrosion Science,2023,225:111601.

    • [20] YU C,ZHANG M,XU F,et al.A multiple synergistic composite coating with ultrahigh anti-corrosion performance under harsh oxygen environment[J].Corrosion Science,2022,208:110696.

    • [21] QIU S H,CHEN C,CUI M J,et al.Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber[J].Applied Surface Science,2017,407:213-222.

    • [22] 陆杨,上官莉,张慧,等.碳自掺杂石墨相氮化碳纳米片的制备及其在可见光照射下的光解水产氢性能[J].无机化学学报,2021,37(4):668-674.LU Yang,SHANGGUAN Li,ZHANG Hui,et al.Preparation of carbon self-doping graphic carbon nitride nanosheets for photocataytic H2 evolution performance under visible-light lrrdiation[J].Journal of Inorganic Chemistry,2021,37(4):668-674.

    • [23] BHANDARI H,CHOUDHARY V,DHAWAN S K.Influence of self-doped poly(aniline-co-4-amino-3-hydroxy-naphthalene-1-sulfonic acid)on corrosion inhibition behaviour of iron in acidic medium[J].Synthetic Metals,2011,161(9-10):753-762.

    • [24] JUN Y S,HONG W H,ANTONIETTI M,et al.Mesoporous,2D hexagonal carbon nitride and titanium nitride/carbon composites[J].Advanced Materials,2009,21(42):4270-4274.

    • [25] KARBOWNIK I,RAC-RUMIJOWSKA O,FIEDOTTOBOLA M,et al.The preparation and characterization of polyacrylonitrile-polyaniline(PAN/PANI)fibers[J].Materials,2019,12(4):245-248.

    • [26] HAO Y S,SANI L A,GE T J,et al.Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel[J].Applied Surface Science,2017,419:826-837.

    • [27] KUBARKOV A V,TURKINA P I,SHEPELEVA A S,et al.Interpolyelectrolyte complexes of polyaniline and sulfonated poly(phenylene oxide)[J].Polymer Science,Series B,2020,61(6):691-697.

    • [28] CUI J G,QI D W,WANG X.Research on the techniques of ultrasound-assisted liquid-phase peeling,thermal oxidation peeling and acid-base chemical peeling for ultra-thin graphite carbon nitride nanosheets[J].Ultrasonics Sonochemistry,2018,48:181-187.

    • [29] PASELA B R,CASTILLO A P,SIMON R,et al.Synthesis and characterization of acetic acid-doped polyaniline and polyaniline-chitosan composite[J].Biomimetics,2019,4(1):145-148.

    • [30] MIRMOHSENI A,AZIZI M,DORRAJI M S S.Cationic graphene oxide nanosheets intercalated with polyaniline nanofibers:a promising candidate for simultaneous anticorrosion,antistatic,and antibacterial applications[J].Progress in Organic Coatings,2020,139:105419.

    • [31] KOZLOV G V,DOLBIN I V.The structural aspects of frictional wear of nanocomposites on the base of polyetherketone[J].Journal of Friction and Wear,2022,43(4):273-276.

    • [32] ZHOU Y Q,MAHMOOD S,ENGELBERG D L.A novel high throughput electrochemistry corrosion test method:bipolar electrochemistry[J].Current Opinion in Electrochemistry,2023,39:101263.

    • [33] XU L C,RUAN X,FANG T,et al.3D morphology reconstruction-based modelling and mechanical degradation study of corroded low alloy steel specimens[J].Construction and Building Materials,2023,400:132649.

    • [34] ZHOU Y Q,MAHMOOD S,ENGELBERG D L.Application of bipolar electrochemistry to assess the corrosion resistance of solution annealed lean duplex stainless steel[J].Materials & Design,2023,232:112145.

    • [35] WU K,RAN P L,WANG S F,et al.Confining bulk molecular O2 by inhibiting charge transfer on surface anions toward stable redox electrochemistry in layered oxide cathodes[J].Nano Energy,2023,113:108602.

    • [36] HASSANI S,BIELAWSKI M,BERES W,et al.Impact stress absorption and load spreading in multi-layered erosion-resistant coatings[J].Wear,2010,268(5-6):770-776.

    • [37] TANDEL R R,PATEL R N,JAIN S V.Correlation development of erosive wear and silt erosion failure mechanisms for pump as turbine[J].Engineering Failure Analysis,2023,153:107610.

    • [38] YANG P P,YUE W H,CHEN A H,et al.Influence of SiO2 and Al2O3 particles on erosion wear of aero-compressor blades[J].Wear,2023,530:204992.

    • [39] PADHAN M,MARATHE U,BIJWE J.A comparative assessment of nano and microparticles of carbides for performance augmentation of UHMWPE in abrasive and erosive wear modes[J].Wear,2023,514:204568.

    • [40] MELENTIEV R.Physical theories of solid particle erosion and abrasive jet wear[J].Journal of Manufacturing Processes,2023,106:422-452.

  • 手机扫一扫看