en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

崔丽,女,1989年出生,硕士,助理研究员。主要研究方向为聚合物表面等离子体功能改性。E-mail: cuili@nimte.ac.cn

汪爱英,女,1975年出生,博士,研究员。主要研究方向为先进碳基薄膜与涂层技术。E-mail: aywang@nimte.ac.cn

通讯作者:

汪爱英,女,1975年出生,博士,研究员。主要研究方向为先进碳基薄膜与涂层技术。E-mail: aywang@nimte.ac.cn

中图分类号:TH117

DOI:10.11933/j.issn.1007-9289.20231228001

参考文献 1
BÖTEL F,ZIMMERMANN T,SÜTEL M,et al.Influence of different low-pressure plasma process parameters on shear bond strength between veneering composites and PEEK materials[J].Dental Materials,2018,34:246-254.
参考文献 2
TSUK H,MORIT K,KATO K,et al.Effect of laser groove treatment on shear bond strength of resin-based luting agent to polyetheretherketone(PEEK)[J].Journal of Prosthodontic Research,2019,63:52-57.
参考文献 3
钟利,金凡亚,但敏,等.离子束活化对 GF/PEEK 金属化涂层结合强度的影响[J].中国表面工程,2023,36(2):86-96.ZHONG Li,JIN Fanya,DAN Min,et al.Bonding strength of metallized coatings on GF/PEEK surface after ion beam activation[J].China Surface Engineering,2023,36(2):86-96.(in Chinese)
参考文献 4
YU X M,IBRAHIM M,LIU Z Y,et al.Biofunctional Mg coating on PEEK for improving bioactivity[J].Bioactive Materials,2018,3:139-143.
参考文献 5
BIANCHI M,ESPOSTI L D,BALLARDINI A,et al.Strontium doped calcium phosphate coatings on poly(etherether-ketone)(PEEK)by pulsed electron deposition[J].Surface & Coatings Technology,2017,319:191-199.
参考文献 6
SU Y F,WANG Y X,WANG C T,et al.In-situ growing amorphous carbon film with attractive mechanical and tribological adaptability on PEEK via continuous plasma-induced process[J].Vacuum,2021,187:110147.
参考文献 7
HUANG J X,WAN S H,LIU B,et al.Improved adaptability of PEEK by Nb doped graphite-like carbon composite coatings for bio-tribological applications[J].Surface and Coatings Technology,2014,247:20-29.
参考文献 8
陈东旭,郭阳阳,祁继隆,等.脉冲偏压对316L不锈钢表面类金刚石薄膜腐蚀行为影响[J].中国表面工程,2022,35(5):272-278.CHEN Dongxu,GUO Yangyang,QI Jilong,et al.Effects of pulsed bias on the corrosion behavior of diamond-like carbon film prepared on the surface of 316L stainless steel[J].China Surface Engineering,2022,35(5):272-278.(in Chinese)
参考文献 9
薛群基,王立平.类金刚石碳基薄膜材料[M].北京:科学出版社,2012.XUE Qunji,WANG Liping.Diamond-like carbon-based film material[M].Beijing:Science Press,2012.(in Chinese)
参考文献 10
MA X,GUO P,TONG X S,et al.Piezoresistive behavior of amorphous carbon films for high performance MEMS force sensors[J].Applied Physics Letters,2019,114:253502.
参考文献 11
DUFILS J,FAVERJON F,HÉAU C,et al.Evaluation of a variety of a-C:H coatings on PEEK for biomedical implants[J].Surface and Coatings Technology,2017,313:96-106.
参考文献 12
VAN DER PAL J P,MATINEZ-MATINEZ D,PEI Y T,et al.Microstructure and tribological performance of diamond-like carbon films deposited on hydrogenated rubber[J].Thin Solid Films,2012,524:218-223.
参考文献 13
PEI Y T,BUI X L,ZHOU X B,et al.Tribological behavior of W-DLC coated rubber seals[J].Surface and Coatings Technology,2008,202:1869-1875.
参考文献 14
BAI C N,LIANG A M,CAO Z Y,et al.Achieving a high adhesion and excellent wear resistance diamond-like carbon film coated on NBR rubber by Ar plasma pretreatment[J].Diamond and Related Materials,2018,89:84-93.
参考文献 15
KIM S J,YOON J I,MOON M W,et al.Frictional behavior on wrinkle patterns of diamond-like carbon films on soft polymer[J].Diamond and Related Materials,2012,23:61-65.
参考文献 16
WANG Y X,GUAN W,FISCHER C B,et al.Microstructures,mechanical properties and tribological behaviors of amorphous carbon coatings in-situ grown on polycarbonate surfaces[J].Applied Surface Science,2021,563:150309.
参考文献 17
KACZOROWSKI W,BATORY D,SZYMANSKI W,et al.Evaluation of the surface properties of PEEK substrate after two-step plasma modification:etching and deposition of DLC coatings[J].Surface & Coatings Technology,2015,265:92-98.
参考文献 18
魏晨阳,白琴,郭鹏,等.HiPIMS 占空比对Al合金表面 Ti/DLC 涂层力学和摩擦性能的影响[J].中国表面工程,2023,36(4):77-88.WEI Chenyang,BAI Qin,GUO Peng,et al.Effect of duty ratio on structure,mechanical and frictional properties of Ti/DLC coatings on Al alloy via HiPIMS[J].China Surface Engineering,2023,36(4):77-88.(in Chinese)
参考文献 19
李超,马国佳,孙刚,等.基体偏压对316L不锈钢表面多层 Ti-DLC 薄膜摩擦及腐蚀行为的影响[J].中国表面工程,2023,36(1):189-199.LI Chao,MA Guojia,SUN Gang,et al.Effects of substrate bias voltage on friction and corrosion behavior of multilayer Ti-DLC film on the surface of 316L stainless steel[J].China Surface Engineering,2023,36(1):189-199.(in Chinese)
参考文献 20
SUN L L,GUO P,LI X,et al.Comparative study on structure and wetting properties of diamond-like carbon films by W and Cu doping[J].Diamond and Related Materials,2017,73:278-284.
参考文献 21
DAI W,WANG A Y.Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources[J].Journal of Alloys and Compounds,2011,509:4626-4631.
参考文献 22
郭培林,贾倩,孟树文,等.元素掺杂对类金刚石薄膜摩擦学性能的影响[J].中国表面工程,2021,34(4):19-29.GUO Peilin,JIA Qian,MENG Shuwen,et al.Effect of element doping on the tribological properties of diamond-like carbon films[J].China Surface Engineering,2021,34(4):19-29.
参考文献 23
LI X W,KE P L,WANG A Y.Probing the stress reduction mechanism of diamond-like carbon films by incorporating Ti,Cr,or W carbide-forming metals:ab initio molecular dynamics simulation[J].The Journal of Physical Chemistry C,2015,119(11):6086-6093.
参考文献 24
LI X W,SUN L L,GUO P,et al.Structure and residual stress evolution of Ti/Al,Cr/Al or W/Al co-doped amorphous carbon nanocomposite films:insights from ab initio calculations[J].Materials and Design,2016,89:1123-1129.
参考文献 25
WANG A Y,AHN H S,LEE K R,et al.Unusual stress behavior in W-incorporated hydrogenated amorphous carbon films[J].Applied Physics Letters,2005,86(11):111902.
参考文献 26
QIANG L,BAI C N,GONG Z B,et al.Microstructure,adhesion and tribological behaviors of Si interlayer/Si doping diamond-like carbon film developed on nitrile butadiene rubber[J].Diamond and Related Materials,2019,92:208-218.
参考文献 27
WU W Y,TING J M.Growth and characteristics of carbon films with nano-sized metal particles[J].Thin Solid Films,2002,420-421:166-171.
参考文献 28
SCHMIDTOVÁ T,SOUČEK P,KUDRLE V,et al.Non-monotonous evolution of hybrid PVD-PECVD process characteristics on hydrocarbon supply[J].Surface and Coatings Technology,2013,232:283-289.
参考文献 29
CHOI H W,DAUSKARDT R H,LEE S C,et al.Characteristic of silver doped DLC films on surface properties and protein adsorption[J].Diamond and Related Materials,2008,17(3):252-257.
参考文献 30
SATTEL S,ROBERTSON J,EHRHARDT H.Effects of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon[J].Journal of Applied Physics,1997,82(9):4566-4576.
参考文献 31
GUO P,KE P L,WANG A Y.Incorporated W roles on microstructure and properties of W-C:H films by a hybrid linear ion beam systems[J].Journal of Nanomaterials,2013,2013(1):1-8.
参考文献 32
SCHENKEL M,MARTINEZ-MARTINEZ D,PEI Y T,et al.Tribological performance of DLC films deposited on ACM rubber by PACVD[J].Surface and Coatings Technology,2011,205(20):4838-4843.
参考文献 33
NATTHAPHONG K,PAT P,WONGPANYA P.Improvement of thermal stability,adhesion strength and corrosion performance of diamond-like carbon films with titanium doping[J].Applied Surface Science,2019,469:471-486.
参考文献 34
BERA P,SEENIVASAN H,RAJAM K S,et al.XRD,FESEM and XPS studies on heat treated Co-W electrodeposits[J].Materials Letters,2012,76:103-105.
参考文献 35
JUŠKĖNAS R,VALSIŪNAS I,PAKŠTAS V,et al.XRD,XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni-W alloy[J].Applied Surface Science,2006,253:1435-1442.
参考文献 36
ZHANG L,MACDONALD D D.Segregation of alloying elements in passive systems—I.XPS studies on the Ni-W system[J].Electrochimica Acta,1998,43(18):2661-2671.
参考文献 37
FU Z Q,WANG C,ZHANG W,et al.Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions[J].Materials and Design,2013,51:775-779.
参考文献 38
BHARATHY P V,YANG Q Q,KIRAN M S R N,et al.Reactive biased target ion beam deposited W-DLC nanocomposite thin films—microstructure and its mechanical properties[J].Diamond and Related Materials,2012,23:34-43.
参考文献 39
ZHANG S,ZENG X T,XIE H,et al.A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered a-C films[J].Surface and Coatings Technology,2000,123:256-260.
参考文献 40
YANG S,ZHANG Y W,ZENG K Y.Analysis of nanoindentation creep for polymeric materials[J].Journal of Applied Physics,2004,95:3655-3666.
参考文献 41
BRISCOE B J,FIORI L,PELILLO E.Nano-indentation of polymeric surfaces[J].Journal of Physics D:Applied Physics,1998,31:2395.
参考文献 42
ZHANG S D,YAN M F,YANG Y,et al.Excellent mechanical,tribological and anti-corrosive performance of novel Ti-DLC nanocomposite thin films prepared via magnetron sputtering method[J].Carbon,2019,151:136-147.
目录contents

