en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张美琪,女,1999年出生,硕士研究生。主要研究方向为Cr涂层的设计制备及性能调控。E-mail: zhangmeiqi@nimte.ac.cn

王振玉,男,1987年出生,博士,研究员,硕士研究生导师。主要研究方向为金属材料表面强化与功能改性。E-mail: wangzy@nimte.ac.cn

通讯作者:

王振玉,男,1987年出生,博士,研究员,硕士研究生导师。主要研究方向为金属材料表面强化与功能改性。E-mail: wangzy@nimte.ac.cn

中图分类号:TG178

DOI:10.11933/j.issn.1007-9289.20231228002

参考文献 1
WINT N,WARREN D J,DEVOOYS A C A,et al.The use of chromium and chromium(III)oxide PVD coatings to resist the corrosion driven coating delamination of organically coated packaging steel[J].Journal of the Electrochemical Society,2020,167:141506.
参考文献 2
PARSA Y,LATU-ROMAIN L,WOUTERS Y,et al.Effect of oxygen partial pressure on the semiconducting properties of thermally grown chromia on pure chromium[J].Corrosion Science,2018,141:46-52.
参考文献 3
LIANG A M,ZHANG J Y.Why the decorative chromium coating electrodeposited from trivalent chromium electrolyte containing formic acid is darker[J].Surface and Coatings Technology,2012,206(17):3614-3618.
参考文献 4
NAVINEK B,PANJAN P,MILOEV I.PVD coatings as an environmentally clean alternative to electroplating and electroless processes[J].Surface and Coatings Technology,1999,116-119:476-487.
参考文献 5
张治国.磁控溅射纳米多层膜替代电镀铬涂层的研究[D].大连:大连理工大学,2009.ZHANG Zhiguo.Elaboration of nano-composite coatings using sputtering processes with application to the substitution of electrolytie Cr coating[D].Dalian:Dalian University of Technology,2009.(in Chinese)
参考文献 6
MASOUMI H,SAFAVI S M,SALEHI M,et al.Effect of grinding on the residual stress and adhesion strength of HVOF thermally sprayed WC-10Co-4Cr coating[J].Advanced Manufacturing Processes,2014,29(9):1139-1151.
参考文献 7
MARTINUZZI S M,DONATI L,GIURLANI W,et al.A comparative research on corrosion behavior of electroplated and magnetron sputtered chromium coatings[J].Coatings,2022,12(2):257-269.
参考文献 8
LEGG K O,GRAHAM M,CHANG P,et al.The replacement of electroplating[J].Surface & Coatings Technology,1996,81(1):99-105.
参考文献 9
FILIPA P,POOJA S,NUNO M F,et al.Decorative chromium coatings on polycarbonate substrate for the automotive industry[J].Materials,2023,16:2315-2331.
参考文献 10
HE J Y,LAN X X,LIU Z W,et al.Modification of Cr/CrN composite structure by Fe addition and its effect on decorative performance and corrosion resistance[J].Ceramics International,2021,47(17):23888-23894.
参考文献 11
IBRAHIM K,RAHMAN M M,ZHAO X L,et al.Annealing effects on microstructural,optical,and mechanical properties of sputtered CrN thin film coatings:experimental studies and finite element modeling[J].Journal of Alloys and Compounds,2018,750:451-464.
参考文献 12
MYDLOWSKA K,MYSLINSKI P,SZPARAGA L,et al.Analysis of the effect of antiwear CrN coating thickness on the evolution of thermomechanical interactions in the substrate/PVD coating system[J].Journal of Thermal Analysis and Calorimetry,2016,125(3):1241-1247.
参考文献 13
ZEILINGER A,DANIEL R,SCHOBERL T,et al.Resolving depth evolution of microstructure and hardness in sputtered CrN film[J].Thin Solid Films,2015,581:75-79.
参考文献 14
HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):a review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.
参考文献 15
ZHANG D,ZUO X,WANG Z Y,et al.Comparative study on protective properties of CrN coatings on the ABS substrate by DCMS and HiPIMS techniques[J].Surfaceand Coatings Technology,2020,394:125890.
参考文献 16
余斌.锆合金表面磁控溅射制备Cr涂层的微观结构及高温抗氧化性能研究[D].重庆:重庆大学,2021.YU Bin.Microstructure and high temperature oxidation resistance of Cr coating prepared by magnetron sputtering on zirconium alloy surface[D].Chongqing:Chongqing University,2021.(in Chinese)
参考文献 17
陈军.后氮/氧化处理对磁控溅射制备涂层的改性研究[D].鞍山:辽宁科技大学,2022.CHEN Jun.Study on post-nitriding/oxidizing modification of coatings prepared by magnetron sputtering[D].Anshan:Unversity of Science and Technology Liaoning,2022.(in Chinese)
参考文献 18
LEI Z F,LIU X J,WU Y,et al.Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J].Nature,2018,563(7732):546-550.
参考文献 19
LIU Y R,LI S Y,LI H,et al.Controllable defect engineering to enhance the corrosion resistance of Cr/GLC multilayered coating for deep-sea applications[J].Corrosion Science,2022,199:110175.
参考文献 20
FLITT H J,SCHWEINSBERG D P.Evaluation of corrosion rate from polarisation curves not exhibiting a Tafel region[J].Corrosion Science,2005,47(12):3034-3052.
目录contents

