-
0 前言
-
多元合金体系一般由三种或更多不同元素组成,在材料科学和工程领域具有重要意义。元素种类的多样性和组成元素的比例可以在广泛的范围内变化,使其具有可调控的物理、化学和力学性能。高熵合金是典型的多元合金体系,含有至少五种元素。不同于传统合金的单一主元,高熵合金中所有元素的含量均在 5%至 35%之间(原子分数)[1]。高熵合金具有四大效应,使其表现出高强度[2-3]、耐高温氧化[4-6]、耐腐蚀[7]、耐辐照[8]、耐磨[9]等性能。这些优异的性能有赖于多元体系广阔的成分设计空间,通过优化成分的设计可以使其性能进一步提升[10-11]。与此同时,广阔的成分空间也增加了成分筛选难度。
-
在对多元体系进行筛选时,如果仍然按照筛选传统合金的方式,通过电弧熔炼[12-13]、等离子放电烧结[14-15]、球磨[16]等方法制备块体样品进行性能测试,会导致试验效率低下。高通量试验的理念是通过一次试验,如通过材料组合芯片法[17]、连续掩膜法[18-20]、激光熔覆[21-22]或多靶共溅射物理气相沉积[23-25]等方法,制备出组分连续变化的一批涂层样品并进行高通量表征[26-28],能显著加速成分筛选过程[29-30]。
-
本文使用相图计算( Calculation of phase diagram,CALPHAD)方法确定多元合金体系,通过高通量磁控溅射方法制备 AlNbTaTiVZr 涂层,并研究样品结构和性能随成分变化的演变规律[31-32]。对具有不同结构的样品进行纳米压痕表征和摩擦磨损试验,分析不同结构样品的磨损机理。
-
1 试验准备
-
1.1 体系的选择
-
本文目标是设计并筛选得到一款轻质高强多元合金。相比于面心立方(Face center cubic,FCC) 结构的合金,体心立方(Body center cubic,BCC) 结构的合金由于其空间堆积形式不是密排堆积,空间占有率小于 FCC 结构,因此得到的合金拥有更低的密度。
-
综合考虑文献数据[33-34]和 CALPHAD 计算结果,设计了 AlNbTaTiVZr 六元体系,其中 Al、Ti 元素能提高体系的比强度和耐蚀性,V、Zr 元素由于较大的原子半径差异能形成固溶强化,Nb、Ta、 Zr 元素能提高该体系的高温稳定性。利用 CALPHAD 方法及该体系的热力学数据库对合金结构进行了计算,如图1 所示,该体系在一个广泛的成分空间和温度范围内都存在 BCC 相,而多元合金倾向于形成简单的晶体结构,因此该体系倾向于形成 BCC 结构。
-
图1 AlNbTaTiVZr 体系相图
-
Fig.1 Phase diagrams of AlNbTaTiVZr system
-
1.2 样品制备
-
使用原子分数比为 3∶1 的 Nb-Ta 合金靶和 Al、 Ti、V、Zr 纯金属靶(纯度均为 99.99%)共计五块溅射靶材,各靶材尺寸均为φ 76.2 mm×5 mm,利用磁控溅射物理气相沉积系统(PVD proline75,Kurt J. Lesker,美国)进行涂层的镀制。
-
五个溅射靶材分别放置在磁控溅射系统的五个非强磁靶枪上,所有的靶枪均使用直流(DC)电源工作。样品基底是尺寸为 15 mm×15 mm×2 mm 的 304 不锈钢片,分布在直径为 150 mm 的样品盘上。在放入真空腔室前,先对样品基底使用丙酮、乙醇和去离子水在超声清洗机中分别清洗15 min以除去表面污染物。腔室的本底真空度为 66.7 μPa,在镀膜开始前,先使用射频(RF)电源对样品基底进行 900 s 的反溅射以除去表面氧化物,反溅射的功率为 80 W。镀膜过程中,Nb-Ta、Al、Ti、V、Zr 靶材上施加的功率分别为 250、84、144、52 和 131 W,并且对样品基底施加了 100 V 的偏压。镀膜时间为 7 200 s,使用高纯氩气(纯度为 99.999%)作为工艺气体,镀膜过程中腔体内氩气压力保持为 0.4 Pa,整个镀膜过程在室温下进行,且样品基底相对于各靶材保持固定。
-
1.3 样品结构表征与性能测试