    摘要

    聚醚醚酮(PEEK)广泛应用于航空航天领域,因其本征粘弹性和低硬度,PEEK 极易发生磨损失效。为解决此难题,一般采用表面沉积类金刚石(DLC)薄膜的方法。利用线性离子束复合直流磁控溅射技术,调控 Ar / C2H2气流比(68 / 12~ 62 / 18),在 PEEK 表面制备不同 W 元素掺杂含量的 DLC 薄膜。系统研究气流比对 PEEK / W-DLC 材料的组分结构、力学和摩擦性能的影响规律。结果表明,气流比降低使薄膜表面 C 粒子团簇尺寸增大和致密化。W 元素含量由 7.08at.%下降至 2.63at.%,且主要以 WC1−x 纳米晶簇分布在 C 基质中,ID / IG 值由 0.42 下降至 0.32。C 元素含量的增加使膜内生成更多的 C-C 键,部分 C=O 键转化为 C-O 键。PEEK / W-DLC 材料表面褶皱密度增大,界面处形成机械咬合结构。气流比 66 / 14 时,材料具有优异的力学和摩擦性能,磨损率低至 1.52×10−8 mm3 / (N·m)。这主要归功于碳膜的力学性能保护及磨斑处富 W 润滑转移膜的形成。通过分析材料表面凹坑结构的形成机理,发现摩擦过程中同时存在粘着磨损和磨粒磨损。研究结果将有助于指导设计开发高效耐磨的航空航天材料。

    Abstract

    Polyether ether ketone (PEEK) is widely used in aerospace applications because of its excellent physical and mechanical properties. However, given its intrinsic viscoelasticity and low hardness, PEEK is prone to wear failure. To address this problem, a carbon-based film deposition technology is typically applied. Among these films, diamond-like carbon (DLC) films have attracted considerable attention owing to their high hardness, good wear resistance, and chemical inertness. Using a linear ion beam combined with direct current magnetron sputtering technology, W-DLC films with different doping contents were prepared on PEEK by varying the Ar / C2H2 flow ratios from 68 / 12 to 62 / 18. The effects of the gas flow ratio on the composition, microstructure, and mechanical and friction properties of the PEEK / W-DLC composites were systematically examined. The SEM and HRTEM results showed that as the Ar / C2H2 flow ratio decreased, the deposition rate of the film gradually increased, the carbon clusters densified and their size increased. As the gas flow ratio decreased, the size of W clusters decreased, leading to a decline in the content of highly crystalline WC1-x. Moreover, when compared with pure PEEK, the surface wrinkle density of the PEEK / W-DLC composites increased and mechanical interlock structures were formed at the interface. The X-cut test showed that as the gas flow ratio decreased, the interfacial adhesion weakened, and the peeling of the films tended to become obvious. The XPS data showed that the W content decreased from 7.08at.% to 2.63at.%. The increase in C content resulted in the formation of more C-C bonds, and some of C=O bonds preferentially transformed into C-O bonds. With a decrease in the gas flow ratio, the W0 content decreased, whereas the W5+ / W6+ content increased slightly. This indicated that the W element in the film tended to exist in the form of W carbides. Raman analysis showed that ID / IG decreased from 0.42 to 0.32, the sp2 content and cluster size decreased accordingly. The full width at half maximum (FWHM) of G peak increased from 62.67 cm−1 to 71.26 cm−1 , indicating that the incorporation of W atoms could aid in reducing the structural disorder in films. As the gas flow ratio decreased, the hardness (H) and elastic modulus (E) of the PEEK / W-DLC composites reached to 5.25 and 30.23 GPa, respectively. Compared to pure PEEK, the values of H and E both increased by an order of magnitude. When the gas flow ratio was 66 / 14, the H / E and H3 / E2 of the composite corresponded to 0.2 and 0.17, respectively, which were approximately two orders of magnitude higher than those of pure PEEK. This implied that the composite had strong fracture toughness and good elastic-plastic deformation resistance. Compared with other samples, the W-DLC films prepared with 66 / 14 flow ratio exhibited better tribological properties with a low wear rate of 1.52×10−8 mm3 / (N·m). This was mainly owing to the mechanical protection of the carbon films (improving wear resistance) and W-rich lubrication transfer film formed at the wear scars (reducing friction factor). By analyzing the formation mechanism of the pits on the PEEK / W-DLC composites, it was determined that owing to the viscoelasticity of PEEK and the generation of wear debris of W-DLC films, both adhesive wear and abrasive wear occurred during the friction process. The pits that formed on the wear tracks mainly existed in the following three forms: the first type of pit was mainly composed of C elements, while the distributions of O, Fe, and W elements were hardly observed. This indicated that during the friction process, the wear debris of W-DLC films formed C-rich clusters. These C-rich clusters were embedded in the low-hardness PEEK substrate by frictional compressive stress. The second type of pit was mainly composed of C and O elements, whereas W and Fe elements were rarely distributed. These pits were caused by the peeling of W-DLC films, which led to the exposure of PEEK substrate. The third type of pit was mainly composed of C, O, and Fe elements, while the presence of W element was relatively rare, and Fe element was concentrated on the convex part of the pits. The convex part was formed by the accumulation of wear debris in the pits. This showed that the first type of pit further caused abrasive wear on the grinding ball due to the convex part. This research not only reveals the structural evolution and wear failure mechanism of carbon-based films on PEEK, but also guides the design of high-efficiency wear-resistant aerospace materials.

