-
0 前言
-
随着海洋经济的快速发展,越来越多的海工装备用于海洋测量、观测和预报。然而在海水严苛环境中,海工装备关键金属部件,如机械手、液压柱塞和船舶推进器轴承等,将面临刮擦及腐蚀损伤问题,直接影响装备可靠性与寿命[1-3]。表面涂层技术可在不改变金属材料优异力学及加工性能的基础下,延长其服役寿命并实现可靠运行,因此备受关注[4]。
-
类金刚石(Diamond like carbon,DLC)涂层是一类主要由金刚石相 sp 3 和石墨相 sp 2 杂化碳键组成的非晶碳薄膜材料[5],因其兼具高硬度、优异的化学稳定性等,可用于海工装备金属材料部件的抗划伤和腐蚀防护[6-8]。例如,FAYED 等[9]制备的 Si 元素掺杂 DLC(Si-DLC)/ DLC 多层涂层在 3.5wt.% NaCl 溶液中经 1.2 h 测试,可将 2024-T3 Al 基体腐蚀电流密度降低一个数量级。TOTOLIN 等[10]发现,在人工海水 4.5 h 摩擦测试中,W 元素掺杂 DLC 涂层可有效防护 TC4 基体。WEI 等[11]证实,多层结构可使 DLC 涂层具有更好的耐腐蚀性能,同时涂层表面缺陷可能是加速电化学腐蚀的主要因素。LI 等[12]设计了表层增厚 Cr / DLC 多层涂层,该涂层在人工海水 1.5 h 磨蚀测试中,对 316L 基体提供了优异的腐蚀和摩擦磨损防护。
-
前期研究已证实,DLC 涂层可以显著提升多种金属材料耐蚀性,但是鉴于海工装备长期可靠服役要求,其长期防护性能仍有待突破。MAGUIRE 等[13]发现,Si-DLC 涂层显著提高了 316L 耐腐蚀性,但在 Saliveze(人工唾液)生物流体中浸泡 1 个月后,涂层结合强度下降了 75%。LI 等[14]研究了 Si-DLC 涂层在 3.5wt.% NaCl 溶液中短期和长期 (21 d)的腐蚀性能。随着浸泡时间增加,涂层表面产生裂纹并扩展到 316L 基体表面,导致耐腐蚀性能显著降低。TURCIO-ORTEGA 等[15]研究了 DLC 涂层在 0.89wt.% NaCl 溶液中浸泡 3~195 h 的耐腐蚀性。随浸泡时间增加,腐蚀溶液通过涂层孔隙逐渐渗透并到达膜基界面,导致 316L 基体发生局部腐蚀。
-
由于 DLC 涂层在沉积过程中往往会产生大颗粒、针孔等缺陷,以及本征高内应力(可达 10 GPa) 导致涂层易发生剥落等缺点[16-17],目前 DLC 涂层短期腐蚀性能评价(测试时间一般在 2~20 h)难以预测长时间腐蚀防护性能。DLC 涂层在长期服役过程中仍可能存在界面损伤及剥落问题,并导致关键装备的灾难性失效[18-19]。
-
已有研究表明,Si 元素掺杂有利于降低 DLC 涂层应力及提高膜基结合力[20-22],同时在腐蚀过程中涂层中 Si 元素对 O 元素的高化学亲和力易形成 SiOx 钝化层,可阻碍腐蚀性离子渗透[23-25],因此 Si / O 共掺杂 DLC(Si / O-DLC)涂层引起了研究人员的广泛关注。例如,BATORY 等[26]发现 Si / O 掺杂对涂层抗腐蚀性能的提升主要归因于表面SiOx钝化层。YIN 等[27]利用 Si / O-DLC 涂层对 DLC 涂层表面封孔,使涂层低频阻抗值提升了两个数量级。虽然 Si / O-DLC 涂层在腐蚀防护领域已得到初步研究,但其长时间腐蚀性能变化规律尚未获得关注,同时 Si、O 元素在腐蚀防护中的具体作用机理也不明确。
-
因此,本文利用等离子体增强化学气相沉积 ( Plasma enhanced chemical vapor deposition,PECVD)技术在 17-4PH 不锈钢基体上制备了 DLC 涂层和不同 Si / O 元素含量的 Si / O-DLC 涂层。系统研究了 Si / O-DLC 涂层在 3.5wt.% NaCl 溶液中短期(2 h)及长期(360 h)的腐蚀行为,讨论了不同 Si / O 元素含量对涂层长期腐蚀性能的影响规律,并阐明涂层在腐蚀环境下的失效机理。
-
1 试验准备
-
1.1 涂层制备
-
采用电感耦合 PECVD 复合沉积系统(ICP PECVD)制备涂层,设备图如图1 所示。以乙炔 (C2H2)和六甲基二硅氧烷(HMDSO)为前驱体,在 P 型(100)硅片和 17-4PH 不锈钢圆片(直径 17 mm、厚度 3 mm)上沉积涂层。将基体装进真空腔体之前,依次用丙酮和乙醇清洗 20 min,并用烘干机烘干。当腔室真空达到 5 mPa 以下时,在 500 V 负脉冲电压下,使用 Ar 等离子体蚀刻基底表面20 min,以去除粘附在表面的污染物。在沉积DLC 和 Si / O-DLC 涂层过程中,通入 HMDSO 和 C2H2 气体,并保持 C2H2 流量不变(50 mL / min),控制 HMDSO 流量,分别为 0、2、10、20 mL / min,负脉冲电压保持在 600 V,脉冲功率 278 W,电流0.5 A,腔体气压 2.66 Pa。根据 C2H2与 HMDSO 的流量比,将涂层依次命名为 S1~S4。
-
图1 沉积 Si / O-DLC 涂层的 PECVD 系统
-
Fig.1 PECVD system for Si / O-DLC coating deposition
-
1.2 形貌及结构表征
-
