-
0 前言
-
2004 年,YEH 等[1]和 CANTOR 等[2]提出了一种由等摩尔比或近摩尔比的多种主要元素组成的高熵合金(High-entropy alloys,HEAs),也称多主元合金(Multi-principle-element alloys,MPEAs)。与传统合金以一种或两种元素为溶剂的设计思想不同,高熵合金是“质剂不分”的高浓度固溶体,具有优异的力学性能、耐腐蚀性、抗氧化性以及抗辐照等特点[3-5]。一般而言,单相面心立方(Face-centered cubic,FCC)结构高熵合金具有高塑性但强度不足,而单相体心立方(Body-centered cubic,BCC)结构的高熵合金则具有高强度但塑性不足,因此单相高熵合金很难平衡强度与塑性[6-8]。
-
2014 年,LU 等[9]开发了 AlCoCrFeNi2.1共晶高熵合金,铸态组织由软质相(FCC)和硬质相(B2,有序 BCC 结构)交替片层构成,其抗拉强度超过 1 GPa,拉伸塑性高达 17%,实现了强度和塑性的优良匹配。SONG 等[10]研究了 AlCoCrFeNi2.1 合金在 3.5wt.% NaCl 溶液中的电化学腐蚀行为,发现由于共晶两相分离,FCC / B2 两相成分差异较大。其中, FCC 相富集 Cr 元素,B2 相富集 Al 元素,而富 Cr 钝化膜比富 Al 钝化膜更稳定,因此 B2 相总是优先被点蚀。DUAN 等[11]分别研究了固溶态和时效态 AlCoCrFeNi2.1合金在3.5wt.% NaCl溶液中的电化学腐蚀行为,发现时效态 B2 相中析出的 BCC 纳米相富含 Cr 元素,形成富 Cr 钝化膜,可以提高 B2 相富 Al 钝化膜的稳定性,抑制了 B2 相点蚀的加深和扩展。 SHOCKNER 等 [12] 研究了 Cr 元素对 AlCoCrxFeNi 合金组织结构的影响。该合金系的微观组织为 BCC 纳米颗粒析出相弥散分布在 B2 基体,其中 BCC 富含 Fe 和 Cr 元素,B2 富含 Al 和 Ni 元素,Co 元素均匀分布。研究发现随着 Cr 元素含量的增加,BCC 纳米析出相的体积分数增加,同时 B2 相体积分数减少。综上,在 Al-Co-Cr-Fe-Ni 系高熵合金体系中,Cr 元素倾向分布于 FCC 相和 BCC 相。因此,增加 Cr 元素可以促进富 Cr 的 BCC 相生成,从而提高合金钝化膜在 NaCl 溶液的稳定性,提升其耐腐蚀性能[13-14]。
-
本文通过相图计算法(Calculation of phase diagrams,CALPHAD)优化 AlCoCrFeNi2.1共晶高熵合金的成分,通过真空电弧熔炼炉制备铸态块体合金,研究不同 Cr / Fe 元素比对材料微观组织演变和硬度的影响,并采用动电位极化、电化学交流阻抗等方法研究其在室温 3.5wt.% NaCl 溶液中的耐腐蚀性能,揭示其腐蚀机理,为研发高硬度和耐腐蚀的高熵合金提供了一定的理论指导。
-
1 试验准备
-
1.1 合金设计
-
CALPHAD(Calculation of phase diagrams)相图计算法已广泛应用于多组元合金系统的研发。基于 CALPHAD 相图计算法,使用 PandatTM软件进行平衡相图模拟计算,设计了 AlCoCr1.3Fe0.7Ni2.1 和AlCoCr1.5Fe0.5Ni2.1 两种新合金,采用的热力学数据库为 PanRHEA2023。
-
1.2 样品制备
-
采用质量纯度不低于 99.9%的纯金属元素 Al、 Co、 Cr、 Fe 和 Ni,按照 AlCoCrFeNi2.1、 AlCoCr1.3Fe0.7Ni2.1、AlCoCr1.5Fe0.5Ni2.1 摩尔比进行配料。在氩气保护气氛下,通过非自耗真空电弧熔炼炉(VAF-400)制备。
-
熔炼时,先用电弧熔化高纯度 Ti 铸锭以吸收炉内多余的氧气,再进行合金的熔化。为保证合金样品熔炼均匀,将合金锭翻转五次熔炼。最后在水冷铜坩埚中冷却,得到质量 50 g、直径约 30 mm 的圆饼状铸锭。
-
1.3 结构表征及力学性能测试
-
采取电火花线切割方法将铸态合金切割成 10 mm×10 mm×2 mm 的方形试样,依次用 220#、 400#、800#、1000#、1500#、2000#砂纸打磨,再分别用 3.5 和 1.5 μm 金刚石金相抛光剂进行抛光,最后在无水乙醇中超声清洗。微观组织形貌观察采用棉签蘸取王水(HCl∶HNO3=3∶1)侵蚀试样表面 5~6 s,快速用自来水冲洗,然后吹干被侵蚀的表面待测。用于电化学腐蚀的样品与铜导线固定,采用冷镶嵌方法将样品嵌入软胶模具中封装,固化后取出,测试溶液为模拟海水环境的 3.5wt.% NaCl 溶液。