-
采用场发射扫描电子显微镜(SEM,ZEISS G300,德国)观察涂层的表面形貌,并使用能谱仪 (EDS)对涂层的成分进行分析。使用 X 射线衍射仪(XRD,BRUKER D8 ADVANCE DAVINCI,德国)对样品的晶体结构进行分析。使用原位纳米压痕仪(KLA G200,美国)在连续刚度测量模式下使用标准 Berkovich 压头对样品的硬度(H)和弹性模量(E)进行表征,为了避免基底对样品性能的影响,所取数据最大深度小于涂层厚度的 10%。
-
使用多功能高温摩擦磨损试验机( UMT,Instruments UMT-3,美国)对不同结构的样品分别进行摩擦磨损试验,使用的磨球直径为 6 mm,材质为 316L 不锈钢,试验参数如下:负载 1 N,摩擦频率 1 Hz,磨痕长度 5 mm,摩擦时间 600 s,试验温度为室温。使用 3D 光学轮廓仪(RTEC UP-Lambda,美国)对磨痕形貌、样品磨损量和最大磨损深度进行观测,并同时测量各样品的表面粗糙度,以确认样品表面粗糙度是否对摩擦初始过程中的摩擦因数曲线造成了影响。每个样品摩擦得到三道磨痕,每道磨痕均选取三个位置进行测量并求平均值,以减少误差带来的影响。最后使用能谱仪和 X 射线光电子能谱仪(XPS,Kratos AXIS SUPRA,日本)对磨痕处进行表征来分析磨痕处的元素分布和摩擦产物。
-
2 结果与讨论
-
使用能谱仪对制备得到的各个样品的中心区域进行表征,发现各样品膜层致密,未观察到孔洞或裂痕。膜层厚度约为 3.36 μm,且元素分布均匀。用各样品中心处元素含量表示该样品的元素含量,最终汇总结果如图2 所示。当样品所处位置距离某个溅射靶材越近,这个样品对应元素的含量也就越高,使得所有元素含量均随位置变化而出现明显的梯度,通过一次试验就成功制备了大量成分各不相同的样品,这说明成功达成了高通量样品制备的预定目标。
-
图2 通过高通量试验制备的 AlNbTaTiVZr 体系的各样品中各元素的分布图
-
Fig.2 Distribution map of each element in all samples of AlNbTaTiVZr system prepared by high throughput experiment
-
2.1 样品成分对结构的影响
-
图3 的 XRD 谱图显示,制备得到的样品共存在三种晶体结构,即 BCC、BCC+非晶、非晶。随着样品 Nb、Ta、Ti 元素总量减少以及 Al、V、Zr 元素总量增加,样品结构逐渐由 BCC 相(a1、a2) 转变为 BCC 相+非晶相(b1、b2),最后变为完全的非晶相(c1、c2)。
-
为了评估样品成分对结构的影响,对样品的原子尺寸错配度(δ)、价电子浓度(VEC)、混合焓 (ΔHmix)和混合熵(ΔSmix)这四个经验参数进行计算,各经验参数的计算方法如下[35]:
-
式中,ci 表示第 i 种元素所占的原子分数,ri 表示第 i 种元素的原子半径。
-
图3 样品相结构变化
-
Fig.3 Phase structure evolution of the samples
-
式中,(VEC)i 表示第 i 种元素的价电子浓度。
-
式中,cj 表示第 j 种元素所占的原子分数,ΔHij 是第 i 种元素和第 j 种元素原子之间的混合焓。
-
式中,R 是气体常数。
-
根据价电子浓度对多元合金的结构进行预测,当 VEC≤6.87 时,合金会倾向于形成 BCC 相,当VEC≥8 时,合金会倾向于形成 FCC 相[35]。如图4a 所示,本试验所制备样品的 VEC 均小于 4.7,根据预测,样品会倾向于形成 BCC 相,这与试验结果十分契合。
-
更大的原子尺寸错配度导致更严重的晶格畸变,更负的混合焓促进短程化学有序形成,更高的混合熵增强元素之间的互溶性,这些都会导致样品更倾向于形成非晶相[36-38]。如图4b~4d 所示,右侧样品拥有更大的原子尺寸错配度、更负的混合焓和更高的混合熵,因此会更倾向于形成非晶结构,这也与试验结果相吻合。