涂层表面形貌使用配备能谱仪(EDS)的扫描电子显微镜(Gemini SEM 300)观察。涂层表面及界面结构采用 TF20 型高分辨透射电镜 (High-resolution transmission electron microscope,HRTEM)表征。涂层表面化学成分通过 X 射线光电子能谱仪(XPS,Axis Ultra DLD)表征。在 XPS 测试之前,涂层表面经 Ar+ 刻蚀 1 min 以去除表面吸附物,C 1s 峰(284.8 eV)用于校正电子结合能。涂层化学结构使用傅里叶红外(Fourier-transform infrared spectroscopy,FTIR)光谱(Thermo,Nicolet 6700)进行表征。为排除基体红外吸收,测试基体均为 Si(100)片。涂层的碳键结构通过拉曼光谱(In Via-reflex,Renishaw)进行分析,拉曼光谱测试选用激光波长为 532 nm。采用顺磁电子自旋共振谱仪 (ESR,Bruker E500,德国)分析涂层悬挂键,在室温条件下用 X 波段和 100 kHz 场调制记录 ESR 谱。
-
1.3 腐蚀性能测试
-
采用 Gamry(Reference600+)电化学工作站对基体及涂层改性基体进行原位电化学阻抗谱(EIS) 测试和动电位极化(PDP)测试,以评价涂层耐腐蚀性,测试溶液为质量分数 3.5wt.%的 NaCl 溶液。在测试前用环氧树脂对样品进行封装,暴露面积为 0.282 6 cm2。电化学测试中,待测样品为工作电极,铂片为对电极,Ag / AgCl 电极为参比电极。长期测试中,浸泡时间设定为 360 h。开路电位稳定后依次进行 EIS 和 PDP 测试。EIS 测试频率范围为 1 cHz~0.1 MHz,交流振幅为 10 mV。PDP 测试扫描速度为 1 mV / s,扫描范围为−0.5~+1.0 V(相对于 Ref)。为保证测试结果的准确性,每种样品至少测试三次。
-
腐蚀过程中,金属基体释放到溶液中的金属离子浓度是衡量涂层腐蚀防护性能的重要参数。释放的金属离子越少,表明金属基体损伤程度越轻,涂层防护性能越优异。收集各涂层改性 17-4PH 样品在浸泡 360 h 后的溶液,并通过电感耦合等离子体发射光谱仪(Inductively coupled plasma emission spectroscopy,ICP-OES)(Spectro Arcos II,GER)检测溶出 Fe 离子和 Cr 离子浓度。金属离子浓度标定以 SPEX CertiPrep Inc 公司的溶液作为标准溶液。
-
2 结果与讨论
-
2.1 涂层微观形貌及组分
-
图2 为沉积态 DLC(S1)和 Si / O-DLC(S2~S4)涂层截面 SEM 图。通过控制沉积参数,四种涂层厚度调控在 1.42~1.46 μm 范围内,且涂层结构致密,未出现分层、开裂和剥落等现象。
-
图2 S1~S4 涂层截面 SEM 形貌图
-
Fig.2 Cross-sectional SEM images of S1-S4 coatings
-
XPS 可用于分析涂层元素组成和化学键合状态,化学成分如表1 所示。DLC 涂层中,C 元素含量为 97.9at.%、O 元素含量为 2.1at.%。这里 O 元素可能来自于沉积腔体中的残留气体。Si / O-DLC 涂层中 C 元素含量在 97.9at.%~87.52at.%范围,Si 元素和 O 元素含量分别在 0at.%~7.6at.% 和 2.21at.%~4.88at.%范围,且随着沉积过程中通入的 HMDSO 流量增加,Si 和 O 元素含量均显著增加。图3a 为四种涂层的 C 1s 精细谱。其中位于 285.2± 0.1 和 286.5±0.1 eV 的两个峰分别对应于 sp 3-C 和 C-O 键,结合能为 284.7±0.1 eV 的峰对应于涂层中的 sp 2-C 或 C-Si-O 键[28]。Si / O-DLC 涂层 Si2p 光谱及其拟合结果如图3b 所示。结合能为 100.9±0.2、 101.5±0.2 和 102.4±0.2 eV 的峰分别对应 Si-C、(CH3)3-Si-O 和(CH3)2-Si-O[29-30]。
-
图3 四种涂层的 XPS 谱图
-
Fig.3 XPS spectra of four coatings
-
基于光谱中峰面积可计算相应含量[31],表1 列出了 Si2p 中各涂层 Si 元素化学价态及相对含量。在最低 Si / O 含量下,涂层中 Si-C 含量最多,达到 52.2%。随着 Si / O 含量升高,Si-C 含量逐渐减少,在最高Si / O含量下达到最低,此时涂层中(CH3)3-Si-O 和(CH3)2-Si-O 有机成分占比最高,达到 75.4%。
-
为进一步表征四种涂层化学组分,图4 显示了 500~4 000 cm−1 范围内红外光谱。位于 770~850 cm−1 附近的吸收峰代表 Si-(CH3)3 振动,位于 1 000~1 053 cm−1 之间的吸收峰代表 Si-O-Si 键非对称伸缩振动[32-34],位于 2 800~3 050 cm−1 之间的峰对应 C-H 键伸缩模式[35]。其中,DLC 涂层只有微弱的 C-H 峰,而 Si / O-DLC 涂层除 C-H 键外,还有 Si-(CH3)3、Si-O 特征峰,表明涂层中存在有机结构,这与 XPS 拟合结果一致。
-
图4 四种涂层 FTIR 光谱
-
Fig.4 FTIR spectra of the four coatings
