en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

程勇,男,1998年出生。主要研究方向为新型MoN基涂层设计制备及宽温域摩擦性能。E-mail: chengyong@nimte.ac.cn

王振玉,男,1987年出生,博士,研究员,硕士研究生导师。主要研究方向为表面强化涂层与功能改性。E-mail: wangzy@nimte.ac.cn

通讯作者:

王振玉,男,1987年出生,博士,研究员,硕士研究生导师。主要研究方向为表面强化涂层与功能改性。E-mail: wangzy@nimte.ac.cn

中图分类号:TG178

DOI:10.11933/j.issn.1007-9289.20231228006

参考文献 1
DELLACORTE C.Oil-free shaft support system rotordynamics:past,present and future challenges and opportunities[J].Mechanical Systems and Signal Processing,2012,29:67-76.
参考文献 2
DELLACORTE C,RADIL K C,BRUCKNER R J,et al.Design,fabrication,and performance of open source generation I and II compliant hydrodynamic gas foil bearings[J].Tribology Transactions,2008,51(3):254-264.
参考文献 3
HESHMAT H.Operation of foil bearings beyond the bending critical mode[J].Journal of TribologyTransactions of the ASME,2000,122(1):192-198.
参考文献 4
邓建,胡连桃,黄昌华,等.箔片空气轴承的新近技术突破与应用进展[J].轴承,2004,8:41-44.DENG Jian,HU Liantao,HUANG Changhua,et al.Recent technological breakthroughs and application advances in foil air bearings[J].Bearing,2004,8:41-44.(in Chinese)
参考文献 5
WANG D,SU D S,SCHLÖGL R.Electron beam induced transformation of MoO3 to MoO2 and a new phase MoO[J].Chemlnform,2004,35(38):1007-1014.
参考文献 6
VEPREK S,VEPREK-HEIJMAN M G J,KARVANKOVA P,et al.Different approaches to superhard coatings and nanocomposites[J].Thin Solid Films,2005,476(1):1-29.
参考文献 7
CURA M E,LIU X W,KANERVA U,et al.Friction behavior of alumina/molybdenum composites and formation of MoO3−x phase at 400 ℃[J].Tribology International,2015,87:23-31.
参考文献 8
GASSNER G,MAYRHOFER P H,KUTSCHEJ K,et al.Magnéli phase formation of PVD Mo-N and W-N coatings[J].Surface and Coatings Technology,2006,201(6):3335-3341.
参考文献 9
ZHOU W,ZHOU K,LI Y,et al.High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings[J].Applied Surface Science,2017,416:33-44.
参考文献 10
HAMDANI F,ABE H,TER-OVANESSIAN B,et al.Effect of chromium content on the oxidation behavior of Ni-Cr model alloys in superheated steam[J].Metallurgical and Materials Transactions A,2015,46(5):2285-2293.
参考文献 11
KLIMASHIN F F,RIEDL H,PRIMETZHOFER D,et al.Composition driven phase evolution and mechanical properties of Mo-Cr-N hard coatings[J].Journal of Applied Physics,2015,118(2):025305.
参考文献 12
YANG Q.Wear resistance and solid lubricity of molybdenum-containing nitride coatings deposited by cathodic arc evaporation[J].Surface and Coatings Technology,2017,332:283-295.
参考文献 13
JU H,XU J.Microstructure,oxidation resistance,mechanical and tribological properties of Ti-Y-N films by reactive magnetron sputtering[J].Surface and Coatings Technology,2015,283:311-317.
参考文献 14
WU Z,TIAN X,GONG C,et al.Micrograph and structure of CrN films prepared by plasma immersion ion implantation and deposition using HPPMS plasma source[J].Surface and Coatings Technology,2013,229:210-216.
参考文献 15
CHEN J,CAI W.Effect of scratching frequency on the tribocorrosion resistance of Al-Mn amorphous thin films[J].Wear,2019,426-427:1457-1465.
参考文献 16
HUANG K,CAO X,KONG L,et al.Effect of Ag content on friction and wear properties of Ag and V co-doped CrN coatings at 25-700 ℃[J].Ceramics International,2021,47(24):35021-35028.
参考文献 17
JANSSEN G C A M,ABDALLA M M,VAN KEULEN F,et al.Celebrating the 100th anniversary of the Stoney equation for film stress:developments from polycrystalline steel strips to single crystal silicon wafers[J].Thin Solid Films,2009,517(6):1858-1867.
参考文献 18
XU J,JU H,YU L.Microstructure,oxidation resistance,mechanical and tribological properties of Mo-Al-N films by reactive magnetron sputtering[J].Vacuum,2014,103:21-27.
参考文献 19
GILEWICZ A,WARCHOLINSKI B.Deposition and characterisation of Mo2N/CrN multilayer coatings prepared by cathodic arc evaporation[J].Surface and Coatings Technology,2015,279:126-133.
参考文献 20
MEI H,LUO Q,HUANG X,et al.Influence of lubricious oxides formation on the tribological behavior of Mo-V-Cu-N coatings deposited by HiPIMS[J].Surface and Coatings Technology,2019,358:947-957.
参考文献 21
MA K J,BLOYCE A,BELL T.Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multilayer coatings[J].Surface and Coatings Technology,1995,76-77:297-302.
参考文献 22
LAWN B R,EVANS A G,MARSHALL D B.Elastic/plastic indentation damage in ceramics:the median/radial crack system[J].Journal of the American Ceramic Society,2006,63(9-10):574-581.
参考文献 23
HOGMARK S,JACOBSON S,LARSSON M.Design and evaluation of tribological coatings[J].Wear,2000,246(1-2):20-33.
参考文献 24
胡爱萍,孔德军,朱伟.TiN 涂层残余应力对其界面结合强度的影响[J].工具技术,2008,11:34-36.HU Aiping,KONG Dejun,ZHU Wei.Effects of residual stresses of TiN coating on its interfacial bonding strength[J].Tool Engineering,2008,11:34-36.(in Chinese)
参考文献 25
LIN L,SUN C,EMRICH S,et al.Assessment of the lubrication ability of polymer materials in the fluid-free steel/steel tribosystem[J].Wear,2020,452-453:203287.
参考文献 26
YANG J,JIANG Y,YUAN Z,et al.Effect of carbon content on the microstructure and properties of W-Si-C-N coatings fabricated by magnetron sputtering[J].Materials Science and Engineering:B,2012,177(13):1120-1125.
参考文献 27
CAMACHO-LÓPEZ M A,ESCOBAR-ALARCÓN L,PICQUART M,et al.Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation[J].Optical Materials,2011,33(3):480-484.
参考文献 28
ATUCHIN V V,GAVRILOVA T A,GRIGORIEVA T I,et al.Sublimation growth and vibrational microspectrometry of α-MoO3 single crystals[J].Journal of Crystal Growth,2011,318(1):987-990.
参考文献 29
WANG L,LI H X,XUE Z L.Synthesis of h-MoO3 nanorods and h-/α-MoO3 composites and their photocatalytic performance[J].Transactions of Nonferrous Metals Society of China,2023,33(7):2155-2167.
参考文献 30
HARDCASTLE F D,WACHS I E.Raman spectroscopy of chromium oxide supported on Al2O3,TiO2 and SiO2:A comparative study[J].Journal of Molecular Catalysis,1988,46(1-3):173-186.
参考文献 31
SÁNCHEZ-LÓPEZ J C,CONTRERAS A,DOMÍNGUEZMEISTER S,et al.Tribological behaviour at high temperature of hard CrAlN coatings doped with Y or Zr[J].Thin Solid Films,2014,550:413-420.
参考文献 32
ZHAO H,HU L,LI C,et al.Influence of metallic Cr addition on the phase structure and mechanical properties of plasma-sprayed Ti-Si-C coatings[J].Ceramics International,2021,47(12):17570-17579.
参考文献 33
KOMIYAMA S,SUTOU Y,OIKAWA K,et al.Wear and oxidation behavior of reactive sputtered δ-(Ti,Mo)N films deposited at different nitrogen gas flow rates[J].Tribology International,2015,87:32-39.
参考文献 34
RAJPUT S S,GANGOPADHYAY S,YAQUB T B,et al.Room and high temperature tribological performance of CrAlN(Ag)coatings:the influence of Ag additions[J].Surface and Coatings Technology,2022,450:129011.
参考文献 35
DE SÁ M L,NOBRE F X,SILVA L D S,et al.Preparation of new h-MoO3 rod-like microcrystals for effective removal of cationic dye in aqueous solution[J].International Journal of Environmental Research,2021,15(1):105-124.
参考文献 36
刘红利,单媛媛,杜朕屹.MoO3−x/SiO2催化剂的制备及其在氧化脱硫中的应用[J].现代化工,2023,43(2):173-179.LIU Hongli,SHAN Yuanyuan,DU Zhenyi.Preparation of MoO3−x /SiO2 catalysts and application in oxidative desulfurization[J].Modern Chemical Industry,2023,43(2):173-179.(in Chinese)
参考文献 37
MASLAR J E,HURST W S,VANDERAH T A,et al.The Raman spectra of Cr3O8 and Cr2O5[J].Journal of Raman Spectroscopy,2001,32(3):201-206.
目录contents