-
图4 由成分变化引起的各经验参数的变化
-
Fig.4 Variation of empirical parameters caused by the varying composition
-
2.2 纳米压痕试验结果及分析
-
由于本工作目标是筛选具有良好性能的样品,硬度和弹性模量是样品力学性能的重要指标,因此使用纳米压痕法对样品的硬度和弹性模量进行表征,各样品的纳米硬度和弹性模量如图5 所示。从图5 可以看出,样品硬度介于 8.1 和 9.4 GPa 之间,各结构样品硬度不存在显著区别,Ti 元素含量更高的样品具有更大的硬度。样品的弹性模量变化趋势同样不与结构变化趋势吻合,因此可以认为样品硬度和弹性模量的变化主要是由样品成分的变化引起。其中,成分为 Al20.5Nb27.6Ta8.4Ti27.3V5.9Zr10.3 的样品中 Ti 元素含量最高,该样品具有本体系下最高的硬度和接近最高的弹性模量。
-
图5 AlNbTaTiVZr 体系样品的硬度和弹性模量
-
Fig.5 Hardness and elastic modulus of AlNbTaTiVZr system samples
-
2.3 摩擦磨损试验结果及分析
-
对三种结构的样品分别进行摩擦磨损试验,发现三种结构样品在摩擦过程中的摩擦因数曲线存在显著差异。如图6a 所示,BCC 样品在整个摩擦试验过程中都拥有较低的摩擦因数,且摩擦因数保持平稳;部分结晶样品在摩擦的初始阶段同样拥有较低的摩擦因数,但随后摩擦因数剧烈增加;非晶样品摩擦因数一直较大,且摩擦因数始终存在较大波动。使用 3D 轮廓仪对各样品表面进行观察,发现部分结晶样品表面均方根高度为 0.061 6 μm,非晶样品表面均方根高度为 0.062 3 μm,说明这两个样品在摩擦的初始阶段具有不同摩擦因数不是由于不同的表面粗糙度导致。如图6b 所示,从磨损率和最大磨损深度两个角度来看,BCC 样品的耐磨性显著优于其他两种结构的样品。
-
图7 中显示的是 AlNbTaTiVZr 样品的硬弹比 (硬度与弹性模量比)变化示意图。当磨损机制仅为磨粒磨损时,根据硬弹比对样品的耐摩擦磨损性能的影响规律,硬弹比越低,耐磨损性能越差[39-40]。而本工作的 BCC 结构样品硬弹比最低,然而其耐磨性能最好。因此,可以推断本工作中样品的磨损机制不仅仅是由磨粒磨损所主导。
-
图6 各结构样品的摩擦磨损试验结果
-
Fig.6 Friction results of samples with different phase structure
-
图7 AlNbTaTiVZr 体系样品硬弹比
-
Fig.7 H / E and H3 / E2 of samples of AlNbTaTiVZr system
-
为揭示不同结构涂层样品的磨损机制,对磨痕结构及摩擦产物进行进一步研究。图8a 显示了 BCC 样品(a2)磨痕处扫描电子显微镜的二次电子图像,在该样品磨痕处可以观察到犁沟。同时根据图8b 中 O 元素的面分布图和表1 中磨痕内外的能谱数据可以发现,磨痕处发生了氧化,这说明该样品的摩损机理是氧化磨损和磨粒磨损。结合样品的摩擦因数可以推测[41-42],样品在摩擦过程中生成了具有润滑作用的氧化物,导致较低的摩擦因数和磨损率。
-
图8 BCC 样品(a2)磨痕处的扫描电子显微镜二次电子图像(SEI)和 Nb、O、Fe 三种元素的面分布图
-
Fig.8 Secondary electron image (SEI) and Nb, O, Fe mapping of grinding crack of sample with BCC structure (sample a2)
-
图9a 为部分结晶样品(b2)磨痕处扫描电子显微镜的二次电子图,图中标注位置的各元素含量如表2 所示。可以发现涂层几乎完全被磨穿,基底上能观察到犁沟。在磨痕中能观察到附着的氧化物,这些氧化物中也含有膜层的元素,同时也能观察到氧化物剥落的痕迹。结合样品的摩擦因数变化可以推测,样品在摩擦最初阶段生成了具有润滑作用的氧化物,但是这些氧化物迅速发生剥落,不仅没有对样品达到保护作用,反而加剧了涂层的损耗。