-
图5 为四种涂层的拉曼光谱。在图5a 中,所有样品 G 峰出现在 1 530 cm−1 附近,这主要源于 E2g C-C 伸缩振动;D 峰出现在 1 330 cm−1 附近,主要源于链和环中 sp 2-C 原子的 C-C 振动。用双高斯函数对G峰和D峰进行拟合,可得到G峰位置(PosG)、G 峰半峰宽(FWHMG)以及 D 峰与 G 峰的强度比 (ID / IG),即 D 峰与 G 峰的面积比,如图5b 所示。随着 Si / O 含量增加,G 峰位置从 1 535 cm−1 降低到 1 504 cm−1,表明涂层 sp 2 含量下降;FWHMG从 180.4 cm−1 下降到 174.1 cm−1,表明涂层结构逐渐有序;同时,ID / IG值逐渐从 0.75 降低到 0.64,表明涂层 sp 2 团簇尺寸减小。
-
图5 四种涂层的拉曼光谱
-
Fig.5 Raman spectra of four coatings
-
以 Si / O 含量最高的 S4(Si / O=12.48)涂层为例,进一步分析 Si / O-DLC 涂层微结构。图6a 为涂层截面 STEM 和 EDS 图,结果表明各元素在涂层内部沿厚度方向分布均匀。图6b 为涂层 HRTEM 及选区电子衍射花样,在涂层中没有观察到晶体结构,其对应的 SAED 也呈现弥散环晕。表明 Si / O-DLC 涂层均为典型的非晶结构,Si 及 O 原子固溶于非晶碳基质。图6c、6d 为涂层 / 基体界面区域 HRTEM 及 17-4PH 基体区域的反傅里叶变换图。HRTEM 进一步表明涂层与金属基体界面连续完整,结合良好,同时图6d 显示 17-4PH 基体主要为 Fe(110)。
-
图6 S4 涂层的 TEM、选区电子衍射花样以及涂层 / 基体界面和基体的反傅里叶变换图
-
Fig.6 TEM, selected electron diffraction patterns of S4 coating and inverse FFT images of coating / substrate interface and substrate
-
2.2 腐蚀性能测试
-
图7a、7b 为 17-4PH 基体与四种涂层改性基体的 Nyquist 图和局部放大图。17-4PH 基体电极反应存在一个时间常数,即基体与溶液界面;而涂层改性基体的电极反应则存在两个时间常数,即涂层与溶液界面以及基体与涂层界面。高频区容抗弧半径可以评价涂层耐蚀性,其半径越大,耐蚀性越好[36]。相比于未处理基体,涂层改性基体高频区容抗弧半径更大。图7c、7d 为对应样品的 Bode 图。通常,高频区阻抗模值代表样品响应特性,低频(10−2 Hz)阻抗模值代表涂层与基体界面的介电特性[37]。高频区相位角越大,样品耐蚀性越好。显然,相比基体,涂层防护样品低频阻抗模值更大,且在高频区存在更大相位角。上述结果均表明涂层可显著提升 17-4PH 基体的耐腐蚀性。
-
图7 基体与四种涂层改性基体的 EIS 图和对应的等效电路
-
Fig.7 EIS diagrams and corresponding equivalent circuits of the substrate and four coating-modified substrates
-
基于上述 EIS 结果,分别选用图7a 所示的等效电路拟合上述基体和涂层改性基体的 EIS 数据,以便准确描述腐蚀性能演变。其中,Rs 代表溶液电阻,Rpore 代表孔隙电阻,Rct代表在缺陷底部残留涂层与溶液界面或金属基体与溶液界面处电荷转移电阻。由于涂层电极结构和介电系数具有非均匀特性,可用常相位角原件(Constant phase angle element,CPE)来代替理想电容原件[38-40]。CPE 的阻抗可以表示如下:
-
式中,ZCPE为 CPE 的阻抗,j 为复数,ω 代表角速度,n 和 Y 分别表示恒相位元件的指数和导纳参数。 n 的值越接近 1,CPE 越接近理想电容。
-
因此,CPEc 代表涂层电容,CPEdll 代表在缺陷底部残留涂层与溶液界面或金属基体与溶液界面处的双电层电容,卡方系数(χ 2)处于 10−4 量级,表明电路与涂层 EIS 结果匹配度良好。
-
表2 为根据等效电路拟合的 EIS 结果。各涂层改性样品相比基体具有更高的 Rct值(~0.1 ZΩ·cm 2)。通常,Rct 用来评价电极界面反应速度,其数值越大表示电极反应的电荷传递过程越慢,腐蚀速率越慢。同时,S4(Si / O=12.48)涂层相比于其他涂层具有最大的 Rpore,为~369.07 kΩ·cm 2。一般认为,Rpore 越大,涂层结构越致密,耐蚀性越好。综上所述,S4(Si / O=12.48)涂层具有最优异的耐腐蚀性。
-
Where CPEC is capacitance of coating surface, nc is parameter of the CPEc (0≤n≤1) , CPEdll is capacitance of the double layer, Rpore is coating pore resistance, Rct is charge-transfer resistance, ndll is parameter of the CPEdll (0≤n≤1) , χ 2 is Chi-Squared.