  • 0 前言

  • 聚醚醚酮(Polyether ether ketone,PEEK)具有卓越的物理力学性能,广泛应用于航空航天领域[1-2]。它在设计自由度、制造效率及结构轻量化等方面实现了对金属材料的超越[3]。但受限于其本征粘弹性和低硬度,PEEK 极易发生磨损失效。为了解决此难题,一般采用在 PEEK 表面制备防护涂层的技术,例如沉积金属[4]、非金属[5]及碳基薄膜[6-7]。其中,类金刚石(Diamond-like carbon,DLC)薄膜因具有高硬度、良好耐磨性和化学惰性等特性[8]而备受关注。

  • DLC薄膜由金刚石相的sp 3 和石墨相的sp 2 杂化碳键组成[9]。它能够实现低温下制备,适用于柔性聚合物基体[10-11]。研究表明,在橡胶[12-14]、聚二甲基硅氧烷(PDMS)[15]、聚碳酸脂[16]、PEEK[17]等表面沉积 DLC 薄膜后,可提高材料的耐磨性。KIM等[15]发现,DLC 薄膜的高残余应力以及其与 PDMS 弹性模量的巨大差异导致 DLC 薄膜易形成褶皱图案。PDMS / DLC 材料的摩擦因数低于纯 PDMS。 KACZOROWSKI 等[17]对 PEEK 表面等离子体处理后,使用 CH4 为气源沉积 DLC 薄膜。结果表明, DLC 薄膜与等离子体预处理后的 PEEK 具有良好的附着力,且其赋予 PEEK 良好的力学和摩擦性能。然而由于 DLC 薄膜的高应力及高脆性[18],其应用于柔性聚合物防护领域时仍存在寿命不足等挑战。

  • 为缓解沉积过程中高能离子轰击和注入而产生的薄膜高内应力,研究人员通常利用掺杂金属元素的改性方法[19-22]。这种方法通过引入非晶包裹纳米晶复合结构,或者固溶金属原子提供枢纽作用,以降低内应力。LI 等[23-24]基于密度泛函理论计算,发现与纯 DLC 薄膜相比,微量的 W 元素或 Al 元素掺杂可有效降低键角结构畸变,大幅削弱了薄膜内应力。WANG 等[25]发现 W 元素含量仅 2.8at.%时,W 元素掺杂 DLC(W-DLC)薄膜应力下降至 1.5 GPa,且薄膜其他性能几乎不受影响。因此,低应力 W-DLC 薄膜为 PEEK 的耐磨性提升提供了解决思路。然而如何开展 PEEK 表面高性能 W-DLC 薄膜的设计制备、界面调控以及其实际摩擦防护性能研究,均缺少理论及试验基础。

  • 本文采用线性离子束复合直流磁控溅射技术,在 PEEK 表面制备 W-DLC 薄膜。重点研究 Ar / C2H2 气流比(W 元素掺杂含量)对 PEEK / W-DLC 材料的力学和摩擦性能的影响规律。通过分析薄膜组分 / 结构的演变规律,探讨材料的磨损机理,为设计开发高效耐磨的航空航天材料提供技术参考。

  • 1 试验准备

  • 1.1 薄膜制备

  • 采用线性离子束(Ion source)复合直流磁控溅射(Direct current magnetron sputtering,DCMS)技术在 PEEK 表面沉积 W-DLC 薄膜。选用 99.999%W 靶为阴极靶材,以高纯 Ar 和 C2H2为工作气体。基体为厚度2 mm的PEEK(Victrex,英国)。先对PEEK 使用乙醇超声清洗 15 min,表面风干后置于腔体中旋转基架上,关闭腔室。保持离子束与基体、靶材与基体的距离均为 15 cm。真空抽至 2.7 mPa 以下,采用 Ar+ 刻蚀清洗 PEEK 表面 3 min,腔体温度范围为 20~29℃。沉积 W-DLC 薄膜时,在磁控溅射源和离子源分别通入 Ar 和 C2H2,设置离子束电流为0.2 A。开启磁控溅射电源,设置溅射电流为 1.5 A,基体脉冲偏压为−50 V(350 kHz,1.1 μs)。腔体压力维持在 0.60 Pa,腔体温度范围为 29~35℃。设置 Ar 与 C2H2 的总气流量为 80 mL / min,Ar / C2H2气流比分别设为 68 / 12、66 / 14、64 / 16、62 / 18。设置沉积时间,保持 PEEK 表面 W-DLC 薄膜的厚度基本一致。W-DLC 薄膜的沉积系统如图1 所示。

  • 图1 W-DLC 薄膜的沉积系统

  • Fig.1 Deposition system for W-DLC films

  • 1.2 性能表征

  • 使用 Hitachi S-4800 场发射扫描电镜(SEM) 表征薄膜表面形貌。采用 FEI Tecnai F20 高分辨透射电镜(HRTEM)表征薄膜厚度和横截面形貌。采用 Renishaw inVia Reflex 拉曼光谱仪(Raman) 表征薄膜碳键结构。使用 Axis Ultradld X 射线光电子能谱仪(XPS)检测薄膜表面化学成分和元素结合状态。采用 Dimension 3100V 型扫描探针显微镜模块测试薄膜表面粗糙度。采用 MTS-G200 型纳米压痕仪测试样品的硬度和弹性模量。采用 X 切割法评估 PEEK 与 W-DLC 薄膜的结合强度,具体操作如下:使用刀片将样品表面 W-DLC 薄膜切成 X 型,交叉线的角度约为 30°~45°。10 N 恒压条件下,将 3M 胶带(粘附力为 47 N / 100 mm)粘结在薄膜表面,2 min 后将胶带沿 180°撕开,并通过 SEM 观察 X 切割区域处 W-DLC 薄膜的裂纹和剥离程度[26]

  • 采用 Center for Tribology UMT-3 型多功能摩擦测试仪对样品在空气环境下的摩擦学行为进行测试。采用直径 6 mm 的 GCr15 钢球为对磨副,摩擦试验参数:载荷 1 N,频率 5 Hz,磨痕长度 5 mm,时间 30 min。通过 3D 光学轮廓仪测量磨痕截面轮廓,并采用 Archard 公式计算磨损率:

  • W=VFL
    (1)
  • 式中,W 为磨损率(mm 3 /(N·m)),V 为磨损体积 (mm 3),F 为载荷(N),L 为总摩擦距离(m)。

  • 2 结果与讨论

  • 2.1 薄膜沉积速率

  • 通过计算不同气流比下 W-DLC 薄膜的沉积速率,设置沉积时间,保持 PEEK 表面薄膜的厚度范围在 340~350 nm(表1)。随着气流比的降低,薄膜沉积速率由 14.55 nm / min 增加至 24.98 nm / min。高气流比使薄膜沉积速率降低的主要原因有以下几点:①高气流比导致 Ar+ 在加速电压的作用下轰击薄膜,Ar+ 对薄膜的刻蚀作用增强,使得沉积在基体上的部分 C 或 W 粒子被 Ar+ 轰击而离开表面(反溅射效应);②W 粒子由靶材表面向基体表面运动过程中,受到离子碰撞的几率增大,能量损失增多而不易到达基体;③薄膜制备过程中,W 靶表面将吸附 C 粒子,产生 W 元素的碳化物,易出现中毒现象,降低了 W 元素的溅射产额[27-29]

  • 表1 PEEK / W-DLC 薄膜的沉积参数

  • Table1 Deposition parameters of PEEK / W-DLC films

  • 2.2 薄膜表 / 界面结构

  • 图2 是不同 Ar / C2H2 气流比制备的 PEEK / W-DLC 材料表面 SEM 图。可以看出,随着气流比降低,C 元素的富集使薄膜表面呈现 C 粒子团簇的典型结构,该结构随气流比的降低呈增大和致密化。相较于纯 PEEK,不同气流比 W-DLC 薄膜改性后的 PEEK 表面褶皱结构均趋于增多(以气流比 66 / 14 为例)。褶皱结构的形成有利于提升 W-DLC 薄膜在 PEEK 表面的柔韧性。PEEK 软特性导致 C 和 W 粒子对基体具有轰击刻蚀作用,使基体表面产生破坏(氧化、碳化或分解)。另外,因 W-DLC 薄膜与 PEEK 热膨胀系数及弹性模量的巨大差异,基体需要通过产生凹陷或凸起方式来释放残余应力[30],W-DLC 薄膜受柔性 PEEK 基体的压缩应力作用,材料表面的褶皱密度增大。