-
图9 部分结晶样品(b2)磨痕处的扫描电子显微镜二次电子图像和 Nb,O,Fe 三种元素的面分布图
-
Fig.9 SEI and Nb, O, Fe mapping of grinding crack of partially crystallized sample (b2)
-
图10a 显示了非晶样品(c2)磨痕处扫描电子显微镜的二次电子图像,可以发现涂层部分区域已经被磨穿。在图10b 的各元素面分布图中能观察到 O 元素主要出现在已经露出的基底位置,而在表3 中也能发现,磨痕处与未磨损处的 O 元素含量几乎没有区别,说明涂层在摩擦过程中并没有发生显著氧化,这同时也解释了非晶样品的摩擦因数始终较高的原因。
-
图10 非晶相样品(c2)磨痕处的扫描电子显微镜二次电子图像和 Nb,O,Fe 三种元素的面分布图
-
Fig.10 SEI and Nb, O, Fe mapping of grinding crack of amorphous sample (sample c2)
-
为了进一步分析样品的磨损机理,利用 XPS 对三个样品的磨痕位置进行表征,按照 C-C 峰为 284.8 eV 进行校准并对精细谱进行拟合,相关结果如表4 所示。各样品中均能探测到 Al2O3、Nb2O5、 Ta2O5、TiO2、V2O5、ZrO2 的存在,其中,Nb2O5、 Ta2O5 和 V2O5 具有润滑性[43-44]。BCC 样品中生成了大量的拥有润滑性的氧化物,使涂层具有较低的摩擦因数,而部分结晶的样品虽然也生成了这些氧化产物,但氧化产物发生了剥落,没有起到良好的保护作用。
-
非晶样品中各元素被氧化的程度均低于另两个样品,仅有此样品中能探测到尚未被氧化的 Al、Ti、 V 元素,同时,此样品在磨痕与非磨痕处 O 元素含量几乎无区别。因此可以认为非晶样品中具有润滑性的氧化物生成量较少,导致其在整个摩擦过程中具有高摩擦因数。
-
3 结论
-
使用相图计算(CALPHAD)方法确定了具有 BCC 结构的 AlNbTaTiVZr 多元合金体系,并通过高通量磁控溅射方法制备了一系列具有成分梯度的涂层样品,研究了样品成分对涂层结构和性能的影响,并最终筛选得到具有良好综合力学性能的涂层和具有良好耐磨性能的涂层。具体结论如下:
-
(1)本体系下结晶的样品均呈现 BCC 结构,与基于价电子浓度对样品结构的预测相符。
-
(2)样品的硬度随着 Ti 元素含量的增加而提高,而具有更多 Al、Nb 和 Ta 元素的样品则表现出更高的弹性模量。具体而言,成分为 Al20.5Nb27.6Ta8.4Ti27.3V5.9Zr10.3 的涂层拥有最高的纳米硬度(约为 9.4 GPa),同时其弹性模量为 136.5 GPa,接近于本体系下样品的最高弹性模量 (142.3 GPa)。
-
(3)BCC 结构的涂层相较于其他结构更具耐磨性,其中成分为 Al7.6Nb41.8Ta11.5Ti20.5V3.9Zr14.7 的涂层表现出本体系下最好的耐磨损性能。
-
(4)不同结构样品的磨损机制存在差异,BCC 结构样品在摩擦过程中表面原位生成了具有自润滑作用的氧化物,导致其具有较低的摩擦因数。而非晶样品摩擦中没有生成足够的自润滑氧化物,使得其摩擦因数较高。
-
参考文献
-
[1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
-
[2] ZHAN C C,HUANG D D,HU X F,et al.Mechanical property enhancement of NbTiZr refractory medium-entropy alloys due to Si-induced crystalline-to-amorphous transitions[J].Surface and Coatings Technology,2022,433:128144.