    摘要

    优异的力学和摩擦学性能使 MoN 涂层在箔片空气轴承防护上应用潜力较大,但 MoO3在 500 ℃以上环境下的强挥发性严重影响了其服役寿命。Cr 元素掺杂在提高 MoN 涂层抗氧化性能方面优势显著,然而 Cr 元素掺杂对 MoN 涂层的力学性能、组织结构和中高温摩擦学性能的影响尚不明确。使用高功率脉冲磁控溅射(HiPIMS)复合直流磁控溅射(DCMS)技术在不同基体表面制备系列不同 Cr 元素含量的 MoCrN 涂层,利用 SEM、XRD、EDS、纳米压痕设备、维氏压痕、划痕仪、应力仪、拉曼光谱仪和摩擦试验机对涂层的微观结构、物相组成、力学性能与摩擦学性能进行系统研究。结果表明,MoN 涂层由单一 Mo2N 相组成,MoCrN 涂层由 Mo2N 与 CrN 构成。随 Cr 元素掺杂含量的增加,Mo2N 含量降低及压应力下降,导致涂层硬度与韧性单调降低,结合力先增加后下降。其中,Cr 元素掺杂含量为 10.4at.%的样品具有最高的结合力,相较于纯 MoN 涂层提高了 29 N。摩擦学试验发现,随 Cr 元素掺杂含量的增加,由于涂层强韧性降低、鳞片状摩擦层的消失以及摩擦产物的变化,室温摩擦因数和磨损率单调增加;当 Cr 元素掺杂含量为 19.9at.%时,因显著提升了 MoN 涂层抗氧化性能,涂层在 550 ℃下的耐磨性能最佳。研究结果详细对比分析不同 Cr 元素掺杂含量对 MoCrN 涂层力学性能及摩擦学性能的作用规律,揭示了相关影响机制,可为提高 MoN 涂层综合性能提供参考。

    Abstract

    Foil air bearings are supported by a layer of air or inert gas during operation, providing several advantages, such as low resistance, wide applicability, energy efficiency, and emission reduction. Thus, they hold great potential for high-temperature and high-speed applications. However, during startup and stopping, there is physical contact between the shaft and foil, which leads to friction and wear. To mitigate this, advanced surface coating technology can be employed to apply solid lubricant coatings to shafts and foils, effectively reducing friction and wear and extending service life. MoN coatings possess excellent mechanical and tribological properties, making them a promising option for foil-air bearings. However, MoO3, which exhibits high volatility above 500 ℃, limits the application of MoN coatings at high temperatures. However, Cr, as a high-temperature-stabilizing element, generates Cr2O3 oxide, which exhibits lubricating effects at both room and high temperatures. Moreover, it formed a dense oxide layer that enhanced the high-temperature oxidation resistance of the coating, thereby reducing wear. This theoretical feasibility suggests that Cr doping can improve the mechanical and tribological properties of MoN coatings. However, the effects of Cr doping on the mechanical properties, organizational structure, and tribological properties of MoN coatings, particularly at medium and high temperatures, remain insufficiently explored and warrant further investigation. MoCrN coatings with varying Cr contents were prepared by high-power impulse magnetron sputtering (HiPIMS) combined with direct magnetron sputtering (DCMS) on different substrate surfaces. The coatings are investigated using various techniques such as SEM, XRD, EDS, nanoindentation equipment, Vickers indentation, scratching instrument, stress meter, step meter, Raman spectrometer, and tribological testing machine to analyze their microstructure, phase composition, mechanical properties, and tribological properties. The findings reveal that all coatings exhibit columnar crystal structure growth, good coating-matrix combination, and a defect-free dense surface. The pure MoN coating consisted of the Mo2N phase, whereas introducing Cr led to the appearance of the CrN phase in the coating. The MoCrN coating consisted of CrN and Mo2N phases with a shift in preferential orientation from the (200) face to the (111) face. In terms of mechanical properties, the hardness gradually decreases from 22.28±0.7 GPa to 11.66±1.18 GPa due to reduced compressive stress and the lower hardness CrN phase. The toughness also decreases with increasing Cr doping. The bonding force initially increased and then decreased, with the highest bonding force of 137 N observed for the coating with a Cr content of 10.4at.%, surpassing the pure MoN coating. Tribological property results indicate that at room temperature, the factor of friction of the coating increases monotonically from 0.38 for the pure MoN coating to 0.63 for the 19.9at. % Cr coating. This increase is attributed to the decrease in the mechanical properties, decrease in the generation of the oxide of the Magnéli phase of Mo, and loosening of the friction layer inside the wear marks with increasing Cr content. Additionally, the wear rate also increases monotonically from 2.59×10−7 mm−3 ·N−1 ·m−1 to 4.95× 10−7 mm−3 ·N−1 ·m−1 , indicating that Cr doping is unfavorable to the room temperature tribological performance of MoN coatings. However, it is important to note that the wear rate is generally low. In the environment of 550 ℃, the friction factor of the coating increases from 0.37 to 0.72 at 10.4at.% Cr due to the generation of globular oxide particles and the disappearance of a continuous smooth oxide enamel layer. Subsequently, with the reduction of oxide particles and the reappearance of a relatively continuous oxide enamel layer, the factor of friction slightly decreases to 0.63 at 19.9at.% Cr. Similar to the factor of friction, the wear rate initially increased with increasing Cr content and then sharply decreased at a Cr content of 19.9at.%. Compared with pure MoN coatings, MoCrN coatings with a Cr content of 19.9at.% exhibit higher friction factor. However, owing to the improvement in the oxidation resistance, the wear rate was reduced by approximately three times compared to that of pure MoN coatings, making them more resistant to high-temperature wear. A comparative analysis of the microstructure, mechanical properties, and tribological properties of the MoCrN coatings with different Cr contents was conducted to elucidate the mechanism of Cr doping. This study provides valuable insights into enhancing the tribological properties of MoN coatings.