  • 图2 纯 PEEK 及不同 Ar / C2H2气流比 PEEK / W-DLC 材料表面形貌

  • Fig.2 Surface morphologies of virgin PEEK and PEEK / W-DLC composites with different Ar / C2H2 flow ratios

  • 进一步分析不同 Ar / C2H2 气流比的 PEEK / W-DLC 材料的横截面 HRTEM 图,如图3 所示。可以看出,薄膜内 W 元素以富 W 纳米团簇体(黑区,图中黄色字体标记)的形式随机分散在 C 基质中,且富 W 纳米团簇体的尺寸随气流比降低逐渐减小。由对应的选区电子衍射(Selected area electron diffraction,SAED)图发现,薄膜内均能观察到清晰的晶体衍射环,表明体系中存在多晶相,主要以立方(FCC)WC1−x的(111)、(200)、(220)、(222)形态呈现[31]。随着气流比的降低,衍射环强度逐渐减弱,说明薄膜中高结晶度的 WC1−x浓度降低。气流比为 68 / 12~66 / 14 时,高 W 元素含量使得薄膜内部存在(420)晶面。随着气流比的降低,(420)晶面衍射环强度逐渐减弱。气流比≤64 / 12 时,薄膜内几乎不存在(420)晶面。此外,以气流比 66 / 14 为例,观察涂层整体的横截面可以看到,PEEK / W-DLC 材料界面处形成了锯齿或凹凸状的机械咬合结构,这些结构能够有效增大膜基接触面积,有利于提升薄膜结合强度。观察图3e 可以看出,纯 PEEK 的横截面呈平滑状态,说明这些锯齿或凹凸状结构主要由薄膜的沉积作用产生。不同气流比的 PEEK / W-DLC材料界面处的机械咬合结构形态基本一致,这反映了此沉积工艺条件下,气流比在 68 / 12~62 / 18 范围内变化时,W元素的掺杂对界面结构的影响不大。

  • 图3 不同 Ar / C2H2气流比 PEEK / W-DLC 材料的截面形貌

  • Fig.3 Cross-section morphologies for PEEK / W-DLC composites with different Ar / C2H2 flow ratios

  • 采用X切割方法对不同气流比的PEEK / W-DLC 材料的界面结合力进行定性表征,结果如图4 所示。由 X 切割图可以看出,气流比 68 / 12~62 / 18 时, W-DLC 薄膜与 PEEK 粘结力均较好,肉眼几乎观察不到剥落现象。为了更加清晰地对比不同气流比的 W-DLC 薄膜与 PEEK 粘结力的大小,得到了 X 切割区域的 SEM 放大图。对于柔性 PEEK / W-DLC 材料, X 切割引起的拉伸应力将通过垂直于拉伸方向的裂纹及 W-DLC 薄膜在基体表面的剥落来释放[32-33]。可以看到,随着气流比的降低,薄膜残余应力增大,导致其剥落现象趋于明显,附着力逐渐减弱。

  • 图4 不同 Ar / C2H2气流比 PEEK / W-DLC 材料粘结力测试后 X-切割处的表面形貌

  • Fig.4 Surface morphologies of X-cutting locations for PEEK / W-DLC composites with different Ar / C2H2 flow ratios after adhesion test

  • 2.3 薄膜组分状态

  • 为分析薄膜表面化学键状态,对材料进行 XPS 分析。由图5a 可以看出,PEEK / W-DLC 表面的 C 1s 谱图可分解为 283.16 eV(W-C)、284.06 eV(C-C / C-H)和 287.25 eV(C-O / C=O)。气流比的降低导致 W-C 键的相对含量由 63.54%下降至 32.45%,并在 64 / 16 时基本保持平稳(图5d)。图5b 中材料表面 O 1s 谱图可拟合分为 531.86 eV(C=O)和 533.44 eV(C-O)。峰面积积分计算发现,材料表面 C-O 键含量随气流比的降低逐渐升高,而 C=O 键含量呈相反的变化趋势(图5e)。气流比的降低导致 PEEK 表面沉积的 C 原子含量增加,从而生成更多的 C-C 键,部分 C=O 键转化为 C-O 键。

  • 图5c 为 PEEK / W-DLC 表面的 W 4f 谱图。W 4f 谱具有明显的自旋轨道分裂双峰,分别为 W 4f7/2 和 W 4f5/2,可拟合分为:游离 W0 的 31.13 eV(W 4f7/2) 和 33.22 eV(W 4f5/2)、化合态 W5+ / W6+(W 元素的碳化物)的 34.60 eV(W 4f7/2)和 37.02 eV (W 4f5/2[34-36]。不同气流比 PEEK / W-DLC 材料表面 W、C 和 O 的原子含量如图5f 所示。气流比由68 / 12 降低到 62 / 18,薄膜中 W 元素含量由 7.08at.%逐渐下降至 2.63at.%,而 C 和 O 元素的含量相对增加,C 元素的含量由 80.96at.%逐渐增大至 87.11at.%。这些说明通过设计 Ar / C2H2 气流比,能够实现薄膜内 W 元素掺杂含量的可控制备。此外,气流比降低导致 W0 含量缓慢减少,而 W5+ / W6+含量略微上升,说明 W 元素倾向于以碳化钨的形式存在。

  • 图5 不同 Ar / C2H2气流比 PEEK / W-DLC 材料表面 XPS 谱图分析

  • Fig.5 Surface XPS spectra analysis of PEEK / W-DLC composites with different Ar / C2H2 flow ratios

  • 选用激光能量 0.5 mW 的 325 nm 紫外波长对 PEEK 表面 W-DLC 薄膜进行 Raman 表征,以消除基体荧光的影响,减少测试对样品的损伤。图6 为不同 Ar / C2H2 气流比 PEEK / W-DLC 材料的拉曼谱图、D 峰与 G 峰积分强度比(ID / IG)、G 峰位置(G-position)及 G 峰半高宽(G-FWHM)。气流比 68 / 12~62 / 18 时,薄膜在 1 100~1 800 cm−1 的特征峰(D 峰和 G 峰)均较明显。金属的存在将促进 DLC 纳米复合薄膜中 sp 2 杂化碳键的形成[37-38]。一般薄膜中 sp 2 团簇尺寸和 sp 2 / sp3 杂化键比值与 ID / IG 值呈正相关[39]。由图6b 可以看出,薄膜内 W 元素含量的降低使 ID / IG值由 0.42 逐渐降低至 0.32,sp 2 杂化键含量和 sp 2 团簇尺寸随之减小。G 峰位置向高波数方向偏移,从 1 574 cm−1 增加到 1 581 cm−1,也表明 W 元素的引入有助于 sp 2 团簇的形成。G 峰半高宽从最初的 62.67 cm−1 增大到 71.26 cm−1,表明 W 元素的掺入有助于减少薄膜键长、键角扭曲程度以及结构无序度。

  • 图6 不同 Ar / C2H2 气流比 PEEK / W-DLC 材料的拉曼谱图、ID / IG、G 峰位置及 G 峰半高宽

  • Fig.6 Raman spectra, ID / IG, G-position and G-FWHM of PEEK / W-DLC composites with different Ar / C2H2 flow ratios

  • 2.4 材料的力学性能

  • 纳米压痕仪可以用来测试柔性聚合物的硬度 (H)和弹性模量(E[40-41]。图7a 为纯 PEEK 和 PEEK / W-DLC 材料的 HE 值随气流比的变化规律。纯 PEEK 的 HE 值分别为 0.26 和 2.84 GPa。沉积 W-DLC 薄膜后,材料的力学性能得到有效提升。薄膜的 H 值与 sp 3 杂化键含量呈正相关关系,但掺杂 W 元素形成的纳米颗粒将破坏碳网络的连续性,使得 sp 3 杂化键减小,导致其 HE 值下降。气流比的降低使 W 元素掺杂含量降低,sp 3 含量增加,减弱了 PEEK 基体对材料力学性能的影响,使材料的 HE 值呈逐渐增大趋势。气流比 62 / 18 时,PEEK / W-DLC 材料的 H E 值分别达到 5.25 和 30.23 GPa,较纯 PEEK 均提升了一个数量级。