-
[3] YUAN Y,XU K,SUN G C,et al.Revealing the effects of Nb micro-alloying on microstructure and mechanical properties of FeCrAl thin films:experimental and computational investigations[J].Surface and Coatings Technology,2022,445:128774.
-
[4] MA M Y,HAN A H,ZHANG Z J,et al.The role of Si on microstructure and high-temperature oxidation of CoCr2FeNb0.5Ni high-entropy alloy coating[J].Corrosion Science,2021,185:109417.
-
[5] LI S,YUAN Y,ZHOU R N,et al.Initial oxidation mechanism of FeCrAl thin films with Nb and Si additions[J].Thin Solid Films,2023,782:140015.
-
[6] ZHOU R N,WANG F M,XU K,et al.Effect of molybdenum addition on oxidation behavior and secondary protection mechanism of FeCrAl coatings[J].Materials Characterization,2023,204:113221.
-
[7] WU P F,GAN D F,YAN D S,et al.A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy[J].Corrosion Science,2021,183:109341.
-
[8] LI R B,HUANG T,ZHANG J,et al.Microstructures,mechanical behavior,and radiation damage of(TiVCr)x-(TaW)1−x binary system high-entropy alloy films[J].Metals,2022,12(5):772.
-
[9] CHUANG M H,TSAI M H,WANG W R,et al.Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys[J].Acta Materialia,2011,59(16):6308-6317.
-
[10] MIRACLE D B,MILLER J D,SENKOV O N,et al.Exploration and development of high entropy alloys for structural applications[J].Entropy,2014,16(1):494-525.
-
[11] MIRACLE D B.Critical assessment 14:high entropy alloys and their development as structural materials[J].Materials Science and Technology,2015,21(10):1142-1147.
-
[12] JOSEPH J,JARVIS T,WU X H,et al.Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys[J].Materials Science and Engineering:A,2015,633:184-193.
-
[13] CHEN Y Y,DUVAL T,HUANG U D,et al.Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel[J].Corrosion Science,2005,47(9):2257-2279.
-
[14] JI W,FU Z Y,WANG W M,et al.Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy[J].Journal of Alloys and Compounds,2014,589:61-66.
-
[15] MORAVCIK I,CIZEK J,ZAPLETAL J,et al.Microstructure and mechanical properties of Ni1.5Co1.5CrFeTi0.5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering[J].Materials & Design,2017,119(1):141-150.
-
[16] GLUDOVATZ B,HOHENWARTER A,CATOOR D,et al.A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014,345(6201):1153-1158.
-
[17] XIANG X D,SUN X D,BRICENO G,et al.A combinatorial approach to materials discovery[J].Journal of Crystal Growth,2013,379:123-130.
-
[18] YOO Y K,XUE Q Z,CHU Y S,et al.Identification of amorphous phases in the Fe-Ni-Co ternary alloy system using continuous phase diagram material chips[J].Intermetallics,2006,14(3):241-247.