-
采用 HV-1000 型维氏显微硬度计测量合金的硬度变化。试验中所采取的加载载荷为 1 kg,加载时间 10 s,压头为正四棱锥金刚石。在合金表面每隔一定距离,测量硬度值,每一试样测试 10 个点,去掉最大值和最小值,求取平均值作为相应合金表面的硬度值,以减小误差。
-
采用电化学工作站(Gamry Reference600+)测试合金的电化学性能。试样作为工作电极,Pt 电极作为辅助电极,饱和甘汞电极作为参比电极,试样表面在溶液中的暴露面积为 1 cm2。测试动电位极化曲线前,先测开路电位,测试时间为 7 200 s,待开路电位曲线稳定后进行电化学测试。动电位极化曲线测试扫描速率为 1 mV / s,起始电位为-0.2 V(相对于开路电位),使用 Tafel 外推法对极化测试数据进行拟合。电化学阻抗谱测试频率为 105~10−2 Hz,振动电位为 5 mV,使用 ZsimpWin 软件对测试数据进行拟合分析。电化学测试均在室温下进行,在相同的参数条件下至少重复三次,保证数据的可靠性。
-
采用 Cu Kα 波辐射的 X 射线衍射仪(XRD,D8ADVANCE DAVINCI)对合金试样的晶体结构进行检测,采用的工作电压为 40 kV,工作电流为 40 mA,扫描范围为 10°~90°(2θ),扫描速度为 2(°)/ min。用配备能量分散谱仪(EDS)的场发射扫描电子显微镜(SEM,FEI Quanta FEG 250)对合金试样的表面形貌微观组织进行观察和元素分析。通过 Digital Micrograph 图像处理软件对电子显微镜扫描图进行分析,统计各相的体积分数。
-
2 结果与讨论
-
2.1 合金设计与微观组织结构
-
2.1.1 平衡相图模拟计算
-
图1 是 AlCoCr1+xFe1−xNi2.1(x=0.3、0.5)高熵合金的模拟平衡相图。由图1a 可知, AlCoCr1.3Fe0.7Ni2.1合金的液相线温度为 1 346℃,固相线温度为 1 333℃,合金的初生相为 FCC 相,在 1 337℃析出 B2 相。在固相线温度合金中,FCC 相的摩尔分数为 78.7%,B2 相的摩尔分数为 21.3%。随着温度降低,FCC 相的摩尔分数降低,B2 相的摩尔分数升高。特别地,在温度为 956℃时,BCC 相开始析出,在温度为 896℃时达到最大摩尔分数 2.9%,随温度降低发生固态相变,BCC 相转变为 σ 相。由图1b 可知,AlCoCr1.5Fe0.5Ni2.1合金的液相线温度为 1 340℃,固相线温度为 1 330℃,合金的初生相为 FCC 相,在 1 334℃析出 B2 相。在固相线温度合金中,FCC 相的摩尔分数为 78.4%,B2 相的摩尔分数为 21.6%。随着温度降低,FCC 相的摩尔分数降低,B2 相的摩尔分数升高。特别地,在温度为 1 092℃时,BCC 相开始析出,在温度为 886℃时达到最大摩尔分数 8.2%,随温度降低发生固态相变,BCC 相转变为 σ 相。
-
AlCoCr1.3Fe0.7Ni2.1 和 AlCoCr1.5Fe0.5Ni2.1 合金的液相线和固相线温度差分别为 13 和 10℃,融化温度区间狭小,表明两种合金皆具有良好的铸造性能。随着 Cr / Fe 元素比提高,固相线温度以及初生 FCC 相和 BCC 相摩尔分数基本不变,而 BCC 相的稳定性从 956℃大幅提升至 1 092℃,并且最大体积分数由 2.9 %增加至 8.2 %。可见,Cr 元素的增加促进了合金中 BCC 相的析出。需要注意的是,试验中铸态合金在水冷铜模中快速冷却,处于非平衡凝固,保留了合金在高温下的组织状态。同时,CALPHAD 模拟计算结果的准确性与热力学数据库紧密相关。大量研究表明[15-17],相图预测结果的准确性随着温度降低而逐渐降低,特别是较低温度中亚稳相的预测比较困难。因此,推测 AlCoCr1.3Fe0.7Ni2.1 和 AlCoCr1.5Fe0.5Ni2.1 合金的相结构皆为 FCC / B2 / BCC 三相结构。
-
图1 AlCoCr1+xFe1−xNi2.1(x = 0.3、0.5)高熵合金相摩尔分数与温度的平衡相图模拟计算
-
Fig.1 Calculated equilibrium mole fraction versus temperature for AlCoCr1+xFe1−xNi2.1 (x = 0.3, 0.5) HEAs