    摘要

    金属 Cr 涂层因抗氧化、耐腐蚀、抗磨损、色泽明亮等,在严苛环境防护和功能装饰领域应用广泛。但物理气相沉积 (PVD)技术沉积的 Cr 涂层多以贯穿性柱状晶生长,耐腐蚀性能差,是科学界与产业界共同关注的难点挑战。与现有异质多层结构优化不同,采用高离化高功率脉冲磁控溅射(HiPIMS)同步脉冲偏压技术,在 316 不锈钢基体表面沉积 Cr 涂层,通过不同周期氧等离子体处理改性,于涂层内形成 Cr / Cr(O)多层结构,并进行研究。利用扫描电子显微镜(SEM)、扫描探针显微镜(SPM)、X 射线衍射(XRD)、能谱仪(EDS)、X 射线光电子能谱仪(XPS)等方法,表征涂层的相结构、表面粗糙度、表面/截面形貌、元素分布及化学键。利用 Gamry 电化学工作站和恒温盐雾腐蚀测试,研究涂层耐蚀性能。结果表明,氧等离子体处理不改变 Cr 涂层的体心立方结构,但能够打断涂层柱状晶贯穿生长,使涂层表面更加光滑;经过两次等离子体处理的 Cr 涂层表面粗糙度约为未处理涂层的 1 / 4,腐蚀电流密度较未处理涂层降低了一个数量级,72 h 盐雾腐蚀后未探测到基体腐蚀粒子。该方法为解决 PVD 技术制备高性能耐腐蚀 Cr 涂层提供了新思路。

    Abstract

    Metallic chromium (Cr) coatings have garnered significant attention in demanding nuclear energy applications for safeguarding the surface of zirconium alloy fuel claddings as well as for functional modifications and embellishments on metals, polymers used in automobiles, sanitary hardware, and 3C (China compulsory certification) products. In contrast to the rigid limitations of the electroplating technique, Cr coatings can be easily deposited via various physical vapor deposition (PVD) technologies, thus rendering them increasingly important as a protective option. However, the main bottleneck of Cr coatings is their inevitable columnar structures with coarse morphology during PVD deposition, which facilitates the easy penetration of chloride solutions into the substrate and visually obscures the gloss under exposure to humid conditions. Consequently, PVD-Cr coatings exhibit degraded protective performance and undesired failures. In this study, high-power pulsed magnetron sputtering (HiPIMS) is employed to deposit Cr coatings on 316 stainless steel and YG8 substrates. Synchronized pulsed biasing is performed during coating deposition. A crucial aspect of this method is the introduction of oxygen-plasma treatment within the Cr coating to form a composite Cr(O) layer to enhance the adhesion strength and corrosion resistance of the subsequent Cr coatings. Oxygen-plasma treatment is performed using a linear anode-layer ion source following the periodic manipulation of the Cr layer via HiPIMS. The results show that the addition of oxygen plasma significantly suppresses the growth of columnar crystals within the monolayer of the Cr coating deposited via HiPIMS. This observation is evidenced by the distinct inhibition of galvanic coupling corrosion in the heterogeneous multilayered coatings. In addition to modifying the microstructures, the O plasma does not compromise the outstanding decorative properties of the Cr coatings. For clarity, the surface morphology, crystalline structure, and chemical composition of the coatings are comprehensively characterized using scanning electron microscopy (FEI Quanta FEG 250) equipped with energy-dispersive X-ray spectrometry (OXFORD X-Max), X-ray diffraction (Bruker D8 Advance Diffractometer), scanning probe microscopy (3100 SPM), and X-ray photoelectron spectroscopy (XPS, SUPRA). Additionally, the salt-spray corrosion resistance and electrochemical corrosion resistance of the coatings are assessed at a constant temperature of 35 ℃ using NaCl and a Gamry electrochemical workstation, respectively. The results show that the Cr coating maintains its body-centered cubic structure even after the oxygen-plasma treatment, without the formation of a distinct Cr oxide layer. However, owing to the treatment with oxygen plasma, the infiltrating columnar growth of Cr is significantly suppressed, thus reducing the surface roughness by approximately one-fourth compared with that of the pristine Cr coating. Based on XPS analysis, both Cr-O and Cr-O-Cr bonds are present in the coatings treated with oxygen plasma. This indicates that the oxygen-plasma treatment effectively promotes the combination of elemental oxygen with chromium, thus resulting in the formation of a dense and thin amorphous oxide layer. The presence of Cr-O-Cr bonds may indicate the hindered growth of columnar crystals within the Cr coatings deposited via PVD. Based on the results of salt-spray corrosion tests, although slight corrosion occurred on all the coating surfaces with and without O-plasma modification because of grain boundary defects in the coating, no delamination is observed. Nevertheless, Co originating from the YG8 substrate is not detected on the coating surface after the two oxygen-plasma treatments, thus demonstrating improved corrosion resistance. Consequently, the coatings subjected to multiple oxygen-plasma treatments exhibit enhanced corrosion resistance. This can be understood in terms of two aspects based on electrochemical studies. First, performing O-plasma treatment yields a coarse grain structure at the etching interface between the underlying layers and a fine grain size in the uppermost layer, thus resulting in a highly inhomogeneous structure that accelerates galvanic corrosion as compared with the pristine Cr coating. However, when two plasma-treatment cycles are performed, the crystal structure within the Cr coating becomes more homogeneous and dense. This results in a significantly reduced corrosion current density as well as the highest polarization resistance and impedance modulus compared with those afforded by the pure Cr coating without oxygen-plasma modification.