-
图8 为基体与四种涂层改性样品的动电位极化曲线。所有样品在阳极区发生了钝化,基体在 0.58 V 的点位下发生了点蚀,而四种基体改性样品并未发生点蚀,表明涂层的存在有效提高了基体的抗点蚀能力。利用 Tafel 外推法对极化曲线进行拟合,拟合结果如表3 所示。每个样品的极化电阻 Rp 可通过 Stern-Geary 方程[41]获得:
-
式中,βa和 βc分别是阳极和阴极的 Tafel 斜率,Jcorr 分别代表基体和 S1~S4 涂层的腐蚀电流密度。同样,式(3)用于计算 S1~S4 涂层孔隙率 Pp [42]。
-
式中,Rps、Rpc和 ΔE 分别是基体 Rp、涂层 Rp和基体与 Si / O-DLC 之间腐蚀电位(Ecorr)之差。
-
图8 基体与涂层改性样品的动电位极化曲线
-
Fig.8 Potentiodynamic polarization curves of substrate and coating modified samples
-
Jcorr系数是样品耐蚀性强弱的直接反映。此外, Rp 值越高,电化学腐蚀越难发生。孔隙率 Pp也是反映涂层耐蚀性能的关键参数,因为腐蚀离子可以逐渐通过涂层表面孔隙渗透到整个涂层内部。
-
如表3 所示,相比 17-4PH 基体,采用涂层防护样品的腐蚀电流密度降低了两个数量级,Rp提升了两个数量级。此外,随着 Si / O 含量增加,涂层耐腐蚀性得到提升,S4(Si / O=12.48)涂层具有最优的耐腐蚀性能,验证了 EIS 的结果。
-
Where Ecorr is corrosion potential, Jcorr is corrosion current density, Rp is polarization resistance, Pp is polarization porosity
-
2.3 长期腐蚀性能
-
为考察上述四种涂层对基体 360 h 腐蚀防护性能,利用原位 EIS 测试评价在整个浸泡周期内涂层耐蚀性能的演变情况。图9 为四种样品在不同时间段(2、9、24、72、120、240 和 360 h)的 EIS 图。其中,图9a1~9d1 为四种涂层的 Nyquist 图,四种涂层在整个浸泡周期内,其高频区容抗弧半径并没有发生明显变化,始终处于较高范围;图9a2~9d2 和图9a3~9d3 分别为四种涂层的 Bode-阻抗模值图和 Bode-相位角图。随测试时间延长,四种涂层的低频阻抗值和高频相位角值也几乎没有变化,始终处于较高范围(|Z|>107 Ω·cm 2 和 θ>80°)。综上所述,四种涂层在整个浸泡周期中依然具有非常良好的防护性能。
-
进一步分析四种涂层在整个浸泡周期中的电化学参数变化。图10a 为四种涂层孔隙电阻 Rpore值随浸泡时间的变化。随浸泡时间增加,四种涂层的 Rpore 值几乎没有变化。同时 S4(Si / O=12.48)涂层相比其他涂层在整个浸泡周期中始终保持着最大的 Rpore 值,表明 S4 涂层表面始终保持高致密性。图10b 为四种涂层电荷转移电阻 Rct值随时间的变化。在整个浸泡周期中,四种涂层 Rct 值几乎没有变化,但 S1(DLC)涂层的 Rct 值要低于其他三种涂层,表明 Si / O-DLC 涂层具有更高的阻止侵蚀性离子到达界面的能力,可能是由于 Si / O 掺杂后,提升了涂层的致密性,界面双电层的厚度较厚,即电极表面耗尽层的宽度较宽,界面电极反应降低。
-
图9 不同 Si / O 含量涂层在不同浸泡时间的 EIS 图(a~d 分别对应 S1~S4 涂层)
-
Fig.9 EIS spectra of coatings with different Si / O contents at different immersion times (a-d corresponding to S1-S4 coatings respectively)
-
上述结果表明,在整个浸泡周期,S4(Si / O=12.48)涂层相比其他四种涂层具有更优异的腐蚀防护性能。
-
经 360 h 电化学腐蚀试验前后,涂层的表面形貌如图11 所示。以 S1(DLC)和 S4(Si / O=12.48) 涂层为例,电化学测试前,两种涂层表面整体致密且光滑平整。然而在气相沉积过程中,涂层表面仍会存在大颗粒和微小孔隙等缺陷,影响涂层耐蚀性[17]。腐蚀测试后,两种涂层表面形貌对比腐蚀前均没有明显变化,进一步证明了所制备的涂层具有优异的长期防护性能。
-
图10 涂层孔隙电阻 Rpore和电荷转移电阻 Rct 随时间变化规律
-
Fig.10 Pore resistance Rpore and charge transfer resistance Rct of coatings with time
-
图11 腐蚀测试前后 S1(DLC)和 S4(Si / O=12.48) 涂层的表面形貌
-
Fig.11 Surface morphologies of S1 (DLC) and S4 (Si / O=12.48) coatings before and after corrosion test
-
将腐蚀测试后的样品进行拉曼表征,拟合结果如图12a 所示。与腐蚀前相比,光谱并未发生明显变化。将腐蚀前后 G 峰位置、FWHMG和 ID / IG进行对比,结果如图12b~12d 所示。相比于腐蚀前, G 峰位置、FWHMG和 ID / IG均未出现明显变化,表明长期腐蚀测试中,涂层并无明显组分结构变化,即涂层对于金属基体的腐蚀防护性来源于自身良好的物理屏蔽性。
-
图12 腐蚀后的拉曼光谱图以及根据腐蚀前后拉曼光谱得到的拟合结果
-