-
[19] LUDWIG A,ZARNETTA R,HAMANN S,et al.Development of multifunctional thin films using high-throughput experimentation methods[J].International Journal of Materials Research,2008,99(10):1144-1149.
-
[20] MAO S S.High throughput growth and characterization of thin film materials[J].Journal of Crystal Growth,2013,379:123-130.
-
[21] 张冲,黄标,戴品强.铬含量对 FeCoCrxNiB 高熵合金涂层氧化行为的影响[J].中国表面工程,2016,29(1):32-38.ZHANG Chong,HUANG Biao,DAI Pinqiang.Effects of chromium content on oxidation behavior of FeCoCrxNiB high-entropy alloy coatings[J].China Surface Engineering,2016,29(1):32-38.(in Chinese)
-
[22] 马清,张艳梅,卢冰文,等.激光熔覆硬质颗粒增强高熵合金复合涂层研究进展[J].材料研究与应用,2021,15(5):583-592.MA Qing,ZHANG Yanmei,LU Bingwen,et al.Research progress of hard particle reinforced high entropy alloy composite coatings fabricated by laser cladding[J].Materials Research and Application,2021,15(5):583-592.(in Chinese)
-
[23] 罗朋,王晓波,巩春志,等.磁控溅射制备高熵合金薄膜研究进展[J].中国表面工程,2021,34(5):53-66.LUO Peng,WANG Xiaobo,GONG Chunzhi,et al.Research progress of high entropy alloy thin films prepared by magnetron sputtering[J].China Surface Engineering,2021,34(5):53-66.(in Chinese)
-
[24] 闫巨擘,赖振国,谭心,等.物理气相沉积高熵合金涂层/薄膜性能研究进展[J].材料研究与应用,2022,16(4):626-636.YAN Jubo,LAI Zhenguo,TAN Xin,et al.Research progress on properties of high entropy alloy coatings/films[J].Materials Research and Application,2022,16(4):626-636.(in Chinese)
-
[25] LIU S D,CHANG K K,MRAZ S,et al.Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films[J].Acta Materialia,2019,165:615-625.
-
[26] LEE C,XIE D,DERBY B K,et al.An experimentally driven high-throughput approach to design refractory high-entropy alloys[J].Materials & Design,2022,223:111259.
-
[27] LI Y,MA J,LIAW P K,et al.Exploring the amorphous phase formation and properties of W-Ta-(Cr,Fe,Ni)high-entropy alloy gradient films via a high-throughput technique[J].Journal of Alloys and Compounds,2022,913:165294.
-
[28] SONG Y P,YAN L C,PANG X L,et al.Effects of co-alloying Al and Cu on the corrosion behavior and mechanical properties of nanocrystalline FeCrNiCo high entropy alloys[J].Corrosion Science,2023,213:110983.
-
[29] HAN G Y,ZHU W,GUO S M,et al.Combinatorial screening via high-throughput preparation:thermoelectric performance optimization for n-type Bi-Te-Se film with high average zT > 1[J].Journal of Materials Science & Technology,2023,160:18-27.
-
[30] XU Y Q,BU Y Q,LIU J B,et al.In-situ high throughput synthesis of high-entropy alloys[J].Scripta Materialia,2019,160:44-47.