  • 0 前言

  • 金属 Cr 涂层因抗氧化、耐腐蚀、抗磨损、色泽明亮[1-2],在核能锆合金燃料包壳表面防护方面备受关注,也常以装饰涂层广泛应用于汽车、卫浴五金和 3C 产品等领域[3]。其中,作为装饰性涂层,市场规模大,早期以电镀制备技术为主,形成了巨大的高利润产业链[4]。然而传统电镀 Cr 技术在镀层质量以及工艺方面仍然存在一些问题[5],如镀层均匀性不足、镀层易脆化、组分结构不易控制、电镀过程中产生的微裂纹会降低腐蚀保护并导致疲劳磨损等问题。并且,电镀 Cr 过程中会产生大量含 Cr6+的废液,污染环境,同时对操作工人的健康造成较大影响[6]。鉴于此,欧盟已启动 2024 年全面禁止电镀 Cr 技术,我国也提出了“双碳”重大发展战略,当前国内外都在积极研究替代电镀 Cr 的新表面涂层技术。

  • 与电镀技术不同,物理气相沉积(Physical vapor deposition,PVD)技术是在真空下通过气体辉光放电产生等离子体进行镀膜的一种绿色沉积技术[7-8],其兼具沉积温度低、基体适用范围广、涂层表面光滑、结构致密、组分易于精细调控等诸多优势,在替代电镀金属涂层开发和产业化应用方面具有广阔的应用前景[9]。MARTINUZZI 等[7]比较了电镀技术和 PVD 技术沉积的涂层,发现相较于电镀 Cr 涂层,利用 PVD 技术沉积的涂层具有更优异的光学性能和厚度均匀性,并且摒弃了电镀 Cr 空隙和宏观裂纹的缺陷;在耐蚀性能方面,磁控溅射制备的涂层和电镀 Cr 涂层具有相似甚至更好的性能。现有 PVD 技术主要包括常规磁控溅射和电弧离子镀[10]。然而,采用该两种方法制备的 Cr 涂层呈贯穿性柱状晶生长,存在大量腐蚀粒子快速扩散通道—晶界,涂层耐腐蚀性差,限制了其在不锈钢、锌合金、ABS (Acrylonitrile butadiene styrene plastic)塑料等基体上的应用。为打断柱状晶的连续生长,提高 PVD 技术沉积 Cr 涂层的耐蚀性能,国内外多采用多层复合的方式,如 Cr / CrN、Cr / GLC、Cr / CrCN 等,但异质界面的存在会引发电偶腐蚀[11-13],同时还增加了工艺复杂性,不利于工业化批量生产。为提升 PVD 技术沉积 Cr 涂层耐蚀性和力学性能,科学界和产业界从发展新型 PVD 技术和组分结构创新设计两个角度同时开展。就 PVD 沉积技术而言,高功率脉冲磁控溅射(High power impulse magnetron sputtering,HiPIMS)技术是近几年基于直流磁控溅射技术,新发展起来的高离化 PVD 技术,被认为是 PVD 技术发展史上一个重要的里程碑。该技术通过高功率脉冲放电提高等离子体密度和溅射原子的离化率,通过施加偏压可以更为精确地控制离子沉积能量和方向[14],进而更好地控制薄膜生长。因此,与直流或射频溅射相比,使用 HiPIMS 沉积的涂层,其晶粒尺寸更加致密,膜基结合力强,涂层质量更高,在严苛环境下应用更加广泛。ZHANG 等[15]在 ABS 基体上对比了 HiPIMS 技术与传统直流磁控溅射(DC magnetron sputtering,DC)模式沉积 CrN 涂层。结果表明,DC 模式的 CrN 涂层结构为疏松的非晶 / 纳米晶复合结构,而 HiPIMS 沉积的涂层中形成了具有强(200)织构的致密纳米晶 CrN 相, HiPIMS-CrN 涂层具有优异的耐腐蚀性和力学性能。