  • 0 前言

  • 轴承作为一种标准件,其性能直接决定了机械系统的效率、寿命、安全和可靠性等。近年来,随着航空航天、船舶、新能源等行业的发展,运行环境日益苛刻。传统轴承由于结构复杂和润滑条件要求高,在高温、高速、腐蚀和恶劣气候条件下的应用受到较大限制。空气箔片轴承运转时悬浮在一层空气或者惰性气体上,不同部件之间没有直接物理接触,几乎不会发生磨损,具有阻力低、适用范围广、节能减排等优点[1]。近年来,空气箔片轴承相关理论和试验研究已取得极大进步,在空气循环压缩机、微型发电机、低温涡轮压缩机、涡轮增压器和透平机械等高温、高转速应用领域显示出巨大的发展潜力[2-3]。但是,当箔片空气轴承在启动和停车时,轴和箔片直接接触,产生滑动摩擦,是影响空气箔片轴承寿命和可靠性的关键因素。通过先进的表面涂层技术,在轴和箔片表面施加固体润滑涂层来减少摩擦和磨损[4],是解决上述问题的有效途径之一。

  • 过渡族金属氮化物涂层具有高力学性能、良好的化学稳定性能以及优异的耐磨性等优点,在刀模具、汽车零部件、机械轴承防护等方面获得了广泛应用。其中,MoN 涂层在摩擦过程中,Mo 元素易与空气中的水汽或者 O 元素发生复杂的化学反应,生成 Magnéli 相 MoO3,MoO3 滑移面较多,易于沿平行于(101)晶面方向滑移[5-6],实现低摩擦润滑效果,从而有效提升涂层的摩擦性能,使涂层能够在极端服役环境下长期稳定工作[7]。但MoO3在500℃ 以上具有较强的挥发性,大大降低了 MoN 涂层在高温下的服役寿命[8]。Cr 元素作为一种高温性能稳定的元素,生成的氧化物 Cr2O3 在室温和高温下均具有一定的润滑作用[9],形成的致密氧化层还可以提高涂层的抗高温氧化性[10],从而起到降低磨损的作用。所以,在 MoN 涂层中掺 Cr 元素有望提高其中高温摩擦学性能。

  • 然而,目前有关 MoCrN 涂层的研究更多聚焦于微纳力学以及室温摩擦方面。KLIMASHIN 等[11] 仅研究了 Cr 元素掺杂含量对 MoCrN 涂层相结构和力学性能的影响。YANG[12]对比研究了 MoTiN、 MoAlTiN、MoCrN 和 MoZrN 几种涂层的力学和室温摩擦学性能。研究结果显示,MoCrN 涂层具有较高的硬度( 26.3 GPa)和较低的摩擦因数 (0.295)。但是,有关 MoCrN 涂层在高温下的摩擦学性能鲜有报道,所以研究 Cr 元素掺杂对 MoN 涂层微观组织、力学性能及高温摩擦磨损性能的影响,对发展新型宽温域耐磨润滑涂层具有一定的指导意义。

  • 就表面涂层制备技术而言,物理气相沉积 (Physical vapor deposition,PVD)技术因具有涂层制备温度低、基体适用范围广、涂层精确可控、对环境绿色无污染等优势[13],已经成为 MoN 基涂层的重要制备方式之一。与传统的直流磁控溅射(Direct current magnetron sputtering,DCMS)技术不同,近几年新发展的高功率脉冲磁控溅射(High power inpulse magnetron sputtering,HiPIMS)技术,通过采用低频率(<10 kHz)、高峰值功率(kW / cm2)和较低的脉冲占空比(<10 %)来实现溅射材料的高离化率,产生高达 1018~1019 m−3 量级的等离子体密度,可实现对 MoCrN 等多元涂层组分和结构的精确调控,提高涂层的致密性和均匀性[14]。对此,本文采用 HiPIMS 复合 DCMS 技术制备掺杂不同 Cr 元素含量的 MoCrN 涂层,研究 Cr 元素对 MoCrN 涂层微观组织、力学性能、高温抗氧化性能和宽温域摩擦磨损性能的影响,并揭示涂层失效机理。

  • 1 试验

  • 1.1 涂层制备

  • 采用 HiPIMS 技术,在硅片、高速钢、镍基高温合金基体上沉积不同 Cr 元素掺杂含量的 MoCrN 涂层,设备示意图如图1 所示。

  • 图1 设备示意图

  • Fig.1 Schematic diagram of the equipment

  • 在镀膜前,将基体分别在丙酮、无水乙醇中超声清洗 15 min。然后使用导电胶将基体贴附在基架上,并置于真空腔室,待本底真空抽至 30 μPa 时,采用线性阳极层离子束对基体刻蚀 30 min,以去除基体表面的氧化层和吸附物,刻蚀工艺为:氩气流量 45 mL / min、离子源电流 0.2 A、电压 1 200 V、偏压−200 V。随后进行涂层制备,首先在基体表面沉积 Cr 过渡层,Cr 靶连接 HiPIMS 电源后,将平均功率控制在 1.5 kW,占空比、脉宽和频率分别设置为 5%、50 μs 和 1 000 Hz,偏压设置为−200 V,沉积时间 15 min,过渡层厚度约为 200 nm。之后沉积不同 Cr 元素掺杂含量的 MoCrN 涂层,偏压设置为−150 V,氩气流量 50 mL / min,氮气流量 60 mL / min。Cr 靶连接直流电源,控制所通电流从 0 A 以 0.5 A 梯度增加至 2 A。Mo 靶连接 HiPIMS 电源,平均功率 1 700 W,占空比、脉宽和频率设置为 2.5%、50 μs 和 500 Hz。为使涂层厚度尽量保持一致,Cr 靶电流每增加一个梯度,沉积时间减少 10 min。各 MoCrN 涂层具体的沉积参数如表1 所示。

  • 表1 MoCrN 涂层的沉积参数

  • Table1 Deposition parameters of the MoCrN coatings

  • 1.2 微观结构表征

  • 采用 D8-Advance X 射线衍射仪(XRD)测试高速钢上样品的相组成。使用场发射扫描电子显微镜(Verios G4 UC)观察硅片上涂层的截面形貌,借助配备有能谱仪(EDS)的 Quanta250 FEG 扫描电子显微镜(SEM)观察硅片上样品的表面形貌、成分以及摩擦测试后的磨痕形貌,工作电压为 15 kV。使用深圳市速普仪器有限公司生产的 SuPro FST5000 型薄膜应力仪测试硅片上涂层的内应力。该应力仪基于基片弯曲法原理,利用 Stoney 方程,测试各种刚性基体表面的薄膜应力。采用 MTS G200 纳米压痕设备测试高速钢上涂层的硬度(H) 和弹性模量(E),压入深度为 500 nm。为减小测试误差,每个样品进行六次重复测试,取平均值。为降低基体对硬度测试的影响,选取压入深度为涂层 1 / 10 厚度的数值。采用瑞士 Revetest 划痕仪对高速钢基体涂层结合力进行测试,测试采用金刚石针头,变载荷模式,最大载荷为 150 N。借助 MVS-1000 D1 型 Vickers 压痕仪,以 0.5 N 的力对高速钢上的涂层进行压痕测试,以表征涂层的韧性,保载时间为 10 s。采用共聚焦显微拉曼光谱仪(RENISHAW) 观察涂层摩擦后物相的变化(波长 532 nm)。

  • 1.3 摩擦学测试

  • 采用球盘式摩擦试验机(安东帕,TRB 3)进行室温摩擦试验,测试镍基高温合金基体上涂层耐摩擦磨损性能。测试条件如下:摩擦副为φ 6 mm 的 Al2O3 球、磨痕半径 5 mm、摩擦速度 5 cm / s、载荷 5 N(赫兹接触压强为 1 333.6~1 533.3 MPa)、摩擦距离 200 m。