-
[31] 常可可,陈雷雷,周若男,等.极端环境表面工程及其共性科学问题研究进展[J].中国机械工程,2022,33(12):1388-1417.CHANG Keke,CHEN Leilei,ZHOU Ruonan,et al.Progresses of surface engineering in extreme environments and its common scientific problems[J].China Mechanical Engineering,2022,33(12):1388-1417.(in Chinese)
-
[32] 常可可,王立平,薛群基.极端工况下机械表面界面损伤与防护研究进展[J].中国机械工程,2022,31:206-220.CHANG Keke,WANG Liping,XUE Qunji,Progresses of damage and protection for surfaces and interfaces in machinery under extreme operating conditions[J].China Mechanical Engineering,2022,31:206-220.(in Chinese)
-
[33] 常可可,娄明,徐凯,等.苛刻环境服役涂层相图、相变与材料研发实践[J].中国材料进展,2021,40(6):401-416.CHANG Keke,LOU Ming,XU Kai,et al.Phase diagram,phase transformation and materials development of coatings served in harsh environments[J].Materials China,2021,40(6):401-416.(in Chinese)
-
[34] LOU M,XU K,CHEN L,et al.Development of robust surfaces for harsh service environments from the perspective of phase formation and transformation[J].Journal of Materials Informatics,2021,1(1):5-32.
-
[35] GUO S,LIU C T.Phase stability in high entropy alloys:formation of solid-solution phase or amorphous phase[J].Progress in Natural Science:Materials International,2011,21(6):433-446.
-
[36] WANG Z J,HUANG Y H,YANG Y,et al.Atomic-size effect and solid solubility of multicomponent alloys[J].Scripta Materialia,2015,94:28-31.
-
[37] VIKRAM R J,GUPTA K,SUWAS S,et al.Design of a new cobalt base nano-lamellar eutectic high entropy alloy[J].Scripta Materialia,2021,202:113993.
-
[38] INOUE A.Stabilization of metallic supercooled liquid and bulk amorphous alloys[J].Acta Materialia,2000,48:279-306.
-
[39] OBERLE T L.Properties influencing wear of metals[J].Journal of Metals,1951,3:438-439.
-
[40] LEYLAND A,MATTHEWS A.On the significance of the H/E ratio in wear control:a nanocomposite coating approach to optimised tribological behaviour[J].Wear,2000,246(1-2):1-11.
-
[41] SUN Q C,CHEN L L,CHENG J,et al.Self-lubrication of single-phase high-entropy ceramic enabled by tribo-induced amorphous carbon[J].Scripta Materialia,2023,227:115273.
-
[42] CHEN L L,ZHANG Z Y,LOU M,et al.High-temperature wear mechanisms of TiNbWN films:role of nanocrystalline oxides formation[J].Friction,2023,11(3):460-472.
-
[43] ZHU R Y,ZHANG P L,YU Z S,et al.Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag2O/Ta2O5 composite coating[J].Surface & Coatings Technology,2020,383:125248.
-
[44] GULBIŃSKI W,SUSZKO T,SIENICKI W,et al.Tribological properties of silver-and copper-doped transition metal oxide coatings[J].Wear,2003,154(1-2):129-135.
-
摘要
随着航空航天产业对于材料服役温度、比强度等性能的需求越来越高,轻质、难熔、高强的多元合金已经成为一种潜在的 Ni 基高温合金的替代品。为了设计并筛选得到一款轻质高强的多元体系合金,使用相图计算(CALPHAD)方法确定多元合金体系,通过高通量磁控共溅射物理气相沉积法制备一系列 AlNbTaTiVZr 多元合金涂层,以筛选出该体系下拥有良好性能的涂层成分。XRD 测试和计算结果显示,随着涂层样品的原子尺寸错配度增加、混合焓变负以及混合熵变大,样品逐渐由体心立方(BCC)结构转变为非晶结构。纳米压痕测试结果表明,Ti 元素含量更高的样品具有更大的硬度,而 Al、Nb 和 Ta 元素含量更高的样品具有更高的弹性模量。在摩擦磨损试验中,BCC 结构表现出全程较低的摩擦因数(约为 0.15),且拥有最低的磨损率和最小的最大磨损深度;部分结晶的涂层在摩擦过程中生成的自润滑氧化物剥落,没有起到很好的保护作用,而非晶样品由于未生成足够的自润滑氧化物,摩擦因数较高,这两种结构的涂层均被磨穿。筛选最终发现,成分为 Al20.5Nb27.6Ta8.4Ti27.3V5.9Zr10.3的涂层 Ti 元素含量最高,该涂层具有本体系下最高的硬度,约为 9.4 GPa,同时该样品的弹性模量也接近本体系下样品弹性模量的最高值,约为 136.5 GPa。BCC 结构的涂层中,成分为 Al7.6Nb41.8Ta11.5Ti20.5V3.9Zr14.7的涂层具有本体系下最好的耐摩擦磨损性能。最终,通过相图计算与高通量试验结合的方法,成功设计一款轻质高强的多元合金体系,并分别筛选得到本体系下具有最高硬度和最好耐摩擦磨损性能的成分。研究结果解释了该体系下合金结构随成分变化的规律,并为该体系下合金性能的筛选提供一定的指导。
Abstract