  • 图7 不同 Ar / C2H2气流比 PEEK / W-DLC 材料的力学性能

  • Fig.7 Mechanical properties for PEEK / W-DLC composites with different Ar / C2H2 flow ratios

  • 硬度(H)和弹性模量(E)的比值 H / E,以及相应的 H3 / E2 值是反映材料抗弹塑性变形能力的关键参数,与材料的断裂韧性和耐磨性呈正相关[42]H / E 表示材料断裂时所需的弹性能,H / E 值越大,材料的韧性越好,耐磨性能越好。H3 / E2 表征材料的接触屈服压应力,H3 / E2 值越大,材料的抗弹塑性变形能力越强。图7b 为 PEEK / W-DLC 材料的 H / EH3 / E2 值随气流比的变化规律。因纯 PEEK 的粘弹性,其 H / EH3 / E2 值均较小,分别为 0.090 和 0.002 1 GPa。沉积 W-DLC 薄膜后,气流比降低使 H / E 值由 0.16 先增大至 0.20,然后逐渐降低至 0.17。H3 / E2 值由 0.07 GPa 逐渐增大至 0.17 GPa,然后缓慢降低至 0.16 GPa,相比纯 PEEK 提升了约两个数量级。在气流比 66 / 14 时, H / EH3 / E2 均达到较高值,表明其具有强的断裂韧性和抗弹塑性变形能力,预示着优异的耐磨性能。

  • 2.5 材料的摩擦性能

  • 图8 为不同 Ar / C2H2 气流比制备的 PEEK / W-DLC 材料的摩擦因数、磨损率和磨痕宽度。纯 PEEK 优异的物化性能使其具有良好的耐磨性,磨痕宽度为 0.4 mm,磨损率仅为 3.43×1 0 − 8 mm 3 /(N·m)。但因 PEEK 自身的粘弹性,摩擦过程中产生的压应力导致对磨球与基体接触区域的大小和形状可变,摩擦界面处于不稳定状态。随着接触时间的增加,对磨球陷入材料的深度增加,接触面积和粘合力增大,使得摩擦因数逐渐上升。 W-DLC 薄膜保护层的存在可有效阻碍对磨球与柔性 PEEK 基体的直接接触,并提升材料的力学性能,一定程度避免了基体的高粘附力及粘弹滞后性导致的大摩擦力,赋予改性后的 PEEK 较低的摩擦因数 (图8a)。此外,PEEK / W-DLC 材料的摩擦因数与磨损率的变化趋势基本一致,且在气流比 66 / 14(W 元素掺杂含量 4.09at.%)时,材料的摩擦性能较优,具有较低的摩擦因数和磨损率( 1.52 × 10−8 mm 3 /(N·m))。这主要是由于当掺杂含量大于 4.09at.%,W 元素的增加导致碳膜力学性能下降,摩擦过程中产生的压应力易致基体形变,导致接触面积增大,使得摩擦因数和磨损率增大。薄膜中 sp 3 含量的增加有利于改善这一问题,但当 C 元素含量大于 82.10at.%(气流比 66 / 14)时,碳膜力学性能与 PEEK 的差距大,界面失配现象严重,加剧了磨粒磨损,使得摩擦性能下降。

  • 图8 不同 Ar / C2H2气流比 PEEK / W-DLC 材料的摩擦性能

  • Fig.8 Tribological properties of PEEK / W-DLC composites with different Ar / C2H2 flow ratios

  • 图9 为不同气流比的 PEEK / W-DLC 材料对磨球的磨斑形貌及对应的元素面分布图,通过计算磨斑处椭圆(图中虚线标记)的面积,估算磨斑尺寸。可以看出,磨斑尺寸的变化规律与磨损率基本一致,气流比 66 / 14 时材料的磨斑面积较小,仅为 3.81× 105 μm 2。气流比为 68 / 12~62 / 18 时,C 元素集中分布在磨斑周边区域,磨斑处几乎无 C 元素存在。说明摩擦过程中,磨斑处未形成以 C 元素为主要成分的石墨化转移膜。W 元素主要存在于磨斑处,并少量分布于磨斑周围区域,且随着气流比的降低,其在磨斑处的分布强度逐渐减弱。说明对于高 W 元素含量薄膜,摩擦过程中易在磨斑处形成富 W 润滑转移膜。进一步观察磨斑处 O 和 W 元素分布图,可以看出,富 W 润滑转移膜主要以 WO3 形式存在。因 PEEK 基体的粘弹特性,PEEK 在摩擦压应力的作用下易发生凹陷变形现象,加强了其与对磨球及富碳磨屑的粘附作用。且富 W 润滑转移膜的形成减弱了富碳磨屑与对磨球的粘结力,导致磨斑处几乎没有粘附富碳磨屑,使得对磨球本身的部分 Fe 元素暴露出来,而富碳磨屑则易聚集在磨斑周围区域。进一步观察发现,Fe 和 O 元素在磨斑处均存在,表明摩擦过程中产生的瞬间高温热效应导致磨斑处部分 Fe 元素氧化。

  • 图9 不同 Ar / C2H2气流比 PEEK / W-DLC 材料磨斑形貌及其元素面分布

  • Fig.9 Morphologies and elements mapping of wear scars for PEEK / W-DLC composites with different Ar / C2H2 flow ratios

  • 图10为不同气流比PEEK / W-DLC材料的磨痕形貌。气流比 68 / 12 时,因富 W 润滑转移膜的形成,对磨球表面几乎无磨损现象,Fe 元素在磨痕处的分布较少。而气流比 66 / 14~62 / 18 时,薄膜硬度的提升增大了对磨球表面的磨损现象,导致 Fe 元素在磨痕处的分布趋于增多。C 元素的聚集反映了 W-DLC 薄膜的磨屑分布。根据元素分布图可以看出,O 与 Fe 元素的分布基本一致,说明磨痕处主要包含 Fe 氧化物以及富碳磨屑(图中黄色箭头标记)。进一步观察 C、O 和 W 元素分布发现,摩擦过程中部分 C、W 元素易与 O 元素结合发生氧化反应。此外,富碳磨屑集中分布于磨痕的边界处,与图9 中对磨球表面 C 元素的分布情况一致。观察磨痕形貌可以看出,不同气流比材料的磨痕处均出现了凹坑结构,其中气流比 66 / 14 时材料表面的凹坑结构较少。

  • 为进一步分析凹坑结构的形成机理,对气流比 66 / 14 的 PEEK / W-DLC 材料磨痕处部分凹坑结构进行 SEM 观察。因 PEEK 具有区别于刚性基体的粘弹性,磨痕处的凹坑主要存在以下三种形式:第一类凹坑主要由 C 元素组成,而 O、Fe 和 W 元素的分布均较少(图11a)。说明摩擦过程中,部分 W-DLC 薄膜磨损产生的磨屑形成了富 C 团簇体,这些团簇体在摩擦压应力的作用下嵌入到硬度低的 PEEK 基体中,产生了凹坑结构。第二类凹坑主要由 C 和 O 元素组成,而 W 和 Fe 元素的分布较少(图11b)。说明摩擦过程中,部分薄膜发生了剥落现象,使 PEEK 基体暴露出来。第三类凹坑主要由 C、O 和 Fe 元素组成,而 W 元素较少,且 Fe 元素集中分布于凹坑聚集物的凸起部分(图11c)。说明由薄膜磨屑压入基体而形成凹坑,磨屑的聚集凸起进一步使对磨球表面产生了磨粒磨损现象。由此可以看出,因 PEEK 粘弹性及 W-DLC 薄膜磨屑的产生,摩擦过程中同时存在粘着磨损和磨粒磨损,导致磨痕处出现凹坑结构。