Fig.12 Raman spectra after corrosion and fitting results obtained based on Raman spectra before and after corrosion
-
为定量分析在长期腐蚀测试条件下的基体损伤程度,收集 360 h 腐蚀测试后的溶液,并通过 ICP-OES 测定 Fe 离子和 Cr 离子浓度,这两种元素为基体材料中含量最高的金属元素,结果如表4 所示。所有样品溶出的 Fe 离子浓度极低,均低于 0.04 mg / L,而且在溶液中没有检测到 Cr 离子信号 (小于 0.01 mg / L)。上述结果表明,界面处存在轻微的金属腐蚀,但与同样由 PECVD 制备的其他 (S1~S3)涂层相比,S4(Si / O=12.48)涂层的离子溶出浓度最低(~0.027 2 mg / L),因此 S4(Si / O=12.48)涂层可显著降低金属基体腐蚀程度。
-
为分析腐蚀前后涂层缺陷特征变化,以 S1 (DLC)和 S4(Si / O=12.48)涂层为例,采用 ESR 测试对涂层缺陷进行分析,结果如图13 所示。其中图13a 为 S1 和 S4 涂层在 360 h 浸泡前后的 ESR 谱图,其中 Si 基体本身仅有微弱信号,因此光谱信号主要来自表面涂层。两种涂层光谱均为各向同性的宽单线,g 因子为 2.000 1。对 ESR 信号双重积分,分析浸泡前后 S1 和 S4 涂层中的有效自旋密度,如图13b 所示。结果显示,浸泡前后 S4 涂层的自旋密度均低于 S1 涂层。自旋密度越大表明存在更多的未成对电子自旋,而未成对电子通常是由于材料中的缺陷而产生[43]。这表明高 Si / O 含量减少了涂层中的缺陷结构,提升了致密性。同时,两种涂层浸泡后自旋密度均高于浸泡前,表明涂层缺陷结构增多。这可能是由于浸泡时间增加,腐蚀性离子通过涂层本身固有缺陷进入涂层内部,形成更多缺陷结构,导致浸泡后的有效自旋密度高于浸泡前。
-
图13 S1(DLC)和 S4(Si / O=12.48)涂层的 ESR 谱图和自旋密度
-
Fig.13 ESR spectra and spin densities of S1 (DLC) and S4 (Si / O=12.48) coatings
-
2.4 Si / O-DLC 涂层的腐蚀损伤机理
-
根据 TEM 及 SEM 分析,Si / O-DLC 涂层具有高致密特性,同时体现出典型的非晶结构特征。此外,对比沉积态涂层与在 3.5wt.%的 NaCl 溶液 360 h 腐蚀测试后的涂层,通过 Raman 及表面形貌可知, Si / O-DLC 涂层具有高化学稳定性。
-
涂层 ESR 分析表明,高 Si / O 掺杂可提升涂层致密性,且随浸泡时间增加,涂层形成更多的缺陷结构。结合 XPS 以及红外光谱结果,Si、O 元素主要以有机组分存在,随这种有机组分增加,也提升了 DLC 涂层致密性。此外,ICP-OES 分析表明,在 360 h 腐蚀测试后的溶液中发现了少量 Fe 离子析出,表明涂层改性的 17-4PH 基体仍被腐蚀。
-
基于上述分析,提出 Si / O-DLC 涂层的腐蚀损伤机理,如图14 所示。气相沉积制备的涂层在沉积过程中不可避免存在一些缺陷(大颗粒、孔隙等),溶液中腐蚀性离子可通过涂层内部的贯穿型缺陷扩散到涂层 / 金属基体界面,引起金属基体腐蚀。而 Si、O 元素的引入增加了涂层有机成分(O-Si-(CH3)3 和 O-Si-(CH3)2),有效提高了涂层的致密性。因此,随着 Si / O 含量增大,涂层显示出更好的耐蚀性。
-
图14 Si / O-DLC 涂层的腐蚀损伤机理
-
Fig.14 Corrosion damage mechanism of Si/O-DLC coating
-
3 结论
-
采用 PECVD技术在17-4PH 不锈钢和硅片基体上成功制备出不同 Si、O 元素含量的 Si / O-DLC 涂层。研究不同 Si、O 元素掺杂含量对 DLC 涂层微观结构与腐蚀性能的影响。主要结论如下所述:
-
(1)Si、O 元素掺杂后,涂层中存在有机组分 (分别为(CH3)3-Si-O 和(CH3)2-Si-O),且随着 Si 元素(0at.%~7.6at.%)和 O 元素(2.21at.%~4.88at.%) 含量增加,涂层的有机组分增加,但不改变 DLC 涂层的非晶结构特征。
-
(2)短期腐蚀性能测试的结果表明,随着 Si / O 元素含量增加,涂层耐腐蚀性提升。360 h 原位 EIS结果表明,在整个浸泡周期内涂层均具有良好的腐蚀防护性能,主要取决于涂层优良的化学稳定性及物理屏蔽性。同时相比其他涂层,S4(Si / O=12.48) 涂层在整个浸泡周期内仍具有优异的耐腐蚀性。高 Si / O 元素含量涂层的耐腐蚀性能归因于有机相增多,降低孔隙率,从而阻碍腐蚀性离子渗透。
-
(3)气相沉积制备的涂层在沉积过程中不可避免存在一些缺陷(大颗粒、孔隙等),溶液中腐蚀性离子可通过涂层内部的贯穿型缺陷扩散到涂层 / 金属基体界面,引起金属基体腐蚀。
-
参考文献
-
[1] WOOD R.Marine wear and tribocorrosion[J].Wear,2017,376-377:893-910.
-
[2] SUN H,MA S,HOU B,et al.Mathematical analysis of long term fouling corrosion in sea water[J].Corrosion Engineering,Science and Technology,2003,38(3):223-227.