  • 使用高温球盘摩擦试验机(安东帕,THT)研究镍基高温合金基体上涂层在 550℃下的摩擦学性能。对摩副为φ 6 mm Al2O3 球,转速、载荷、半径和滑动距离分别为 5 cm / s、2 N(赫兹接触压强982.6~1 129.8 MPa)、5 mm、100 m 和 200 m。磨损率(WR)通过以下公式[15]计算:

  • WR=SlNL
    (1)
  • 式中,S 为磨痕截面积(mm 2),l 为磨痕长度(mm), N 为外加载荷(N),L 为摩擦总路程(m)。

  • 2 结果与讨论

  • 2.1 涂层截面和表面形貌

  • 图2 给出了 MoCrN 涂层的表截面形貌。由表面形貌(图2a~2e)观察可知,涂层表面均匀致密,无明显裂纹以及孔洞,这与高离化 HiPIMS 技术的使用有关。Cr 元素掺杂含量对涂层表面形貌和晶粒尺寸的影响不大。由截面形貌(图2a~2e)研究可知,所有涂层均含两层:Cr 过渡层和 MoCrN 层。膜基界面尖锐清晰,涂层与基体结合较好。涂层都呈典型的柱状晶结构生长,与其他报道一致[16],且柱状晶尺寸随 Cr 元素掺杂含量调控变化不大。由于随掺杂 Cr 元素含量的增加,增大了 Cr 靶的功率,使涂层的总厚度从 3.15 μm 单调递增至 4.40 μm。

  • 图2 MoCrN 涂层表面和截面形貌

  • Fig.2 Surface and cross-sectional morphologies of MoCrN coatings

  • 表2 列出了五种不同 MoCrN 涂层(S1~S5) 的化学成分。根据 EDS 分析结果,各涂层中 N 元素含量基本稳定在原子分数 40%左右,为亚化学计量比状态。调控掺杂 Cr 元素含量变化从 4.8at.%增加至 19.9at.%,Mo 元素含量随着 Cr 元素含量的单调增加而逐渐降低。

  • 表2 MoCrN 涂层化学成分和厚度值

  • Table2 Chemical composition and thickness of the MoCrN coatings

  • 2.2 涂层的微结构特征

  • 图3 给出了掺杂不同 Cr 元素含量 MoCrN 涂层的 XRD 图谱。结果显示,MoN 涂层由 Mo2N 相组成,MoCrN 涂层由立方 Mo2N(ICDD 25-1366)以及 CrN(ICDD 11-0065)相组成。随着 Cr 元素含量的增加,涂层择优取向由(200)转变为(111)晶面,衍射峰强度也逐渐增加,表明涂层结晶程度逐渐提高。在 44.5°以及 82°附近的衍射峰为基体峰,并且基体衍射峰强度随涂层衍射峰强度增加而逐渐降低。这是因为当涂层较厚时,由于 X 射线探测深度有限,基体衍射峰强度减弱。结合 XRD 和涂层成分分析发现,N 元素含量高于理想的化学计量比,并且随着 Cr 元素含量的增加,化学计量比逐渐趋于正常。多余的 N 原子可能以间隙固溶体的形式存在于物相晶格中。随着 Cr 元素含量的增加,涂层的衍射峰逐渐向高角度偏移,这可能是小原子半径的 Cr 元素固溶进 Mo2N 晶格,以及涂层中间隙固溶的 N 元素含量降低共同作用所导致。

  • 图3 MoCrN 涂层的 XRD 谱图和部分局部放大图

  • Fig.3 XRD patterns partial local magnification and of MoCrN coatings

  • 采用 Stoney 公式计算 MoCrN 涂层的宏观平均内应力 σf,其方程[17]为:

  • σf=16Eshs21-vshc1Rs-1Rc
    (2)
  • 式中,Esνs 分别为基体材料的弹性模量(GPa) 与泊松比,hs为基体厚度(μm),hc为涂层厚度(Å); Rs 为涂层的曲率半径(Å),Rc为基体曲率半径(Å)。

  • 由应力计算结果(图4)可知,随着 Cr 元素掺杂含量的提高,涂层中的压应力从 S1 涂层的 −2 002.5 MPa 单调递减至−141.7 MPa。应力的降低可归因于相较于 Mo 元素,Cr 原子具有较小的原子质量,随着 Cr 原子的加入,原子轰击作用减弱, MoCrN 涂层所受应力减小。同时,占据间隙位置的 N 原子数量逐渐减少可能也导致内应力的降低[18]

  • 图4 MoCrN 涂层残余应力变化趋势

  • Fig.4 Variation trend of residual stress of the MoCrN coatings

  • 2.3 涂层的力学性能

  • 图5a显示了MoCrN涂层的硬度以及弹性模量。图5b 为对应的 H / EH 3 / E2 值,分别表示涂层的抗弹性变形能力(韧性)与抵抗塑性变形的能力。

  • 图5 不同 Cr 元素含量 MoCrN 涂层的纳米压痕图

  • Fig.5 Nanoindentation of MoCrN coatings with different Cr content

  • 从图5a 中可以看出,随着 Cr 元素含量的增加,硬度从 S1 涂层的 22.28±0.7 GPa 逐渐降低至 S5 涂层的 11.66±1.18 GPa,H / EH3 / E2 的值也从 S1 涂层开始单调下降。硬度及弹性模量的下降可归因于随着 Cr 元素含量的增加,Mo2N 相逐渐减少,而相对硬度和弹性模量更低的CrN相不断增加[19]以及压应力的降低[20]

  • 为进一步表征涂层的韧性,采用 0.5 N 的力对涂层进行维氏压痕测试,压痕形貌如图6 所示。由图6a、6b 可见,S1 与 S2 涂层仅在压痕边缘出现细小的环形裂纹。据文献报道,环形裂纹的出现是由于涂层的变形与基体变形不匹配,受到拉应力所致[21]。非连续环形裂纹特征表明涂层具有相对较好的断裂韧性,并且 S1 涂层相较于 S2 涂层具有更少的环形裂纹,其韧性最高。从 S3 涂层开始,裂纹形式由环形裂纹转变为径向裂纹,其应力集中只能通过压痕的棱角处尖端释放,表现为径向裂纹,因此涂层的断裂韧性变差。但因为这些裂纹的长度还不能满足使用经验公式[22]的范围(即裂纹长度必须是压痕对角线长度的三倍以上),因此,只能从图中测得的裂纹长度中进行半定量的比较。从图6c~6e 可以观察到,随着 Cr 元素含量的增加,裂纹长度从 1 μm 增加至 5 μm,表明韧性逐渐变差。

  • 图6 S1~S5 样品的维氏压痕形貌

  • Fig.6 Vickers indentation morphologies of samples S1-S5

  • 综上所述,随着 Cr 元素含量的增加,涂层的韧性呈下降趋势。一般而言,当涂层承受外加拉应力时,会加快裂纹形成和扩展。相反,涂层中存在适当的压应力可提高涂层的韧性[23]。S1~S5 涂层所受压应力逐渐降低,也是涂层韧性降低的关键因素之一。

  • 膜基结合力作为评价涂层与基体结合牢靠与否的指标,也是影响涂层使用寿命的关键性能。采用划痕仪对涂层进行测试,将涂层出现剥落并且基体完全暴露时对应的载荷定义为膜基结合力,结果如图7 所示。S1~S5 涂层的结合力分别约为 108、130、 137、106 和 62 N。根据胡爱萍等[24]的研究,残余应力越小,涂层与基体间结合强度越大。当涂层中存在较高压应力时,涂层与基体分离而起皱,从而导致涂层开裂,降低涂层的结合强度,所以涂层中压应力的降低使 S1~S3 涂层的结合力逐渐增加。但随着掺杂 Cr 元素含量的增加,涂层的硬度降低,导致其承载能力变差,以及韧性和抗塑性变形能力的降低使涂层在划痕过程中产生大块剥落,导致 S4 和 S5 涂层在 106 和 62 N 时便完全暴露基体,从而使涂层失效。