-
2.1.2 相结构
-
图2 为铸态 AlCoCr1+xFe1−xNi2.1(x = 0、0.3、0.5) 高熵合金的 XRD 图。由图2 可知,三种合金主要由 FCC 相和 B2 相构成。已有研究表明, AlCoCrFeNi2.1 共晶高熵合金 B2 相片层中弥散分布有富 Cr 的 BCC 纳米相,由于 BCC 纳米相含量极低 (可忽略不计),因此在 XRD 图谱中没有明显衍射峰[18]。根据衍射消光条件,B2 / BCC 两相会在(110)和(200)面同时出现衍射峰,且衍射角越大,分峰越明显。AlCoCr1.3Fe0.7Ni2.1 和 AlCoCr1.5Fe0.5Ni2.1 合金的(200)衍射峰的峰形显然不对称。使用 Psuedo-Voigt 函数对两种合金的(200)衍射峰进行分峰处理,拟合结果如图2b、2c 所示。表1 为通过布拉格方程[19]计算得到的晶格常数:
-
式中,a 为晶格常数(Å),λ 为 X 射线的固有波长, (hkl)为发生衍射平面的米勒指数,θ为入射波与衍射平面的夹角(°)。
-
图2 铸态 AlCoCr1+xFe1−xNi2.1 高熵合金的 XRD 图谱和(200)衍射峰的拟合
-
Fig.2 XRD patterns and the (200) peaks fitting of the cast AlCoCr1+xFe1−xNi2.1 HEAs
-
通过分峰处理,确定 AlCoCr1.3Fe0.7Ni2.1 合金 B2 相和BCC 相(200)衍射峰对应的2θ分别为64.81°和 65.00°,AlCoCr1.5Fe0.5Ni2.1合金 B2 相和 BCC 相(200)衍射峰对应的 2θ分别为 64.66°和 64.87°。各相的晶格常数如表1 所示。共格两相的晶格错配度[20] (δa)可用以下公式计算:
-
式中,aB2 为 B2 有序相的晶格常数,aBCC 为 BCC 相的晶格常数。
-
将晶格常数代入式(2),求得 AlCoCr1.3Fe0.7Ni2.1 合金和 AlCoCr1.5Fe0.5Ni2.1合金中 B2 相和 BCC 相的晶格错配度为 0.28 %和 0.31 %。
-
2.1.3 微观组织
-
图3 为铸态 AlCoCr1+xFe1−xNi2.1(x = 0、0.3、0.5) 高熵合金的微观形貌图。可以发现 AlCoCrFeNi2.1 共晶高熵合金存在特有的均匀片层状共晶组织,随着 Cr / Fe 元素比提高,合金的片层结构逐渐减少,树枝晶逐渐增多。通过放大组织,如图3a2、3b2 和 3c2 所示,在区域 B 的纳米颗粒明显增多。图4、5 分别为 AlCoCr1.3Fe0.7Ni2.1和 AlCoCr1.5Fe0.5Ni2.1 合金的电子背散射图像和各合金元素分布的能谱图。从图中可以看出,Cr 元素在区域 A 富集,Al 元素在区域 B 富集。随着 Cr / Fe 元素比提高,Cr 元素在 A 和 B 区域的分布差异逐渐减小,与纳米颗粒体积分数变化呈正相关,说明 B 区域中的纳米颗粒富集 Cr 元素。因此,A 区域为 FCC 相,B 区域由 B2 相和富 Cr 的 BCC 纳米相组成。
-
图3 铸态 AlCoCr1+xFe1−xNi2.1 高熵合金微观组织 SEM 形貌
-
Fig.3 SEM morphology of the cast AlCoCr1+xFe1−xNi2.1 HEAs
-
图4 铸态 AlCoCr1.3Fe0.7Ni2.1合金的元素面分布
-
Fig.4 Elemental mapping of the cast AlCoCr1.3Fe0.7Ni2.1 alloy
-
图5 铸态 AlCoCr1.5Fe0.5Ni2.1合金的元素面分布
-
Fig.5 Elemental mapping of the cast AlCoCr1.5Fe0.5Ni2.1 alloy
-
通过面积法统计分析 AlCoCrFeNi2.1、 AlCoCr1.3Fe0.7Ni2.1、AlCoCr1.5Fe0.5Ni2.1 三种高熵合金的 FCC 相体积分数分别为 72.8%±1.3%、68.3%± 3.5%和 57.4%±1.9%,B2 相体积分数分别为 27.2%± 1.4%、23.6%±2.7%和 22.8%±2.1%,BCC 相体积分数分别为 0%、8.1%±3.5%和 19.8%±1.9%,如图6a 所示。通过扫描电镜的能谱仪对合金两相元素进行半定量分析,测试结果如表2 所示。一般来说,用分配系数 K 来表征元素的偏析程度[21],即:
-