  • 图10 不同 Ar / C2H2气流比 PEEK / W-DLC 材料的磨痕形貌及其元素面分布

  • Fig.10 Morphologies and elements mapping of wear tracks for PEEK / W-DLC composites with different Ar / C2H2 flow ratios

  • 图11 气流比 66 / 14 的 PEEK / W-DLC 材料磨痕处凹坑形貌及其元素面分布

  • Fig.11 Morphologies and elements mapping of wear track pits for PEEK / W-DLC composites with 66 / 14 flow ratio

  • 基于上述分析,提出气流比 66 / 14 时 PEEK / W-DLC 材料的磨损机理,如图12 所示。因 PEEK 基体的粘弹性,摩擦过程中同时存在粘着磨损和磨粒磨损现象。部分磨屑在摩擦压应力的作用下陷入 PEEK / W-DLC 材料,产生凹坑结构。富 C 磨屑聚集于磨斑周围区域,磨斑处几乎没有粘附富 C 颗粒。对磨球表面发生磨损,在摩擦热效应下生成 Fe2O3。此外,部分 W 元素逐渐转移至对磨球表面,形成了富 W 润滑转移膜。但因界面结合力仍存在不足,摩擦过程中出现少量薄膜剥落现象。气流比 66 / 14 时,材料碳膜力学性能的提升及富 W 润滑转移膜的形成使其具有较优的摩擦磨损性能。

  • 图12 气流比 66 / 14 时 PEEK / W-DLC 材料的磨损机理

  • Fig.12 Wear failure mechanism of PEEK / W-DLC composites with 66 / 14 flow ratio

  • 3 结论

  • PEEK 具有卓越的物理力学性能,广泛应用于航空航天领域。但受限于其本征粘弹性和低硬度, PEEK 极易发生磨损失效。一般采用表面沉积 DLC 薄膜技术来改善其摩擦性能。利用线性离子束复合直流磁控溅射技术,调控 Ar / C2H2 气流比(68 / 12~62 / 18),在 PEEK 表面制备了不同掺杂含量的 W-DLC 薄膜。研究了气流比对 PEEK / W-DLC 材料的组分结构、力学和摩擦性能的影响规律。主要结论如下:

  • (1)随着气流比降低,PEEK 表面 W-DLC 薄膜的沉积速率增大,薄膜表面 C 粒子团簇尺寸增大和致密化。薄膜内 W 元素主要以高结晶度 WC1−x纳米团簇体随机分散在 C 基质中,且其团簇尺寸逐渐减小。ID / IG值下降至 0.32,sp 2 团簇尺寸减小。G 峰半高宽增大到 71.26 cm−1,W 原子的掺入有助于减少薄膜键长、键角扭曲程度及结构无序度。C 元素含量的增加使薄膜内生成更多的 C-C 键,部分 C=O 键转化为 C-O 键。

  • (2)相较于纯 PEEK,PEEK / W-DLC 材料表面褶皱密度增大。PEEK 的表面粗糙度及 W-DLC 薄膜的沉积作用导致界面处形成机械咬合结构。X-切割测试表明,气流比的降低导致膜基结合力减弱,薄膜剥落现象趋于明显。PEEK / W-DLC 材料的 HE 值随气流比降低而增大。气流比 66 / 14 时,材料具有强的抗断裂韧性及抗弹塑性变形能力。其 H / EH3 / E2 值均达到较高值,分别为 0.20 和 0.17 GPa,相比纯 PEEK 提升约两个数量级。

  • (3)气流比 66 / 14 时,PEEK / W-DLC 材料的摩擦性能表现较优,其磨损率低至 1.52×10−8 mm 3 /(N·m)。这主要归功于 W-DLC 薄膜力学性能的保护(耐磨损)及磨斑处富 W 润滑转移膜的形成 (低摩擦因数)。此外,摩擦过程中材料表面易产生凹坑结构,通过分析凹坑的形成机理,发现同时存在粘着磨损和磨粒磨损。相关结果不仅有助于揭示 PEEK 表面碳基薄膜的结构演变规律及磨损失效机理,而且可以指导设计开发高效耐磨的航空航天材料。

  • 参考文献

    • [1] BÖTEL F,ZIMMERMANN T,SÜTEL M,et al.Influence of different low-pressure plasma process parameters on shear bond strength between veneering composites and PEEK materials[J].Dental Materials,2018,34:246-254.

    • [2] TSUK H,MORIT K,KATO K,et al.Effect of laser groove treatment on shear bond strength of resin-based luting agent to polyetheretherketone(PEEK)[J].Journal of Prosthodontic Research,2019,63:52-57.

    • [3] 钟利,金凡亚,但敏,等.离子束活化对 GF/PEEK 金属化涂层结合强度的影响[J].中国表面工程,2023,36(2):86-96.ZHONG Li,JIN Fanya,DAN Min,et al.Bonding strength of metallized coatings on GF/PEEK surface after ion beam activation[J].China Surface Engineering,2023,36(2):86-96.(in Chinese)

    • [4] YU X M,IBRAHIM M,LIU Z Y,et al.Biofunctional Mg coating on PEEK for improving bioactivity[J].Bioactive Materials,2018,3:139-143.

    • [5] BIANCHI M,ESPOSTI L D,BALLARDINI A,et al.Strontium doped calcium phosphate coatings on poly(etherether-ketone)(PEEK)by pulsed electron deposition[J].Surface & Coatings Technology,2017,319:191-199.

    • [6] SU Y F,WANG Y X,WANG C T,et al.In-situ growing amorphous carbon film with attractive mechanical and tribological adaptability on PEEK via continuous plasma-induced process[J].Vacuum,2021,187:110147.

    • [7] HUANG J X,WAN S H,LIU B,et al.Improved adaptability of PEEK by Nb doped graphite-like carbon composite coatings for bio-tribological applications[J].Surface and Coatings Technology,2014,247:20-29.

    • [8] 陈东旭,郭阳阳,祁继隆,等.脉冲偏压对316L不锈钢表面类金刚石薄膜腐蚀行为影响[J].中国表面工程,2022,35(5):272-278.CHEN Dongxu,GUO Yangyang,QI Jilong,et al.Effects of pulsed bias on the corrosion behavior of diamond-like carbon film prepared on the surface of 316L stainless steel[J].China Surface Engineering,2022,35(5):272-278.(in Chinese)

    • [9] 薛群基,王立平.类金刚石碳基薄膜材料[M].北京:科学出版社,2012.XUE Qunji,WANG Liping.Diamond-like carbon-based film material[M].Beijing:Science Press,2012.(in Chinese)

    • [10] MA X,GUO P,TONG X S,et al.Piezoresistive behavior of amorphous carbon films for high performance MEMS force sensors[J].Applied Physics Letters,2019,114:253502.

    • [11] DUFILS J,FAVERJON F,HÉAU C,et al.Evaluation of a variety of a-C:H coatings on PEEK for biomedical implants[J].Surface and Coatings Technology,2017,313:96-106.

    • [12] VAN DER PAL J P,MATINEZ-MATINEZ D,PEI Y T,et al.Microstructure and tribological performance of diamond-like carbon films deposited on hydrogenated rubber[J].Thin Solid Films,2012,524:218-223.

    • [13] PEI Y T,BUI X L,ZHOU X B,et al.Tribological behavior of W-DLC coated rubber seals[J].Surface and Coatings Technology,2008,202:1869-1875.

    • [14] BAI C N,LIANG A M,CAO Z Y,et al.Achieving a high adhesion and excellent wear resistance diamond-like carbon film coated on NBR rubber by Ar plasma pretreatment[J].Diamond and Related Materials,2018,89:84-93.

    • [15] KIM S J,YOON J I,MOON M W,et al.Frictional behavior on wrinkle patterns of diamond-like carbon films on soft polymer[J].Diamond and Related Materials,2012,23:61-65.

    • [16] WANG Y X,GUAN W,FISCHER C B,et al.Microstructures,mechanical properties and tribological behaviors of amorphous carbon coatings in-situ grown on polycarbonate surfaces[J].Applied Surface Science,2021,563:150309.