  • 对图7a1~7a5 局部剥落区域进一步观察(图7b1、7b2)可知,除了膜基结合力强度不同,各个样品划痕边缘剥落形貌也有显著差异。对于 S1 和 S2 涂层,在划动的金刚石压头挤压下,涂层表现出良好的韧性,划痕内部存在少量剥落,形成连续延展性穿孔。而 S3、S4、S5 涂层破坏是由沿划痕侧面的大块楔形剥落引起的。

  • 图7 S1~S5 样品的划痕形貌、膜基结合力以及裂纹扩展区域放大图

  • Fig.7 Scratch morphologies, adhesion strength and enlarged images of crack propagation of S1-S5 samples

  • 2.4 室温摩擦

  • 图8 为掺杂不同 Cr 元素含量的 MoCrN 涂层在室温下的摩擦因数曲线、平均摩擦因数与磨损率结果。由图8a 可以看出,涂层摩擦因数曲线分为初始磨合和稳定磨损两个阶段[25],随着掺杂 Cr 元素含量的增加,涂层磨合期变长。由图8b 可知,随着涂层中 Cr 元素含量的增加,平均摩擦因数由 S1 涂层的 0.38 单调递增至 S5 涂层的 0.63。磨损率也由2.59×10−7 mm−3 ·N−1 ·m−1 单调递增至 4.95×10 −7 mm−3 ·N−1 ·m−1,说明 Cr 元素掺杂对 MoN 涂层的室温摩擦学性能不利,但磨损率总体处于较低水平。

  • 图8 室温下 MoCrN 涂层的摩擦学性能

  • Fig.8 Tribological property of MoCrN coatings at room temperature

  • 图9 为 MoCrN 涂层室温摩擦后磨痕表面形貌,可以看出,所有样品磨损轨迹内部沿滑动方向形成一些沟槽和划痕,这表明发生了磨粒磨损。局部放大图(图9b1)显示 S1 涂层磨痕内部有大量鳞片状摩擦层,面扫图显示在摩擦层区域有 O 元素的富集和 Mo 元素的均匀分布,表明其为 Mo 元素的氧化物。摩擦层的形成是由于在摩擦闪温作用下,Mo 发生氧化生成氧化物磨削,而后在反复摩擦过程中,磨削黏附积累,形成鳞片状摩擦层,使磨球与涂层界面隔开,从而实现减摩耐磨效果。由图9a2~9b5可以看出,随着 Cr 元素含量的增加,剥落的涂层碎片增多,并且 Cr 元素掺杂使磨削堆积层疏松,对涂层的保护作用减弱,这也是涂层磨损率与摩擦因数升高的原因。另外,经典摩擦理论认为,涂层硬度越高,在摩擦过程中产生的裂纹和颗粒越少,涂层的摩擦性能也越好。具体到 MoCrN 涂层,其硬度随 Cr 元素含量的增加而逐渐降低,导致摩擦因数逐渐升高。

  • 图9 室温摩擦后 S1~S5 样品的磨痕形貌,局部放大图以及主要元素分布

  • Fig.9 Wear track morphology, partial magnification and main elements distribution of S1-S5 sample after friction at room temperature

  • 研究表明,高硬度能够提高涂层的单位载荷抗塑性变形能力,减少涂层与对磨球之间的接触面积。 Archards[26]公式给出了涂层硬度与磨损率之间的关系,该公式可表述如下:

  • VL=KWH
    (3)
  • 式中,V 为涂层磨损体积(m 3),L 为摩擦总路程(m), K 为 Archards 系数,W 为外加载荷(N),H 为涂层硬度(GPa)。

  • 本试验中,LW 恒定为 200 m、5 N,所以,根据 Archards 公式,磨损率与涂层的硬度成反比,与试验中所得数据一致。

  • 为了进一步分析磨痕内部氧化物的形成和演变,探讨摩擦化学反应,阐明摩擦磨损机制,对涂层室温摩擦后的磨痕内部进行拉曼分析,结果如图10 所示。从图中可以看出 S1 涂层磨痕内部生成了 MoO3、MoO3-x 以及 Mo4O11 等具有良好润滑效果的 Magnéli 相氧化物,所以具有低的摩擦因数[727-29]。随着 Cr 元素的掺入,涂层中 Mo 元素含量减少,摩擦后磨痕内 Mo 氧化物的含量也减少。同时,磨痕内部没有生成良好润滑效果的 Cr2O3,而是其他的 Cr 氧化物 CrO2 [30],这也是摩擦因数升高的原因[31]

  • 图10 室温摩擦后磨痕内部拉曼光谱

  • Fig.10 Raman spectra inside the wear marks after friction at room temperature

  • 2.5 高温摩擦

  • 图11 为掺杂不同 Cr 元素含量 MoCrN 涂层在 550℃进行 100 m 摩擦后的摩擦因数曲线、平均摩擦因数与磨损率结果。由图11a 可知,相比于室温摩擦学曲线,在稳定状态下,摩擦曲线有明显的波动。其原因是涂层在高温下结合力降低,并且有氧化现象,摩擦过程中出现凹坑、氧化物颗粒和剥落[32]。由图11b 可知,随着涂层中 Cr 元素含量的增加,平均摩擦因数从 S1 涂层的 0.37 增加至最高 S3涂层的 0.72,后又逐渐降低至 S5 涂层的 0.63。虽然 S4 涂层的平均摩擦因数略低于 S3 涂层,但在稳定磨损阶段的摩擦因数却更高。与摩擦因数类似,磨损率随着 Cr 元素含量的增加先单调上升,当 Cr 元素含量为 19.9at.%时又急剧下降,对应最窄且最浅的磨痕二维形貌,如图11c 所示,说明 S5 涂层具有最好的抗高温磨损性能。

  • 图11 550℃、100 m 摩擦距离下 MoCrN 涂层的摩擦学性能

  • Fig.11 Tribological property of MoCrN coatings at 550℃ and 100 m friction distance

  • 由图11 可见,S5 涂层具有最低的磨损率,并且涂层摩擦因数在 100 m 均趋于稳定。为了进一步验证 S5 涂层在更长的摩擦距离下的摩擦磨损性能,对 S1 与 S5 涂层进行 550℃、200 m、载荷 2 N 的高温摩擦,结果如图12 所示。从图中可以看出,当摩擦距离增加至 200 m 后,具有与摩擦距离 100 m 时基本相同的摩擦因数-距离曲线以及磨损率,涂层仍处于稳定的摩擦磨损阶段。证明 S5 涂层在高温以及较长的摩擦距离条件下仍具有稳定的摩擦学性能以及降低涂层磨损率的作用。

  • 图13 显示了在 550℃下进行 100 m 摩擦后的涂层表面形貌图。图13a~13d 可以观察到涂层表面具有方形析出物,并且方形析出物的尺寸随着 Cr 元素含量的增加而增加,在析出物与涂层表面还可观察到裂纹的产生。对析出物进行 EDS 检测,结果如图13f 所示,析出物由 Mo 与 O 元素组成,说明析出物为 Mo 的氧化物颗粒。KOMIYAMA 等[33]也观察到了类似的形貌。此外,涂层表面 EDS 分析表明,除了 S5 涂层外,其余四种涂层的表面几乎完全氧化,说明 550℃时发生了严重的氧化磨损。而 S5 涂层 N 元素含量较高,且表面氧化物颗粒尺寸较小,涂层更加致密,说明掺杂 Cr 元素含量为 19.9at.%时提升了涂层的抗高温氧化性能。