式中,C1 为元素在区域 A 的原子分数,C2 为元素在区域 B 的原子分数。
-
图6 AlCoCr1+xFe1−xNi2.1 高熵合金的各相体积分数变化和各元素分配系数变化
-
Fig.6 Variation of volume fraction of phases and variation of distribution coefficients (K) of elements in AlCoCr1+xFe1−xNi2.1 HEAs
-
当 K>1 时,表明该元素倾向于在区域 A(FCC 相)富集;当 K<1 时,表明该元素倾向于在区域 B (B2 / BCC 相)富集。AlCoCr1+xFe1−xNi2.1(x = 0、 0.3、0.5)合金中各元素的分配系数如图6b 所示。通过分析可知,Al 元素在 B 区域(B2 / BCC 相)明显富集,Co、Cr 和 Fe 元素在 A 区域(FCC 相) 富集,Ni 元素在各相分布较均匀。随着 Cr / Fe 元素比的提高,各元素的分配系数由分散逐渐趋向于 1,特别地,Cr 元素的分配系数从 2.2 降低至 1.5。
-
2.2 合金性能
-
2.2.1 维氏显微硬度
-
随着 Cr / Fe 元素比的提高,AlCoCr1+xFe1−xNi2.1 合金的维氏显微硬度逐渐升高,如图7a 所示。与AlCoCrFeNi2.1 共晶高熵合金相比, AlCoCr1.3Fe0.7Ni2.1 合金的平均硬度值提高了 2.5%, AlCoCr1.5Fe0.5Ni2.1合金的平均硬度值提高了 8.6%。硬度变化往往与微观组织变化紧密相关。 AlCoCr1+xFe1−xNi2.1合金由FCC、B2和BCC三相组成,其中 B2 相为有序金属间化合物,键能具有方向性,相比于 FCC 和 BCC 无序固溶体相的无方向金属键,结合力更强,因此发生塑性变形所需的临界分切应力更大,硬度更高[22]。与 FCC 结构相比,BCC 结构相的可动滑移系少,塑性变形难,其硬度高于 FCC 相[23-24]。因此,三相的硬度大小为:B2>BCC>FCC。图7b 为 AlCoCr1+xFe1−xNi2.1合金中 B2 / BCC 两相的体积分数变化图。可见,随着 Cr / Fe 元素比的提高,虽然 B2 相体积分数略有降低,但是 BCC 相的体积分数得到大幅提升,导致合金平均硬度升高。
-
图7 AlCoCr1+xFe1−xNi2.1高熵合金维氏显微硬度变化和 B2 / BCC 相体积分数变化
-
Fig.7 Changes in Vickers microhardness and volume fraction variation of B2 / BCC phases in AlCoCr1+xFe1−xNi2.1 HEAs
-
2.2.2 电化学腐蚀性能
-
图8a 是铸态 AlCoCrFeNi2.1、AlCoCr1.3Fe0.7Ni2.1 和 AlCoCr1.5Fe0.5Ni2.1 三种高熵合金在 3.5wt.% NaCl 溶液中的动电位极化曲线,图8b 是动电位极化曲线的局部区域放大图,可以看出三种曲线均有活性溶解区、钝化区、过钝化区。短暂的活性到钝态转变表明三种合金在腐蚀电位下发生了自发钝化[25-27]。表3列出了通过Tafel外推法拟合出的自腐蚀电流密度和自腐蚀电位。从腐蚀电位来看,Cr / Fe 元素比提高后的高熵合金腐蚀电位相比于 AlCoCrFeNi2.1 的腐蚀电位差别不大。从腐蚀电流来看,提高 Cr / Fe 元素比后的高熵合金腐蚀电流密度较小。从现有的研究来看,腐蚀电位属于热力学宏观参数,通常表示腐蚀的倾向,而腐蚀电流密度属于动力学的微观参数,表示腐蚀的快慢[28]。这表明 Cr / Fe 元素比的增加使高熵合金腐蚀速率变慢,耐腐蚀性优于 AlCoCrFeNi2.1。
-
图8 AlCoCr1+xFe1−xNi2.1合金在室温 3.5wt.% NaCl 溶液中的动电位极化曲线和−0.4~−0.2 V 区间局部放大曲线图
-
Fig.8 Potentiodynamic polarization curves and local amplification plots in the −0.4-−0.2 V interval for the AlCoCr1+xFe1−xNi2.1 HEAs in 3.5wt.% NaCl solution at room temperature
-
Where Icorr is corrosion current density, Ecorr is corrosion voltage.