-
[3] ZHAI X,LI K,GUAN F,et al.Corrosion behavior of the chitosan-zinc composite films in sulfate-reducing bacteria[J].Surface & Coatings Technology,2018,344:259-268.
-
[4] CAO L,LIU J,WAN Y,et al.Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater[J].Diamond & Related Material,2020,109:108019.
-
[5] 张学阁,詹华,王亦奇,等.织构化 Cr-DLC 薄膜对高加水量面带黏附性能的影响[J].中国表面工程,2021,34(2):70-75.ZHANG Xuege,ZHAN Hua,WANG Yiqi,et al.Effects of textured Cr-DLC film on adhesion properties of dough sheet with high water content[J].China Suface Engineeing,2021,34(2):70-75.(in Chinese)
-
[6] YIN P,WEI X,SHANG L,et al.Design of low-friction and anti-corrosion a-C:H:SiOx films[J].Diamond & Related Material,2021,118:108512.
-
[7] 贾昆鹏,王雪,徐锋,等.调制比对HiPIMS制备多层DLC薄膜耐腐蚀性能的影响[J].中国表面工程,2021,34(2):35-40.JIA Kunpeng,WANG Xue,XU Feng,et al.Effects of modulation ratio on corrosion esistance of multilayer DLC films prepared by HiPIMS[J].China Suface Engineeing,2021,34(2):35-40.(in Chinese)
-
[8] AZZI M,AMIRAULT P,PAQUETTE M,et al.Corrosion performance and mechanical stability of 316L/DLC coating system:role of interlayers[J].Surface & Coatings Technology,2010,204:3986-3994.
-
[9] FAYED S,CHEN D,LI S,et al.Microstructure,mechanical,and electrochemical properties of Si/DLC coating deposited on 2024-T3 Al alloy[J].Journal of Alloys and Compounds,2023,966:171452.
-
[10] TOTOLIN V,PEJAKOVIĆ V,CSANYI T,et al.Surface engineering of Ti6Al4V surfaces for enhanced tribocorrosion performance in artificial seawater[J].Materials & Design,2016,104:10-18.
-
[11] WEI J,LI H,LIU L,et al.Enhanced tribological and corrosion properties of multilayer ta-C films via alternating sp3 content[J].Surface & Coatings Technology,2019,374:317-326.
-
[12] LI L,LIU L,LI X,et al.Enhanced tribocorrosion performance of Cr/GLC multilayered films for marine protective application[J].ACS Applied Materials & Interfaces,2018,10(15):13187-13198.
-
[13] MAGUIRE P,MCLAUGHLIN J,OKPALUGO T I T,et al.Mechanical stability,corrosion performance and bioresponse of amorphous diamond-like carbon for medical stents and guidewires[J].Diamond & Related Material,2005,14(8):277-1288.
-
[14] LI H,SUN P,QI A,et al.Modulation of structure and corrosion behavior of Si-DLC coatings on AZ31 by applying a self-source bias[J].Ceramics International,2023,49:32193-32204.
-
[15] TURCIO-ORTEGA D,RODIL S E,MUHL S.Corrosion behavior of amorphous carbon deposit in 0.89% NaCl by electrochemical impedance spectroscopy[J].Diamond & Related Material,2009,18(11):1360-1368.
-
[16] 魏晨阳,白琴,郭鹏,等.HiPIMS 占空比对Al合金表面 Ti/DLC 涂层力学和摩擦性能的影响[J].中国表面工程,2023,36(4):77-88.WEI Chenyang,BAI Qin,GUO Peng,et al.Effect of duty ratio on structure,mechanical and frictional properties of Ti/DLC coatings on Al alloy via HiPIMS[J].China Surface Engineering,2023,36(4):77-88.(in Chinese)
-
[17] LIU Y,LI S,LI H,et al,Controllable defect engineering to enhance the corrosion resistance of Cr/GLC multilayered coating for deep-sea applications[J].Corrosion Science,2022,199:110175.
-
[18] DALIBÓN E,ESCALADA L,SIMISON S,et al.Mechanical and corrosion behavior of thick and soft DLC coatings[J].Surface & Coatings Technology,2017,312:101-109.
-
[19] KIM H,AHN S,KIM J,et al,Electrochemical behavior of diamond-like carbon films for biomedical applications[J].Thin Solid Films,2005,475:291-297.
-
[20] BAN M,HASEGAWA T.Internal stress reduction by incorporation of silicon in diamond-like carbon films[J].Surface & Coatings Technology,2002,162:1-5.
-
[21] DAMASCENO J,CAMARGO S,FREIREJR F,et al.Deposition of Si-DLC films with high hardness,low stress and high deposition rates[J].Surface & Coatings Technology,2000,133-134:247-252.
-
[22] BATORY D,JEDRZEJCAZK A,SZYMANSKI W,et al.Mechanical characterization of a-C:H:SiOx coatings synthesized using radio-frequency plasma-assisted chemical vapor deposition method[J].Thin Solid Films,2015,590:299-305.
-
[23] CAMARGO S,NETO A,SANTOS R,et al.Improved high-temperature stability of Si incorporated a-C:H films[J].Diamond & Related Material,1998,7:1155-1162.
-
[24] DENG H,CHEN D,WANG Y,et al.Effects of silicon on microstructure and corrosion resistance of diamond-like-carbon film prepared on 2024 aluminum alloy by plasma-enhanced chemical vapor deposition[J].Diamond & Related Material,2020,110:108144.
-
[25] KIM H,AHN S,KIM J,et al.Corrosion performance of diamond-like carbon(DLC)-coated Ti alloy in the simulated body fluid environment[J].Diamond & Related Material,2005,14:35-41.