  • 图12 550℃、200 m 摩擦距离下 MoCrN 涂层的摩擦因数-距离曲线与磨损率

  • Fig.12 Friction factor-distance curve and wear rate of MoCrN coatings at 550℃ and 200 m friction distance

  • 图13 550℃、100 m 摩擦距离下 S1~S5 样品的表面形貌及选区 EDS 结果

  • Fig.13 Surface morphology and EDS results in selected regions of S1-S5 samples at 550℃ and 100 m friction distance

  • 为了研究 MoCrN 涂层的磨损机理,对 550℃ 下进行100 m摩擦后涂层的磨痕表面进行了SEM观察,如图14 所示。结果显示,五种涂层的磨损形貌存在明显差异。如图14a1 所示,S1 涂层磨痕两侧没有观察到明显的磨屑,磨痕表面比较光滑,连续且致密的氧化物釉质层覆盖整个磨损轨迹,具有最低的摩擦因数和较低的磨损率。局部放大图 (图14b1)显示,磨痕内部有黏着磨损的痕迹,表面还存在一些压实颗粒,类似的压实颗粒在其他样品中也可观察到。S2 涂层磨痕内部也较为光滑(图14a2、14b2),相对连续的氧化物釉质层使涂层具有平稳且较低的摩擦因数,但磨痕内部出现了球状氧化物颗粒,使对磨球与涂层间的表面粗糙度增大,摩擦因数上升,同时还可能作为磨粒磨损的磨料,增加磨损率。随着 Cr 元素含量的进一步增加, S3 与 S4 涂层磨痕内部(图14a3、14b3和 14a4、14b4) 也具有被压实的磨屑与黏着磨损的痕迹,但由于被压实的磨屑较少,不能形成连续润滑氧化层,并且球状氧化物颗粒的增多导致摩擦因数与磨损率进一步升高。

  • 图14 550℃、摩擦距离 100 m 时 S1~S5 样品的磨痕形貌、局部放大图及主要元素分布

  • Fig.14 Wear track morphology, partial magnification and main elements distribution of S1-S5 samples after friction at 550℃ and 100 m friction distance

  • S5 涂层(图14a5、14b5)内部球状氧化物颗粒尺寸较小,一些磨屑被压实成斑块状,形成相对连续的氧化物釉质层,使摩擦因数相较于 S3 和 S4 涂层略有降低[7],但明显的凹坑与层片状剥落使其摩擦因数波动较大。在 550℃环境下,氧化因素对涂层的耐磨性能影响较大,因掺杂 Cr 元素的含量最高,S5 涂层抗高温氧化性能最优,其磨损率也最低[34]。图14c1~14c5 面扫结果显示,S1~S3 涂层元素分布均匀,没有元素的明显富集,这是由于涂层基本被完全氧化。S4 涂层磨屑堆积区域出现 Mo 元素的富集,而 Cr 元素含量较少。在 S5 涂层的磨痕内部,由磨屑压实形成的连续氧化层区域观察到了 O 元素的富集。综上,550℃摩擦时,MoCrN 涂层的磨损机制为氧化磨损与黏着磨损,并伴随着磨粒磨损。

  • 为了进一步分析磨痕表面氧化物的形成和演变,探讨摩擦化学反应,阐明高温减摩耐磨机制,对涂层在 550℃下摩擦 100 m 后的磨痕内部进行拉曼分析,结果如图15 所示。可以看出涂层内部生成了 Mo 氧化物 MoO3、MoO3x、MoO2 [2735-36],随着 Cr 元素的掺杂,磨痕内部生成了 Cr 氧化物 Cr2O5 与 Cr3O8 [37]。与室温摩擦结果类似,随着 Cr 元素含量的增加,代表 Mo 氧化物的拉曼峰减少,并且涂层内部也没有生成具有良好润滑性能的 Cr2O3,导致样品摩擦因数随着 Cr 元素掺杂量的增加而升高。

  • 图15 MoCrN 涂层 550℃、摩擦距离 100 m 时磨痕内部的拉曼光谱

  • Fig.15 Raman spectra inside the wear marks of MoCrN coatings after at 550℃ and 100 m friction distance

  • 3 结论

  • 采用 HiPIMS 复合 DCMS 技术在镍基高温合金、高速钢、硅片等基体表面成功制备了系列 MoCrN 涂层,对比研究了不同 Cr 元素掺杂含量对 MoN 涂层微观结构、力学性能及常温与 550℃摩擦学性能的影响。主要结论如下所述:

  • (1)微观结构方面:所有涂层均呈柱状晶结构生长;纯 MoN 涂层由 Mo2N 相构成,随着 Cr 元素的掺入,涂层中出现 CrN 相,且择优取向由(200)转变为(111)晶面。

  • (2)力学性能方面:当 Cr 元素掺杂量为 10.4at.% 时,结合力最高,可达 137 N,相较于纯 MoN 涂层提高了 29 N。但当 Cr 元素掺杂量继续增加后,涂层承载能力和韧性变差,产生大块楔形剥落,使得涂层结合力降低;由于 Mo2N 相含量降低、CrN 相生成及涂层压应力降低,涂层硬度与韧性随 Cr 元素含量的增加而不断降低。

  • (3)摩擦学性能方面:在室温环境下,由于力学性能的降低以及摩擦产物和磨痕形貌的转变,涂层摩擦因数与磨损率随着 Cr 元素掺杂量的增加而不断升高,但所有涂层磨损率总体处于较低水平 (<5×10−7 mm 3 ·N−1 ·m−1);在 550℃环境下,与纯MoN涂层相比,Cr元素含量为19.9at.%的MoCrN 涂层摩擦因数较高,但由于抗氧化性能的提高,磨损率相较于纯 MoN 涂层降低约三倍。

  • 参考文献

    • [1] DELLACORTE C.Oil-free shaft support system rotordynamics:past,present and future challenges and opportunities[J].Mechanical Systems and Signal Processing,2012,29:67-76.

    • [2] DELLACORTE C,RADIL K C,BRUCKNER R J,et al.Design,fabrication,and performance of open source generation I and II compliant hydrodynamic gas foil bearings[J].Tribology Transactions,2008,51(3):254-264.

    • [3] HESHMAT H.Operation of foil bearings beyond the bending critical mode[J].Journal of TribologyTransactions of the ASME,2000,122(1):192-198.

    • [4] 邓建,胡连桃,黄昌华,等.箔片空气轴承的新近技术突破与应用进展[J].轴承,2004,8:41-44.DENG Jian,HU Liantao,HUANG Changhua,et al.Recent technological breakthroughs and application advances in foil air bearings[J].Bearing,2004,8:41-44.(in Chinese)

    • [5] WANG D,SU D S,SCHLÖGL R.Electron beam induced transformation of MoO3 to MoO2 and a new phase MoO[J].Chemlnform,2004,35(38):1007-1014.

    • [6] VEPREK S,VEPREK-HEIJMAN M G J,KARVANKOVA P,et al.Different approaches to superhard coatings and nanocomposites[J].Thin Solid Films,2005,476(1):1-29.

    • [7] CURA M E,LIU X W,KANERVA U,et al.Friction behavior of alumina/molybdenum composites and formation of MoO3−x phase at 400 ℃[J].Tribology International,2015,87:23-31.