-
图9 为 AlCoCr1+xFe1−xNi2.1(x=0、0.3、0.5) 高熵合金在 3.5wt.% NaCl 溶液中的电化学阻抗谱图。由图9a Nyquist 图可看出,三条曲线受 Cr / Fe 元素比的变化,表现出不同的圆弧半径。随着 Cr 元素含量升高、Fe 元素含量降低,高频区的容抗弧半径越来越大,这表明合金的耐腐蚀性不断提高[29]。由图9b Bode 图可看出,随着 Cr / Fe 元素比含量的升高,在低频区域的∣Z∣值变大。低频区阻抗模量越大,说明对应的阻抗值也大,对阻碍电荷转移的作用变强,即耐腐蚀性能变好[30]。从 Bode 相频图中可以看出,三种合金的相位角在中低频区域较稳定,相位角接近 80°。在 10−2 Hz 时, AlCoCr1.3Fe0.7Ni2.1 和 AlCoCr1.5Fe0.5Ni2.1 的相位角下降幅度较小,说明 AlCoCr1.3Fe0.7Ni2.1 和 AlCoCr1.5Fe0.5Ni2.1的耐腐蚀性能优于 AlCoCFNi2.1。
-
图9 AlCoCr1+xFe1−xNi2.1 高熵合金的阻抗谱
-
Fig.9 Impedance spectrum of AlCoCr1+xFe1−xNi2.1 HEAs
-
阻抗谱图等效电路的拟合是通过 ZsimpWin 软件实现,计算公式如式(4)所示:
-
式中,ZCPE 是常相位角元件 CPE 的阻抗(Ω·cm 2); Y0是电容参数;j 是虚数,j 2 =−1;是角频率(rad / s),=2πf;f 是频率(Hz);n 反映双电层电容或膜电容与理想电容的偏差,当 n=1 时,CPE 为理想电容元件[31]。
-
等效电路拟合的参数结果如表4 所示,Rs是溶液电阻,R1是钝化膜孔隙中的电阻,Q1 表示钝化膜的电容,R2 是孔隙中溶液 / 薄膜界面上的电荷转移电阻,Q2 表示双层电容。R2 小表示合金与溶液之间的离子传输速度快,电化学反应易发生;Q2 大则表示钝化膜厚度小。Cr / Fe 元素比的增加使 R2增大, Q2 减小,其中 AlCoCr1.5Fe0.5Ni2.1 具有较大的 R2。因此可以得出结论,AlCoCr1.5Fe0.5Ni2.1耐腐蚀性较好,这与动电位极化试验的结果一致。
-
Where Rs is solution resistance, Q1 is passivated film capacitor, Y is capacitance parameters, n is related to the deviation of ideal capacitive behavior, R1 is passivation film resistance, Q2 is electric double-layer capacitor, R2 is charge transfer resistance.
-
3 结论
-
研究了不同 Cr 和 Fe 元素含量对 AlCoCrFeNi2.1 共晶高熵合金微观组织、硬度和 NaCl 溶液中电化学腐蚀性能的影响。研究证明,通过提高 Cr / Fe 元素比可以降低 Cr 元素在各相的偏析程度,并在贫 Cr 的 B2 相中析出大量富 Cr 的纳米颗粒,从而提升合金的耐腐蚀性能。主要结论如下:
-
(1)随着 Cr / Fe 元素比的升高,合金由规则片层共晶组织逐渐转变为偏共晶组织,树枝晶 B2 / BCC 双相组织逐渐增多,其中 B2 相片层和树枝晶中析出大量富 Cr 的纳米颗粒。
-
(2)随着 Cr / Fe 元素比的升高,各元素在 FCC 相和 B2 / BCC 相的偏析程度降低。特别地,Cr 元素的分配系数由 2.1 降低至 1.5。
-
(3)随着 Cr / Fe 元素比的升高,合金硬度逐渐升高。与 AlCoCrFeNi2.1 共晶高熵合金相比, AlCoCr1.5Fe0.5Ni2.1合金中BCC纳米相体积分数提高了约 19.8%,使得平均硬度值提高了 8.6%。
-
(4)在 3.5wt.% NaCl 溶液电化学腐蚀过程中,富 Cr 的 BCC 纳米相的弥散析出促进了 B2 / BCC 相区域富 Cr 钝化膜生成,使得合金腐蚀性能得到提升。与 AlCoCrFeNi2.1 共晶高熵合金相比, AlCoCr1.5Fe0.5Ni2.1 合金的腐蚀电流密度降低了 35.5%。
-
在下一步研究中,将采用微区扫描电化学、XPS 和透射电子显微镜等对合金表面进行精细表征,从而理清 Cr 元素等在各相的分配引起的腐蚀电位和钝化膜演变的规律,揭示 Cr / Fe 元素比对合金耐腐蚀性能的微观作用机制。
-
参考文献
-
[1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
-
[2] CANTOR B,CHANG I T H,KNIGHT P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering:A,2004,375-377:213-218.