    • [17] KACZOROWSKI W,BATORY D,SZYMANSKI W,et al.Evaluation of the surface properties of PEEK substrate after two-step plasma modification:etching and deposition of DLC coatings[J].Surface & Coatings Technology,2015,265:92-98.

    • [18] 魏晨阳,白琴,郭鹏,等.HiPIMS 占空比对Al合金表面 Ti/DLC 涂层力学和摩擦性能的影响[J].中国表面工程,2023,36(4):77-88.WEI Chenyang,BAI Qin,GUO Peng,et al.Effect of duty ratio on structure,mechanical and frictional properties of Ti/DLC coatings on Al alloy via HiPIMS[J].China Surface Engineering,2023,36(4):77-88.(in Chinese)

    • [19] 李超,马国佳,孙刚,等.基体偏压对316L不锈钢表面多层 Ti-DLC 薄膜摩擦及腐蚀行为的影响[J].中国表面工程,2023,36(1):189-199.LI Chao,MA Guojia,SUN Gang,et al.Effects of substrate bias voltage on friction and corrosion behavior of multilayer Ti-DLC film on the surface of 316L stainless steel[J].China Surface Engineering,2023,36(1):189-199.(in Chinese)

    • [20] SUN L L,GUO P,LI X,et al.Comparative study on structure and wetting properties of diamond-like carbon films by W and Cu doping[J].Diamond and Related Materials,2017,73:278-284.

    • [21] DAI W,WANG A Y.Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources[J].Journal of Alloys and Compounds,2011,509:4626-4631.

    • [22] 郭培林,贾倩,孟树文,等.元素掺杂对类金刚石薄膜摩擦学性能的影响[J].中国表面工程,2021,34(4):19-29.GUO Peilin,JIA Qian,MENG Shuwen,et al.Effect of element doping on the tribological properties of diamond-like carbon films[J].China Surface Engineering,2021,34(4):19-29.

    • [23] LI X W,KE P L,WANG A Y.Probing the stress reduction mechanism of diamond-like carbon films by incorporating Ti,Cr,or W carbide-forming metals:ab initio molecular dynamics simulation[J].The Journal of Physical Chemistry C,2015,119(11):6086-6093.

    • [24] LI X W,SUN L L,GUO P,et al.Structure and residual stress evolution of Ti/Al,Cr/Al or W/Al co-doped amorphous carbon nanocomposite films:insights from ab initio calculations[J].Materials and Design,2016,89:1123-1129.

    • [25] WANG A Y,AHN H S,LEE K R,et al.Unusual stress behavior in W-incorporated hydrogenated amorphous carbon films[J].Applied Physics Letters,2005,86(11):111902.

    • [26] QIANG L,BAI C N,GONG Z B,et al.Microstructure,adhesion and tribological behaviors of Si interlayer/Si doping diamond-like carbon film developed on nitrile butadiene rubber[J].Diamond and Related Materials,2019,92:208-218.

    • [27] WU W Y,TING J M.Growth and characteristics of carbon films with nano-sized metal particles[J].Thin Solid Films,2002,420-421:166-171.

    • [28] SCHMIDTOVÁ T,SOUČEK P,KUDRLE V,et al.Non-monotonous evolution of hybrid PVD-PECVD process characteristics on hydrocarbon supply[J].Surface and Coatings Technology,2013,232:283-289.

    • [29] CHOI H W,DAUSKARDT R H,LEE S C,et al.Characteristic of silver doped DLC films on surface properties and protein adsorption[J].Diamond and Related Materials,2008,17(3):252-257.

    • [30] SATTEL S,ROBERTSON J,EHRHARDT H.Effects of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon[J].Journal of Applied Physics,1997,82(9):4566-4576.

    • [31] GUO P,KE P L,WANG A Y.Incorporated W roles on microstructure and properties of W-C:H films by a hybrid linear ion beam systems[J].Journal of Nanomaterials,2013,2013(1):1-8.

    • [32] SCHENKEL M,MARTINEZ-MARTINEZ D,PEI Y T,et al.Tribological performance of DLC films deposited on ACM rubber by PACVD[J].Surface and Coatings Technology,2011,205(20):4838-4843.

    • [33] NATTHAPHONG K,PAT P,WONGPANYA P.Improvement of thermal stability,adhesion strength and corrosion performance of diamond-like carbon films with titanium doping[J].Applied Surface Science,2019,469:471-486.

    • [34] BERA P,SEENIVASAN H,RAJAM K S,et al.XRD,FESEM and XPS studies on heat treated Co-W electrodeposits[J].Materials Letters,2012,76:103-105.

    • [35] JUŠKĖNAS R,VALSIŪNAS I,PAKŠTAS V,et al.XRD,XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni-W alloy[J].Applied Surface Science,2006,253:1435-1442.

    • [36] ZHANG L,MACDONALD D D.Segregation of alloying elements in passive systems—I.XPS studies on the Ni-W system[J].Electrochimica Acta,1998,43(18):2661-2671.

    • [37] FU Z Q,WANG C,ZHANG W,et al.Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions[J].Materials and Design,2013,51:775-779.

    • [38] BHARATHY P V,YANG Q Q,KIRAN M S R N,et al.Reactive biased target ion beam deposited W-DLC nanocomposite thin films—microstructure and its mechanical properties[J].Diamond and Related Materials,2012,23:34-43.

    • [39] ZHANG S,ZENG X T,XIE H,et al.A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered a-C films[J].Surface and Coatings Technology,2000,123:256-260.

    • [40] YANG S,ZHANG Y W,ZENG K Y.Analysis of nanoindentation creep for polymeric materials[J].Journal of Applied Physics,2004,95:3655-3666.

    • [41] BRISCOE B J,FIORI L,PELILLO E.Nano-indentation of polymeric surfaces[J].Journal of Physics D:Applied Physics,1998,31:2395.

    • [42] ZHANG S D,YAN M F,YANG Y,et al.Excellent mechanical,tribological and anti-corrosive performance of novel Ti-DLC nanocomposite thin films prepared via magnetron sputtering method[J].Carbon,2019,151:136-147.

  • 参考文献

    • [1] BÖTEL F,ZIMMERMANN T,SÜTEL M,et al.Influence of different low-pressure plasma process parameters on shear bond strength between veneering composites and PEEK materials[J].Dental Materials,2018,34:246-254.

    • [2] TSUK H,MORIT K,KATO K,et al.Effect of laser groove treatment on shear bond strength of resin-based luting agent to polyetheretherketone(PEEK)[J].Journal of Prosthodontic Research,2019,63:52-57.

    • [3] 钟利,金凡亚,但敏,等.离子束活化对 GF/PEEK 金属化涂层结合强度的影响[J].中国表面工程,2023,36(2):86-96.ZHONG Li,JIN Fanya,DAN Min,et al.Bonding strength of metallized coatings on GF/PEEK surface after ion beam activation[J].China Surface Engineering,2023,36(2):86-96.(in Chinese)

    • [4] YU X M,IBRAHIM M,LIU Z Y,et al.Biofunctional Mg coating on PEEK for improving bioactivity[J].Bioactive Materials,2018,3:139-143.

    • [5] BIANCHI M,ESPOSTI L D,BALLARDINI A,et al.Strontium doped calcium phosphate coatings on poly(etherether-ketone)(PEEK)by pulsed electron deposition[J].Surface & Coatings Technology,2017,319:191-199.

    • [6] SU Y F,WANG Y X,WANG C T,et al.In-situ growing amorphous carbon film with attractive mechanical and tribological adaptability on PEEK via continuous plasma-induced process[J].Vacuum,2021,187:110147.

    • [7] HUANG J X,WAN S H,LIU B,et al.Improved adaptability of PEEK by Nb doped graphite-like carbon composite coatings for bio-tribological applications[J].Surface and Coatings Technology,2014,247:20-29.