    • [8] GASSNER G,MAYRHOFER P H,KUTSCHEJ K,et al.Magnéli phase formation of PVD Mo-N and W-N coatings[J].Surface and Coatings Technology,2006,201(6):3335-3341.

    • [9] ZHOU W,ZHOU K,LI Y,et al.High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings[J].Applied Surface Science,2017,416:33-44.

    • [10] HAMDANI F,ABE H,TER-OVANESSIAN B,et al.Effect of chromium content on the oxidation behavior of Ni-Cr model alloys in superheated steam[J].Metallurgical and Materials Transactions A,2015,46(5):2285-2293.

    • [11] KLIMASHIN F F,RIEDL H,PRIMETZHOFER D,et al.Composition driven phase evolution and mechanical properties of Mo-Cr-N hard coatings[J].Journal of Applied Physics,2015,118(2):025305.

    • [12] YANG Q.Wear resistance and solid lubricity of molybdenum-containing nitride coatings deposited by cathodic arc evaporation[J].Surface and Coatings Technology,2017,332:283-295.

    • [13] JU H,XU J.Microstructure,oxidation resistance,mechanical and tribological properties of Ti-Y-N films by reactive magnetron sputtering[J].Surface and Coatings Technology,2015,283:311-317.

    • [14] WU Z,TIAN X,GONG C,et al.Micrograph and structure of CrN films prepared by plasma immersion ion implantation and deposition using HPPMS plasma source[J].Surface and Coatings Technology,2013,229:210-216.

    • [15] CHEN J,CAI W.Effect of scratching frequency on the tribocorrosion resistance of Al-Mn amorphous thin films[J].Wear,2019,426-427:1457-1465.

    • [16] HUANG K,CAO X,KONG L,et al.Effect of Ag content on friction and wear properties of Ag and V co-doped CrN coatings at 25-700 ℃[J].Ceramics International,2021,47(24):35021-35028.

    • [17] JANSSEN G C A M,ABDALLA M M,VAN KEULEN F,et al.Celebrating the 100th anniversary of the Stoney equation for film stress:developments from polycrystalline steel strips to single crystal silicon wafers[J].Thin Solid Films,2009,517(6):1858-1867.

    • [18] XU J,JU H,YU L.Microstructure,oxidation resistance,mechanical and tribological properties of Mo-Al-N films by reactive magnetron sputtering[J].Vacuum,2014,103:21-27.

    • [19] GILEWICZ A,WARCHOLINSKI B.Deposition and characterisation of Mo2N/CrN multilayer coatings prepared by cathodic arc evaporation[J].Surface and Coatings Technology,2015,279:126-133.

    • [20] MEI H,LUO Q,HUANG X,et al.Influence of lubricious oxides formation on the tribological behavior of Mo-V-Cu-N coatings deposited by HiPIMS[J].Surface and Coatings Technology,2019,358:947-957.

    • [21] MA K J,BLOYCE A,BELL T.Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multilayer coatings[J].Surface and Coatings Technology,1995,76-77:297-302.

    • [22] LAWN B R,EVANS A G,MARSHALL D B.Elastic/plastic indentation damage in ceramics:the median/radial crack system[J].Journal of the American Ceramic Society,2006,63(9-10):574-581.

    • [23] HOGMARK S,JACOBSON S,LARSSON M.Design and evaluation of tribological coatings[J].Wear,2000,246(1-2):20-33.

    • [24] 胡爱萍,孔德军,朱伟.TiN 涂层残余应力对其界面结合强度的影响[J].工具技术,2008,11:34-36.HU Aiping,KONG Dejun,ZHU Wei.Effects of residual stresses of TiN coating on its interfacial bonding strength[J].Tool Engineering,2008,11:34-36.(in Chinese)

    • [25] LIN L,SUN C,EMRICH S,et al.Assessment of the lubrication ability of polymer materials in the fluid-free steel/steel tribosystem[J].Wear,2020,452-453:203287.

    • [26] YANG J,JIANG Y,YUAN Z,et al.Effect of carbon content on the microstructure and properties of W-Si-C-N coatings fabricated by magnetron sputtering[J].Materials Science and Engineering:B,2012,177(13):1120-1125.

    • [27] CAMACHO-LÓPEZ M A,ESCOBAR-ALARCÓN L,PICQUART M,et al.Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation[J].Optical Materials,2011,33(3):480-484.

    • [28] ATUCHIN V V,GAVRILOVA T A,GRIGORIEVA T I,et al.Sublimation growth and vibrational microspectrometry of α-MoO3 single crystals[J].Journal of Crystal Growth,2011,318(1):987-990.

    • [29] WANG L,LI H X,XUE Z L.Synthesis of h-MoO3 nanorods and h-/α-MoO3 composites and their photocatalytic performance[J].Transactions of Nonferrous Metals Society of China,2023,33(7):2155-2167.

    • [30] HARDCASTLE F D,WACHS I E.Raman spectroscopy of chromium oxide supported on Al2O3,TiO2 and SiO2:A comparative study[J].Journal of Molecular Catalysis,1988,46(1-3):173-186.

    • [31] SÁNCHEZ-LÓPEZ J C,CONTRERAS A,DOMÍNGUEZMEISTER S,et al.Tribological behaviour at high temperature of hard CrAlN coatings doped with Y or Zr[J].Thin Solid Films,2014,550:413-420.

    • [32] ZHAO H,HU L,LI C,et al.Influence of metallic Cr addition on the phase structure and mechanical properties of plasma-sprayed Ti-Si-C coatings[J].Ceramics International,2021,47(12):17570-17579.

    • [33] KOMIYAMA S,SUTOU Y,OIKAWA K,et al.Wear and oxidation behavior of reactive sputtered δ-(Ti,Mo)N films deposited at different nitrogen gas flow rates[J].Tribology International,2015,87:32-39.

    • [34] RAJPUT S S,GANGOPADHYAY S,YAQUB T B,et al.Room and high temperature tribological performance of CrAlN(Ag)coatings:the influence of Ag additions[J].Surface and Coatings Technology,2022,450:129011.

    • [35] DE SÁ M L,NOBRE F X,SILVA L D S,et al.Preparation of new h-MoO3 rod-like microcrystals for effective removal of cationic dye in aqueous solution[J].International Journal of Environmental Research,2021,15(1):105-124.

    • [36] 刘红利,单媛媛,杜朕屹.MoO3−x/SiO2催化剂的制备及其在氧化脱硫中的应用[J].现代化工,2023,43(2):173-179.LIU Hongli,SHAN Yuanyuan,DU Zhenyi.Preparation of MoO3−x /SiO2 catalysts and application in oxidative desulfurization[J].Modern Chemical Industry,2023,43(2):173-179.(in Chinese)

    • [37] MASLAR J E,HURST W S,VANDERAH T A,et al.The Raman spectra of Cr3O8 and Cr2O5[J].Journal of Raman Spectroscopy,2001,32(3):201-206.

  • 参考文献

    • [1] DELLACORTE C.Oil-free shaft support system rotordynamics:past,present and future challenges and opportunities[J].Mechanical Systems and Signal Processing,2012,29:67-76.

    • [2] DELLACORTE C,RADIL K C,BRUCKNER R J,et al.Design,fabrication,and performance of open source generation I and II compliant hydrodynamic gas foil bearings[J].Tribology Transactions,2008,51(3):254-264.

    • [3] HESHMAT H.Operation of foil bearings beyond the bending critical mode[J].Journal of TribologyTransactions of the ASME,2000,122(1):192-198.