-
[3] 范念青,武芯羽,夏志新,等.CoCrNiAlY 涂层制备工艺对组织形态及高温氧化行为的影响[J].中国表面工程,2019,32(1):98-107.FAN Nianqing,WU Xinyu,XIA Zhixin,et al.Effects of processing technique on microstructure and high temperature oxidation behavior of CoCrNiAlY coating[J].China Surface Engineering,2019,32(1):98-107.(in Chinese)
-
[4] 刘径舟,刘洪喜,邸英南,等.碳含量对激光熔覆 CoCrFeMnNiCx 高熵合金涂层摩擦磨损和耐蚀性能的影响[J].中国表面工程,2020,33(6):118-127.LIU Jingzhou,LIU Hongxi,DI Yingnan,et al.Effects of carbon content on friction and wear behavior and corrosion resistance of laser cladding CoCrFeMnNiCx high entropy alloy coatings[J].China Surface Engineering,2020,33(6):118-127.(in Chinese)
-
[5] ZHANG Z,ARMSTRONG D E J,GRANT P S.The effects of irradiation on CrMnFeCoNi high-entropy alloy and its derivatives[J].Progress in Materials Science,2022,123:100807.
-
[6] LI D,LI C,FENG T,et al.High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures[J].Acta Materialia,2017,123:285-294.
-
[7] WANG Y P,LI B S,REN M X,et al.Microstructure and compressive properties of AlCrFeCoNi high entropy alloy[J].Materials Science and Engineering:A,2008,491(1):154-158.
-
[8] MARESCA F,CURTIN W A.Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1 900 K[J].Acta Materialia,2020,182:235-249.
-
[9] LU Y,DONG Y,GUO S,et al.A promising new class of high-temperature alloys:eutectic high-entropy alloys[J].Scientific Reports,2014,4(1):6200.
-
[10] SONG L F,HU W B,LIAO B K,et al.Corrosion behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy in Cl−-containing solution[J].Journal of Alloys and Compounds,2023,938:168609.
-
[11] DUAN X,HAN T,GUAN X,et al.Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates[J].Journal of Materials Science & Technology,2023,136:97-108.
-
[12] SHOCKNER R,EDRY I,PINKAS M,et al.Systematic study of the effect of Cr on the microstructure,phase content and hardness of the AlCrxFeCoNi alloys[J].Journal of Alloys and Compounds,2023,940:168897.
-
[13] WANI I S,BHATTACHARJEE T,SHEIKH S,et al.Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing[J].Materials Science and Engineering:A,2016,675:99-109.
-
[14] YAN X,GUO H,YANG W,et al.Al0.3CrxFeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties[J].Journal of Alloys and Compounds,2021,860:158436.
-
[15] PENTIN I V,SCHON J C,JANSEN M.Ab initio prediction of the low-temperature phase diagrams in the systems CsX-LiX(X=F,Cl,Br,I)[J].Solid State Sciences,2008,10(6):804-813.
-
[16] CHANG Y A,CHEN S,ZHANG F,et al.Phase diagram calculation:past,present and future[J].Progress in Materials Science,2004,49(3):313-345.
-
[17] ZARKEVICH N A,TAN T L,JOHNSON D D.First-principles prediction of phase-segregating alloy phase diagrams and a rapid design estimate of their transition temperatures[J].Physical Review B,2007,75(10):104203.
-
[18] MA Y,JIANG B,LI C,et al.The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys[J].Metals,2017,7(2):57-68.
-
[19] PATIL S,PUJAR R B,DODDANNAVAR B.Synthesis,characterization and study of dielectric properties,AC conductivity,and surface morphology of ferroelectrics Ba1-xSrxTiO3 by ceramic method[J].Archives of Physics Research,2016,7(1):1-14.
-
[20] WANG T,CHEN L Q,LIU Z K.First-principles calculations and phenomenological modeling of lattice misfit in Ni-base superalloys[J].Materials Science and Engineering:A,2006,431(1):196-200.