-
[26] BATORY D,JEDRZEJCZAK A,KACZOROWSKI W,et al.The effect of Si incorporation on the corrosion resistance of a-C:H:SiOx coatings[J].Diamond & Related Material,2016,67:1-7.
-
[27] YIN P,LIU Z,WEI X,et al.Improving the corrosion resistance of a-C:H film by a top a-C:H:Si:O layer[J].Ceramics International,2022,48:21451-21458.
-
[28] MANGOLINI F,HILBERT J,MCCLIMON J,et al.Thermally induced structural evolution of silicon-and oxygen-containing hydrogenated amorphous carbon:a combined spectroscopic and molecular dynamics simulation investigation[J].Langmuir,2018,34:2989-2995.
-
[29] ALEXANDER M,SHORT R,JONES F,et al.A study of HMDSO/O2 plasma deposits using a high-sensitivity and energy resolution XPS instrument:curve fitting of the Si 2p core level[J].Applied Surface Science,1999,137:179-183.
-
[30] O’HARE L,PARBHOO B,LEADLEY S.Development of a methodology for XPS curve-fitting of the Si 2p core level of siloxane materials[J].Surface and Interface Analysis,2004,36:1427-1434.
-
[31] PAIK N.Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ion source[J].Surface & Coatings Technology,2005,200:2170-2174.
-
[32] RANDENIYA L,BENDAVID A,MARTIN P,et al,Molecular structure of SiOx-incorporated diamond-like carbon films;evidence for phase segregation[J].Diamond & Related Material,2009,18:1167-1173.
-
[33] MEŠKINIS Š,TAMULEVICIUS S,KOPUSTINSKAS V,et al.Hydrophobic properties of the ion beam deposited DLC films containing SiOx[J].Thin Solid Films,2007,515:7615-7618.
-
[34] KUMAR N,BARVE S,CHOPADE S,et al.Scratch resistance and tribological properties of SiOx incorporated diamond-like carbon films deposited by r.f.plasma assisted chemical vapor deposition[J].Tribology International,2015,84:124-131.
-
[35] DAMASCENO J,CAMARGO S.Plasma deposition and characterization of siliconoxide-containing diamond-like carbon films obtained from CH4:SiH4:O2 gas mixtures[J].Thin Solid Films,2008,516:1890-1897.
-
[36] JI C,GUO Q,LI J,et al.Microstructure and properties of CrN coating via multi-arc ion plating on the valve seat material surface[J].Journal of Alloys and Compounds,2022,25:161966.
-
[37] DU X,GAO B,LI Y,et al.Super-robust and anti-corrosive NiCrN hydrophobic coating fabricated by multi-arc ion plating[J].Applied Surface Science,2020,1:145653.
-
[38] LIU C,BI Q,LEYLAND A.An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution:Part II.EIS interpretation of corrosion behavior[J].Corrosion Science,2003,45(6):1257-1273.
-
[39] AMAND S,MUSIANI M,ORAZEM M.Constantphase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings[J].Electrochimica Acta,2013,87:693-700.
-
[40] HIRSCHORN B,ORAZEM M,TRIBOLLEB T.Determination of effective capacitance and film thickness from constant-phase-element parameters[J].Electrochimica Acta,2010,55(21):6218-6227.
-
[41] CUI M,PU J,LIANG J,et al.Corrosion and tribocorrosion performance of multilayer diamond-like carbon film in NaCl solution[J].RSC Advances,2015,5(127):104829-104840.
-
[42] KONKHUNTHOT N,PHOTONGKAM P,WONGPANYA P.Improvement of thermal stability,adhesion strength and corrosion performance of diamond-like carbon films with titanium doping[J].Applied Surface Science,2019,469:471-486.
-
[43] WEI J,GUO P,LIU L,et al,Tailored electrochemical behavior of ta-C film by glancing angle deposition[J].Applied Surface Science,2020,516:146115.
-
摘要
类金刚石碳(DLC)涂层兼具耐腐蚀和耐摩擦磨损等优点,是理想的海工装备零部件耐摩擦腐蚀防护材料之一。然而, DLC 涂层在沉积过程中往往会出现大颗粒、针孔等缺陷,且短期腐蚀性能评价难以预测其长时间腐蚀防护性能,因此关键装备的长期可靠服役面临挑战。采用等离子体增强化学气相沉积(PECVD)技术,通过调控乙炔(C2H2)和六甲基二硅氧烷 (HMDSO)流量比,在 17-4PH 基体上实现不同 Si / O 含量掺杂 DLC 涂层的制备,系统研究 Si / O 含量对涂层组分、结构以及在 3.5wt.% NaCl 溶液中短期(2 h)及长期(360 h)腐蚀行为。结果表明:随着 HMDSO 流量增加,涂层中 Si(0at.%~7.6at.%) 和 O(2.21at.%~4.88at.%)元素含量均增加,但不改变涂层非晶结构特征。随着 Si / O 含量增加,涂层 sp2 团簇尺寸降低, sp3 含量上升。短期腐蚀性能测试发现,随着 Si / O 含量增加,涂层的耐腐蚀性能提升,其中 S4 涂层(Si 元素含量为 7.6at.%) 相比 S1 涂层(Si 元素含量为 0at.%)的腐蚀电流密度下降四倍。长时间(360 h)腐蚀测试中原位 EIS 结果也证实,涂层在整个浸泡周期均具有优异的耐腐蚀性,且随 Si / O 含量增加,耐腐蚀性能越优异。然而根据电感耦合等离子体发射光谱仪 (ICP-OES)的结果,所有涂层样品在腐蚀测试后均发现在测试液体中有微量铁离子,涂层和基体界面处存在轻微金属腐蚀。结合顺磁电子自旋共振波谱(ESR)仪的测试结果,高 Si / O 含量减少了涂层中缺陷结构,提升了整体致密性,且长时间浸泡后增加了涂层的缺陷密度。综上所述,在 DLC 涂层中掺杂 Si / O 元素,可提高涂层的抗腐蚀性能,这为海洋装备表面长期高性能腐蚀防护提供了一种新策略。
Abstract
With the rapid development of the ocean economy, an increasing amount of offshore equipment is being used for ocean measurement, observation, and forecasting. However, in the harsh environment of seawater, the key metal parts of many pieces of marine equipment, including manipulators, hydraulic plungers, and ship propeller bearings, face serious corrosion damage that can directly affect the reliability and service life of the equipment. Surface coating technology can protect the key metal parts and thereby extend the service life of the marine equipment without changing the excellent mechanical and processing properties of metal materials. Hence, they have attracted much attention in both academia and industry. Diamond-like coating (DLC) has the advantages of high corrosion resistance and wear resistance. Moreover, it becomes one of the ideal protective coatings for marine equipment components. However, defects such as large particles and pinholes are often introduced during the deposition process of DLC. In addition, it is difficult to predict its long-term corrosion protection performance with the current short-term corrosion research. Here, Si / O co-doped DLC coatings with different Si / O contents were fabricated on 17-4PH substrates by changing the gas flow ratio via plasma-enhanced chemical vapor deposition (PECVD). The effects of the Si / O content on the coating composition, structure, and short-term (2 h) and long-term (360 h) corrosion behavior in a 3.5wt.