    • [4] 邓建,胡连桃,黄昌华,等.箔片空气轴承的新近技术突破与应用进展[J].轴承,2004,8:41-44.DENG Jian,HU Liantao,HUANG Changhua,et al.Recent technological breakthroughs and application advances in foil air bearings[J].Bearing,2004,8:41-44.(in Chinese)

    • [5] WANG D,SU D S,SCHLÖGL R.Electron beam induced transformation of MoO3 to MoO2 and a new phase MoO[J].Chemlnform,2004,35(38):1007-1014.

    • [6] VEPREK S,VEPREK-HEIJMAN M G J,KARVANKOVA P,et al.Different approaches to superhard coatings and nanocomposites[J].Thin Solid Films,2005,476(1):1-29.

    • [7] CURA M E,LIU X W,KANERVA U,et al.Friction behavior of alumina/molybdenum composites and formation of MoO3−x phase at 400 ℃[J].Tribology International,2015,87:23-31.

    • [8] GASSNER G,MAYRHOFER P H,KUTSCHEJ K,et al.Magnéli phase formation of PVD Mo-N and W-N coatings[J].Surface and Coatings Technology,2006,201(6):3335-3341.

    • [9] ZHOU W,ZHOU K,LI Y,et al.High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings[J].Applied Surface Science,2017,416:33-44.

    • [10] HAMDANI F,ABE H,TER-OVANESSIAN B,et al.Effect of chromium content on the oxidation behavior of Ni-Cr model alloys in superheated steam[J].Metallurgical and Materials Transactions A,2015,46(5):2285-2293.

    • [11] KLIMASHIN F F,RIEDL H,PRIMETZHOFER D,et al.Composition driven phase evolution and mechanical properties of Mo-Cr-N hard coatings[J].Journal of Applied Physics,2015,118(2):025305.

    • [12] YANG Q.Wear resistance and solid lubricity of molybdenum-containing nitride coatings deposited by cathodic arc evaporation[J].Surface and Coatings Technology,2017,332:283-295.

    • [13] JU H,XU J.Microstructure,oxidation resistance,mechanical and tribological properties of Ti-Y-N films by reactive magnetron sputtering[J].Surface and Coatings Technology,2015,283:311-317.

    • [14] WU Z,TIAN X,GONG C,et al.Micrograph and structure of CrN films prepared by plasma immersion ion implantation and deposition using HPPMS plasma source[J].Surface and Coatings Technology,2013,229:210-216.

    • [15] CHEN J,CAI W.Effect of scratching frequency on the tribocorrosion resistance of Al-Mn amorphous thin films[J].Wear,2019,426-427:1457-1465.

    • [16] HUANG K,CAO X,KONG L,et al.Effect of Ag content on friction and wear properties of Ag and V co-doped CrN coatings at 25-700 ℃[J].Ceramics International,2021,47(24):35021-35028.

    • [17] JANSSEN G C A M,ABDALLA M M,VAN KEULEN F,et al.Celebrating the 100th anniversary of the Stoney equation for film stress:developments from polycrystalline steel strips to single crystal silicon wafers[J].Thin Solid Films,2009,517(6):1858-1867.

    • [18] XU J,JU H,YU L.Microstructure,oxidation resistance,mechanical and tribological properties of Mo-Al-N films by reactive magnetron sputtering[J].Vacuum,2014,103:21-27.

    • [19] GILEWICZ A,WARCHOLINSKI B.Deposition and characterisation of Mo2N/CrN multilayer coatings prepared by cathodic arc evaporation[J].Surface and Coatings Technology,2015,279:126-133.

    • [20] MEI H,LUO Q,HUANG X,et al.Influence of lubricious oxides formation on the tribological behavior of Mo-V-Cu-N coatings deposited by HiPIMS[J].Surface and Coatings Technology,2019,358:947-957.

    • [21] MA K J,BLOYCE A,BELL T.Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multilayer coatings[J].Surface and Coatings Technology,1995,76-77:297-302.

    • [22] LAWN B R,EVANS A G,MARSHALL D B.Elastic/plastic indentation damage in ceramics:the median/radial crack system[J].Journal of the American Ceramic Society,2006,63(9-10):574-581.

    • [23] HOGMARK S,JACOBSON S,LARSSON M.Design and evaluation of tribological coatings[J].Wear,2000,246(1-2):20-33.

    • [24] 胡爱萍,孔德军,朱伟.TiN 涂层残余应力对其界面结合强度的影响[J].工具技术,2008,11:34-36.HU Aiping,KONG Dejun,ZHU Wei.Effects of residual stresses of TiN coating on its interfacial bonding strength[J].Tool Engineering,2008,11:34-36.(in Chinese)

    • [25] LIN L,SUN C,EMRICH S,et al.Assessment of the lubrication ability of polymer materials in the fluid-free steel/steel tribosystem[J].Wear,2020,452-453:203287.

    • [26] YANG J,JIANG Y,YUAN Z,et al.Effect of carbon content on the microstructure and properties of W-Si-C-N coatings fabricated by magnetron sputtering[J].Materials Science and Engineering:B,2012,177(13):1120-1125.

    • [27] CAMACHO-LÓPEZ M A,ESCOBAR-ALARCÓN L,PICQUART M,et al.Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation[J].Optical Materials,2011,33(3):480-484.

    • [28] ATUCHIN V V,GAVRILOVA T A,GRIGORIEVA T I,et al.Sublimation growth and vibrational microspectrometry of α-MoO3 single crystals[J].Journal of Crystal Growth,2011,318(1):987-990.

    • [29] WANG L,LI H X,XUE Z L.Synthesis of h-MoO3 nanorods and h-/α-MoO3 composites and their photocatalytic performance[J].Transactions of Nonferrous Metals Society of China,2023,33(7):2155-2167.

    • [30] HARDCASTLE F D,WACHS I E.Raman spectroscopy of chromium oxide supported on Al2O3,TiO2 and SiO2:A comparative study[J].Journal of Molecular Catalysis,1988,46(1-3):173-186.

    • [31] SÁNCHEZ-LÓPEZ J C,CONTRERAS A,DOMÍNGUEZMEISTER S,et al.Tribological behaviour at high temperature of hard CrAlN coatings doped with Y or Zr[J].Thin Solid Films,2014,550:413-420.

    • [32] ZHAO H,HU L,LI C,et al.Influence of metallic Cr addition on the phase structure and mechanical properties of plasma-sprayed Ti-Si-C coatings[J].Ceramics International,2021,47(12):17570-17579.

    • [33] KOMIYAMA S,SUTOU Y,OIKAWA K,et al.Wear and oxidation behavior of reactive sputtered δ-(Ti,Mo)N films deposited at different nitrogen gas flow rates[J].Tribology International,2015,87:32-39.

    • [34] RAJPUT S S,GANGOPADHYAY S,YAQUB T B,et al.Room and high temperature tribological performance of CrAlN(Ag)coatings:the influence of Ag additions[J].Surface and Coatings Technology,2022,450:129011.

    • [35] DE SÁ M L,NOBRE F X,SILVA L D S,et al.Preparation of new h-MoO3 rod-like microcrystals for effective removal of cationic dye in aqueous solution[J].International Journal of Environmental Research,2021,15(1):105-124.

    • [36] 刘红利,单媛媛,杜朕屹.MoO3−x/SiO2催化剂的制备及其在氧化脱硫中的应用[J].现代化工,2023,43(2):173-179.LIU Hongli,SHAN Yuanyuan,DU Zhenyi.Preparation of MoO3−x /SiO2 catalysts and application in oxidative desulfurization[J].Modern Chemical Industry,2023,43(2):173-179.(in Chinese)

    • [37] MASLAR J E,HURST W S,VANDERAH T A,et al.The Raman spectra of Cr3O8 and Cr2O5[J].Journal of Raman Spectroscopy,2001,32(3):201-206.

  • 手机扫一扫看