-
[21] GONG L,CHEN B,DU Z,et al.Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G[J].Journal of Materials Science & Technology,2018,34(3):541-550.
-
[22] 张志彬,张舒研,陈永雄,等.合金组元与含量对激光熔覆高熵合金涂层的影响研究综述[J].中国表面工程,2021,34(5):76-91.ZHANG Zhibin,ZHANG Shuyan,CHEN Yongxiong,et al.Effects of alloy components and contents on high entropy alloy coatings by laser cladding:A review[J].China Surface Engineering,2021,34(5):76-91.(in Chinese)
-
[23] GAO X,LU Y,ZHANG B,et al.Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J].Acta Materialia,2017,141:59-66.
-
[24] WANG Y,CHEN W,ZHANG J,et al.A quantitative understanding on the mechanical behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy[J].Journal of Alloys and Compounds,2021,850:156610.
-
[25] WEI L,QIN W.Corrosion mechanism of eutectic high-entropy alloy induced by micro-galvanic corrosion in sulfuric acid solution[J].Corrosion Science,2022,206:110525.
-
[26] CHEN L,LIU W,DONG B,et al.Insight into electrochemical passivation behavior and surface chemistry of 2205 duplex stainless steel:effect of tensile elastic stress[J].Corrosion Science,2021,193:109903.
-
[27] SHI Y,COLLINS L,FENG R,et al.Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance[J].Corrosion Science,2018,133:120-131.
-
[28] 曹楚南.腐蚀电化学原理[J].腐蚀科学与防护技术,2008,20(3):52-122.CAO Chunan.Principles of corrosion and electrochemisty[J].Corrosion Science and Protection Technology,2008,20(3):52-122.(in Chinese)
-
[29] GU D,ZHANG H,DAI D,et al.Anisotropic corrosion behavior of Sc and Zr modified Al-Mg alloy produced by selective laser melting[J].Corrosion Science,2020,170:108657.
-
[30] 邢伯玮.CoCrFeNi 系高熵合金涂层电化学腐蚀与钝化行为研究[D].沈阳:沈阳工业大学,2022.XING Bowei.Electrochemical corrosion and passivation behavior of CoCrFeNi system high-entropy alloy coatings[D].Shenyang:Shenyang University of Technology,2022.(in Chinese)
-
[31] 张雪,崔洪芝,王明亮,等.Al 含量对 AlxCoCrFeNi 系高熵合金组织和耐腐蚀性能的影响[J].材料热处理学报,2018,39(12):29-36.ZHANG Xue,CUI Hongzhi,WANG Mingliang,et al.Effect of Al content on microstructure and corrosion resistance of AlxCoCrFeNi high entropy alloys[J].Transactions of Materials and Heat Treatment,2018,39(12):29-36.(in Chinese)
-
摘要
AlCoCrFeNi2.1共晶高熵合金由面心立方无序固溶体相(FCC)和体心立方有序相(B2)形成交替片层结构,具有良好的铸造性能和强韧性。然而,在 NaCl 溶液电化学腐蚀过程中,B2 相的富 Al 钝化膜比 FCC 相的富 Cr 钝化膜稳定性差,导致 B2 相较快溶解,发生局部腐蚀。通过相图计算法(CALPHAD)设计 AlCoCr1+xFe1−xNi2.1高熵合金,通过提高 Cr / Fe 元素比来调控合金的微观组织和耐腐蚀性能。与铸态 AlCoCrFeNi2.1合金相比,铸态 AlCoCr1.5Fe0.5Ni2.1合金中硬质 B2 / BCC 双相的体积分数由 27.2%提升至 42.6%,其中体心立方结构(BCC)富 Cr 纳米相的体积分数为 19.8%,其维氏显微硬度提高了 8.6%,在 3.5wt.% NaCl 溶液中的腐蚀电流密度降低了 35.5%。因此,通过成分设计在贫 Cr 的 B2 相中大量析出富 Cr 共格纳米相,实现硬度和耐腐蚀性能的协同提升。研究成果为高强度与耐腐蚀一体化高熵合金的开发提供了新策略。
Abstract
In recent years, high-entropy alloys (HEAs) have attracted considerable attention owing to their outstanding properties and distinctive design concepts of multiple principal elements. HEAs often crystallize into simple structures, including face-centred-cubic (FCC) and body-centred-cubic (BCC). However, HEAs with single-phase FCC structures exhibit higher ductility but lower strength, whereas those with single-phase BCC structures tend to exhibit limited ductility. To simultaneously achieve high strength and good ductility, the concept of eutectic high-entropy alloys (EHEAs) has been proposed. The AlCoCrFeNi2.1 EHEA demonstrated exceptional strength-ductility correlation and castability owing to its complete lamellar eutectic structure, which consisted of a soft FCC phase and a hard B2 phase. Notably, eutectic crystallization resulted in an uneven distribution of elements in the AlCoCrFeNi2.1 EHEA. Specifically, Cr was enriched in the FCC phase, and Al was enriched in the B2 phase. While both Al and Cr are prone to form a compact oxide film, the Al-rich passivation film of the B2 phase is less stable than the Cr-rich passivation film of the FCC phase during electrochemical corrosion in NaCl solution. This led to local corrosion in the B2 phase. Numerous studies have shown that Cr in the Al-Co-Cr-Fe-Ni HEA system tends to be distributed in both the FCC and BCC phases. Therefore, an increase in Cr can promote the formation of a Cr-rich BCC phase, which