% NaCl solution were systematically studied. For comparison, 17-4PH stainless steel without a surface treatment was also tested. The surface and cross-sectional morphologies of coated samples were observed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) were used to characterize the chemical components and bonding structure of the Si / O-DLC coatings with different Si / O contents. The corrosion properties of the bare substrate and coated samples were tested using a Gamry electrochemical workstation. Their long-term corrosion performances were also evaluated. Inductively coupled plasma emission spectroscopy (ICP-OES) was used to study the damage of the substrate. Paramagnetic electron spin resonance spectroscopy (ESR) was used to investigate the defect structure of the coatings before and after a corrosion test. The results showed that the Si and O contents changed from 0at.%–7.6at.% and 2.21at.%–4.88at.% for samples S1 (Si~0at.%), S2 (Si~1.2at.%), S3 (Si~4.08at.%), and S4 (Si~7.6at.%), respectively. The Si and O atoms did not change the amorphous characteristics of the carbon matrix. With the increase of Si / O content, the organic component of the coating, namely, Si-(CH3)3, increased. Moreover, the sp2 cluster size in the Si / O-DLC coatings decreased, whereas the sp3 content increased. Electrochemical impedance spectroscopy (EIS) testing of the short-term corrosion performance showed that the coating effectively improved the corrosion protection of the coating by two orders of magnitude. Combined with the fitting results of the equivalent circuit, the S4 coating had the largest pore resistance (Rpore=369.07 kΩ·cm2 ) and charge transfer resistance (Rct=100 EΩ·cm2 ). Thus, the S4 sample exhibited superior corrosion resistance. The results of the potentiodynamic polarization tests showed that the presence of the coating effectively improved the pitting resistance of the substrate and that the corrosion resistance of the coating improved with the increase of the Si / O content. The S4 coating had the lowest corrosion current density of 109 pA·cm−2 , which was a fourfold decrease in the current density, compared with the S1 (DLC) coating. These findings validate the results of the EIS. According to the results of the potentiodynamic polarization test, the porosity Pp of the coatings gradually decreased with the increasing Si / O content. In addition, the S4 coating had the lowest porosity Pp of 0.13%, which was an order of magnitude lower than the porosity of the S1 (DLC) coating (1.83%). Combined with the XPS and FT-IR results, the high Si / O content increased the organic fractions in the coatings and decreased their porosity. The in-situ EIS results from the long-term (360 h) corrosion tests showed no significant changes in the EIS data for the coatings throughout the immersion cycle, indicating that they had excellent corrosion resistance throughout the immersion cycle. According to the results of the equivalent circuit fitting, the pore resistance (~350 kΩ·cm2 ) and charge transfer resistance (~100 EΩ·cm2 ) of the S4 coating were in the highest range throughout the immersion cycle with small variations, which indicated that the S4 coating had superior corrosion protection performance, compared with those of other coatings. Based on the surface morphology and Raman spectra of coated samples before and after corrosion, there were no significant changes, indicating that the coatings had excellent shielding properties. However, the ICP-OES results revealed that trace amounts of iron ions were dissolved in all the coated samples, indicating that slight metal corrosion still existed at the coating / substrate interface. Further, the ESR results confirmed that the defect densities of the coatings after prolonged immersion were higher than those before immersion. The excellent corrosion resistance of the coating with a high Si / O content was attributed to the increased organic components, which can reduce its porosity and prevent the penetration of corrosive ions. However, the coatings prepared via vapor phase deposition always have some defects, such as pores, and the corrosive solutions can enter the coating / metal substrate interface through those defective structures,which causes corrosion of the metal substrate. This method of co-doping of Si / O in the DLC coatings provides a novel solution by which to enhance the corrosion resistance of marine equipment, especially for long-term corrosion protection.
关键词
Si / O-DLC 涂层 ; 腐蚀性能 ; 长期腐蚀 ; 致密性
Keywords
Si / O-DLC coating ; corrosion resistance ; long-term corrosion ; compactness