With the increasing demands of the aerospace industry for the performance of materials, such as high service temperatures and high strengths of materials, lightweight, refractory, and high-strength multi-component alloys have become potential substitutes for Ni-based superalloys. The huge composition space of multi-component alloys not only provides opportunities for the design of materials with excellent properties but also brings many challenges to the screening of multi-component alloys. The calculation of phase diagrams (CALPHAD) method was used to assist in the determination of multi-component systems to design and screen lightweight and high-strength multi-component alloys. The results showed that the AlNbTaTiVZr alloy tended to form a BCC phase in a wide range of components and temperatures. A series of AlNbTaTiVZr multi-component alloy coatings was prepared via high-throughput magnetron co-sputtering physical vapor deposition (PVD) to screen multi-component alloys with good properties in this system. Five sputter targets were used for the co-sputtering process during sample preparation. During deposition, the rotational speed of the substrate plate was set to zero to ensure that each sample on the plate had a different composition. The effects of the compositional change on the structure and performance of the coatings were studied using XRD, SEM / EDS, XPS, nanoindentation, and friction experiments. The EDS results show that the film of each sample was dense, and no holes or cracks were observed. The thickness of the film was approximately 3.36 μm, and the elements were evenly distributed. The successful preparation of a large number of samples with different compositions in a single experiment demonstrated that the intended goal of high-throughput sample preparation was successfully achieved. Both the calculation and experimental results showed that with an increase in the atomic size difference, the mixing enthalpy became more negative, and the sample gradually changed from a BCC structure to an amorphous structure. The results of the nanoindentation test showed that the changes in the hardness and elastic modulus of the samples were mainly caused by changes in their composition. Samples with higher Ti content had greater hardness, and samples with higher Al, Nb, and Ta contents had higher elastic modulus. In abrasion tests, it was found that the abrasion resistance of a sample was closely related to its structure. The sample with the BCC structure maintained a low factor of friction (approximately 0.15) during the entire friction process, and the BCC samples had the lowest wear rate and lowest maximum wear depth in this system. Self-lubricating oxides, such as V2O5, Ta2O5, and Nb2O5, were produced during the friction processes of the BCC samples, resulting in a lower factor of friction and lower wear rates. The self-lubricating oxides produced by the partially crystalline samples peeled off. Hence, the oxides did not provide good protection. The amorphous samples did not generate sufficient self-lubricating oxides, resulting in a high coefficient of friction. The coatings of both the partially crystalline and amorphous samples were worn out. Finally, the Al20.5Nb27.6Ta8.4Ti27.3V5.9Zr10.3 coating, which had the highest content of Ti, had the highest hardness of approximately 9.4 GPa, and the elastic modulus of this sample, which was 136.5 GPa, was only 6 GPa lower than that of the sample with the highest elastic modulus. Among the BCC structure coatings, the Al7.6Nb41.8Ta11.5Ti20.5V3.9Zr14.7 coating had the best wear resistance in this system. Finally, by combining the calculation of the phase diagram method and high-throughput experiments, a lightweight and high-strength multi-component system was successfully designed. Moreover, the component with the highest hardness and the component with best wear resistance in this system were successfully screened.
Keywords
multi-component alloy ; high throughput ; nano hardness ; wearing mechanism