can form a dense passivation film, thereby improving corrosion resistance. In this study, the effects of Cr and Fe on the microstructural evolution and corrosion performance of the AlCoCrFeNi2.1 EHEA were systematically investigated. As-cast AlCoCr1+xFe1−xNi2.1 (x = 0, 0.3, 0.5) alloys were designed using the calculation of phase diagrams (CALPHAD). The ingots were synthesized by vacuum arc melting of the raw elements (with a weight percentage purity≥99.9%) under an argon atmosphere. The crystal structures of the as-cast alloys were characterized using an X-ray diffractometer (XRD). The microstructure and chemical composition were examined using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The Vickers hardness was measured using a Vickers microhardness tester. Electrochemical measurements were performed using an electrochemical workstation in 3.5 wt.% NaCl solution at room temperature. The electrochemical tests used a three-electrode system, where the working electrode was the test sample, the reference electrode was a saturated calomel electrode (SCE), and a Pt plate was the counter electrode. The results indicate that as the Cr / Fe ratio increased, the alloys gradually transformed from a regular lamellar eutectic structure to a meta-eutectic structure. For AlCoCrFeNi2.1, AlCoCr1.3Fe0.7Ni2.1 and AlCoCr1.5Fe0.5Ni2.1, the volume fractions of the FCC phase were 72.8%, 68.3% and 57.4%, respectively; those of the B2 phase were 27.2%, 23.6% and 22.8%, respectively; and those of the Cr-rich BCC nanoparticles were 0%, 8.1% and 19.8%, respectively. The trend of changes in the volume fractions of each phase was consistent with the results of the CALPHAD simulation calculations. Moreover, the distribution coefficients of each element gradually tended toward 1 from dispersion, and the distribution coefficient of Cr decreased from 2.2 in the AlCoCrFeNi2.1 alloy to 1.5 in the AlCoCr1.5Fe0.5Ni2.1 alloy. Meanwhile, the Vickers microhardness gradually increased from 291.91 to 317.05 HV as the volume fraction of the Cr-rich BCC nanoparticles increased and that of the FCC phase decreased. As the Cr / Fe ratio increased, the corrosion potentials (Ecorr) of the three alloys changed slightly. This indicated that the corrosion tendencies of the three alloys were similar. However, the corrosion current density of the AlCoCr1.5Fe0.5Ni2.1 alloy was reduced by 35.5% (from 0.2035 to 0.1313 μA·cm−2 ) compared to the AlCoCrFeNi2.1 alloy in a 3.5 wt.% NaCl solution at room temperature. Furthermore, all the curves in the Nyquist plot consist of a semicircular arc, indicating that the dissolution kinetics of the passive film are governed by the charge transfer mechanism on the nonuniform surface. The semicircle radius increased, suggesting an incremental improvement in the corrosion resistance with increasing Cr / Fe ratio. A larger impedance modulus in the low-frequency range corresponds to a higher impedance value and a greater hindrance to charge transfer, ultimately indicating better corrosion resistance. The phase angles of the three alloys remained relatively stable in the mid- to low-frequency region, with a phase angle close to 80°based on the Porter phase frequency diagram. At 10−2 Hz, the phase angle of AlCoCr1.3Fe0.7Ni2.1 alloy and AlCoCr1.5Fe0.5Ni2.1 alloy decreased slightly, indicating that their corrosion resistance was superior to that of AlCoCrFeNi2.1 alloy. During the electrochemical corrosion process in a 3.5 wt.% NaCl solution, the dispersed precipitation of Cr-rich BCC nanoparticles promoted the formation of Cr-rich passivation films on BCC and Al-rich passivation films on B2 regions, thereby improving the corrosion performance of the alloy. By designing the composition to facilitate the precipitation of Cr-rich coherent nanophases in the Cr-poor B2 phase, a synergistic enhancement in hardness and corrosion resistance was achieved. This finding provides a novel strategy for the development of high-strength corrosion-resistant HEAs.
Keywords
high-entropy alloy ; phase formation ; microstructure ; hardness ; electrochemical corrosion