    • [8] 陈东旭,郭阳阳,祁继隆,等.脉冲偏压对316L不锈钢表面类金刚石薄膜腐蚀行为影响[J].中国表面工程,2022,35(5):272-278.CHEN Dongxu,GUO Yangyang,QI Jilong,et al.Effects of pulsed bias on the corrosion behavior of diamond-like carbon film prepared on the surface of 316L stainless steel[J].China Surface Engineering,2022,35(5):272-278.(in Chinese)

    • [9] 薛群基,王立平.类金刚石碳基薄膜材料[M].北京:科学出版社,2012.XUE Qunji,WANG Liping.Diamond-like carbon-based film material[M].Beijing:Science Press,2012.(in Chinese)

    • [10] MA X,GUO P,TONG X S,et al.Piezoresistive behavior of amorphous carbon films for high performance MEMS force sensors[J].Applied Physics Letters,2019,114:253502.

    • [11] DUFILS J,FAVERJON F,HÉAU C,et al.Evaluation of a variety of a-C:H coatings on PEEK for biomedical implants[J].Surface and Coatings Technology,2017,313:96-106.

    • [12] VAN DER PAL J P,MATINEZ-MATINEZ D,PEI Y T,et al.Microstructure and tribological performance of diamond-like carbon films deposited on hydrogenated rubber[J].Thin Solid Films,2012,524:218-223.

    • [13] PEI Y T,BUI X L,ZHOU X B,et al.Tribological behavior of W-DLC coated rubber seals[J].Surface and Coatings Technology,2008,202:1869-1875.

    • [14] BAI C N,LIANG A M,CAO Z Y,et al.Achieving a high adhesion and excellent wear resistance diamond-like carbon film coated on NBR rubber by Ar plasma pretreatment[J].Diamond and Related Materials,2018,89:84-93.

    • [15] KIM S J,YOON J I,MOON M W,et al.Frictional behavior on wrinkle patterns of diamond-like carbon films on soft polymer[J].Diamond and Related Materials,2012,23:61-65.

    • [16] WANG Y X,GUAN W,FISCHER C B,et al.Microstructures,mechanical properties and tribological behaviors of amorphous carbon coatings in-situ grown on polycarbonate surfaces[J].Applied Surface Science,2021,563:150309.

    • [17] KACZOROWSKI W,BATORY D,SZYMANSKI W,et al.Evaluation of the surface properties of PEEK substrate after two-step plasma modification:etching and deposition of DLC coatings[J].Surface & Coatings Technology,2015,265:92-98.

    • [18] 魏晨阳,白琴,郭鹏,等.HiPIMS 占空比对Al合金表面 Ti/DLC 涂层力学和摩擦性能的影响[J].中国表面工程,2023,36(4):77-88.WEI Chenyang,BAI Qin,GUO Peng,et al.Effect of duty ratio on structure,mechanical and frictional properties of Ti/DLC coatings on Al alloy via HiPIMS[J].China Surface Engineering,2023,36(4):77-88.(in Chinese)

    • [19] 李超,马国佳,孙刚,等.基体偏压对316L不锈钢表面多层 Ti-DLC 薄膜摩擦及腐蚀行为的影响[J].中国表面工程,2023,36(1):189-199.LI Chao,MA Guojia,SUN Gang,et al.Effects of substrate bias voltage on friction and corrosion behavior of multilayer Ti-DLC film on the surface of 316L stainless steel[J].China Surface Engineering,2023,36(1):189-199.(in Chinese)

    • [20] SUN L L,GUO P,LI X,et al.Comparative study on structure and wetting properties of diamond-like carbon films by W and Cu doping[J].Diamond and Related Materials,2017,73:278-284.

    • [21] DAI W,WANG A Y.Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources[J].Journal of Alloys and Compounds,2011,509:4626-4631.

    • [22] 郭培林,贾倩,孟树文,等.元素掺杂对类金刚石薄膜摩擦学性能的影响[J].中国表面工程,2021,34(4):19-29.GUO Peilin,JIA Qian,MENG Shuwen,et al.Effect of element doping on the tribological properties of diamond-like carbon films[J].China Surface Engineering,2021,34(4):19-29.

    • [23] LI X W,KE P L,WANG A Y.Probing the stress reduction mechanism of diamond-like carbon films by incorporating Ti,Cr,or W carbide-forming metals:ab initio molecular dynamics simulation[J].The Journal of Physical Chemistry C,2015,119(11):6086-6093.

    • [24] LI X W,SUN L L,GUO P,et al.Structure and residual stress evolution of Ti/Al,Cr/Al or W/Al co-doped amorphous carbon nanocomposite films:insights from ab initio calculations[J].Materials and Design,2016,89:1123-1129.

    • [25] WANG A Y,AHN H S,LEE K R,et al.Unusual stress behavior in W-incorporated hydrogenated amorphous carbon films[J].Applied Physics Letters,2005,86(11):111902.

    • [26] QIANG L,BAI C N,GONG Z B,et al.Microstructure,adhesion and tribological behaviors of Si interlayer/Si doping diamond-like carbon film developed on nitrile butadiene rubber[J].Diamond and Related Materials,2019,92:208-218.

    • [27] WU W Y,TING J M.Growth and characteristics of carbon films with nano-sized metal particles[J].Thin Solid Films,2002,420-421:166-171.

    • [28] SCHMIDTOVÁ T,SOUČEK P,KUDRLE V,et al.Non-monotonous evolution of hybrid PVD-PECVD process characteristics on hydrocarbon supply[J].Surface and Coatings Technology,2013,232:283-289.

    • [29] CHOI H W,DAUSKARDT R H,LEE S C,et al.Characteristic of silver doped DLC films on surface properties and protein adsorption[J].Diamond and Related Materials,2008,17(3):252-257.

    • [30] SATTEL S,ROBERTSON J,EHRHARDT H.Effects of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon[J].Journal of Applied Physics,1997,82(9):4566-4576.

    • [31] GUO P,KE P L,WANG A Y.Incorporated W roles on microstructure and properties of W-C:H films by a hybrid linear ion beam systems[J].Journal of Nanomaterials,2013,2013(1):1-8.

    • [32] SCHENKEL M,MARTINEZ-MARTINEZ D,PEI Y T,et al.Tribological performance of DLC films deposited on ACM rubber by PACVD[J].Surface and Coatings Technology,2011,205(20):4838-4843.

    • [33] NATTHAPHONG K,PAT P,WONGPANYA P.Improvement of thermal stability,adhesion strength and corrosion performance of diamond-like carbon films with titanium doping[J].Applied Surface Science,2019,469:471-486.

    • [34] BERA P,SEENIVASAN H,RAJAM K S,et al.XRD,FESEM and XPS studies on heat treated Co-W electrodeposits[J].Materials Letters,2012,76:103-105.

    • [35] JUŠKĖNAS R,VALSIŪNAS I,PAKŠTAS V,et al.XRD,XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni-W alloy[J].Applied Surface Science,2006,253:1435-1442.

    • [36] ZHANG L,MACDONALD D D.Segregation of alloying elements in passive systems—I.XPS studies on the Ni-W system[J].Electrochimica Acta,1998,43(18):2661-2671.

    • [37] FU Z Q,WANG C,ZHANG W,et al.Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions[J].Materials and Design,2013,51:775-779.

    • [38] BHARATHY P V,YANG Q Q,KIRAN M S R N,et al.Reactive biased target ion beam deposited W-DLC nanocomposite thin films—microstructure and its mechanical properties[J].Diamond and Related Materials,2012,23:34-43.

    • [39] ZHANG S,ZENG X T,XIE H,et al.A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered a-C films[J].Surface and Coatings Technology,2000,123:256-260.

    • [40] YANG S,ZHANG Y W,ZENG K Y.Analysis of nanoindentation creep for polymeric materials[J].Journal of Applied Physics,2004,95:3655-3666.

    • [41] BRISCOE B J,FIORI L,PELILLO E.Nano-indentation of polymeric surfaces[J].Journal of Physics D:Applied Physics,1998,31:2395.

    • [42] ZHANG S D,YAN M F,YANG Y,et al.Excellent mechanical,tribological and anti-corrosive performance of novel Ti-DLC nanocomposite thin films prepared via magnetron sputtering method[J].Carbon,2019,151:136-147.

  • 手机扫一扫看