  • 从组分结构设计的角度,HE 等[10]研究了 Fe 元素对直流磁控溅射 CrN 涂层结构、装饰性能和耐蚀性的影响,发现 Fe 元素的添加可使 CrN 涂层结构致密化,在提升涂层光学性能的同时,可显著提高涂层的耐蚀性能。另一方面,Cr 基涂层高耐蚀性的本质来源于在表面生成一层连续且致密的 Cr2O3 钝化膜,如何促进钝化膜生长或在 Cr 基涂层内部 / 表层引入耐蚀氧化物层对提高 Cr 基涂层耐蚀性具有重要意义。余斌[16]在锆合金表面沉积 Cr 基涂层并在涂层之间进行多次离子源轰击,发现离子源轰击大大提升了涂层的结合力、耐蚀性能以及抗高温氧化性能。陈军[17]为提升 Cr 涂层的性能,提出对涂层分别进行氮化、氧化处理。结果表明,经过氧化处理的涂层的耐磨、耐蚀性能均高于氮化处理过的涂层。

  • 采用氧等离子体对 Cr 基涂层轰击可促进 Cr2O3 氧化物的生成。周期性氧等离子体处理通过抑制柱状晶的连续生长,提高涂层的耐蚀性能,并且该工艺简单易行。此外,未与 Cr 成键的 O 元素以间隙固溶形式存在 Cr 晶格内部,有望改善 Cr 涂层的强韧耐磨特性[18]

  • 因此,本文采用 HiPIMS 同步脉冲偏压沉积 Cr 涂层,周期性引入氧等离子体处理工艺,在涂层内部制造不同的钝化界面,并探究钝化界面数量对 Cr 涂层耐蚀性能的影响,以期发展提高 Cr 涂层耐蚀性能的新策略。

  • 1 试验准备

  • 1.1 样品制备

  • 使用磁控溅射设备制备 Cr 涂层,靶材电源和偏压电源都为外接 HiPIMS 电源(图1)。试验使用靶材为纯金属 Cr 靶(纯度 99.99 %)。选用 Ar(纯度 99.99 %)为保护气体、O2(纯度 99.99 %)为工作气体。使用的基体材料有 316L 奥氏体不锈钢 (10 mm×10 mm×2 mm)(用于涂层表面形貌观察、XPS 图谱分析、XRD 衍射图谱分析、SPM 图像及表面粗糙度分析、电化学测试)、YG8 硬质合金(直径为 25 mm)(用于高效表征涂层盐雾腐蚀性能)。

  • 图1 HiPIMS 同步脉冲偏压设备

  • Fig.1 HiPIMS synchronized pulse biasing equipment

  • 基体经抛光、清洗等前处理后固定于镀膜设备基架,镀膜时以 7 r / min 匀速转动。待腔内真空抽至 4.0 mPa 以下,向真空腔室通入 Ar。首先,采用线性阳极层离子源产生的 Ar+ 对基体进行等离子体刻蚀,以去除表面未清洗干净的杂质和氧化物,提高结合力。刻蚀过程中,Ar 气压为 0.2 Pa,偏压为−100 V,线性阳极层离子源电流为 0.2 A,刻蚀时间 30 min。随后,在基体上沉积 Cr 涂层,靶基距设定为 12 cm, Ar 流量为 50 cm3 ·min−1,HiPIMS 平均功率为 2 984 W,放电电压为 574 V,峰值电流为 5.2 A。镀膜过程中,通过信号发生器,将靶材放电波形与偏压波形同步(同步脉冲偏压),电源溅射功率为 500 W,放电电压为 80 V,峰值电流为 5 A。通过离子源产生的氧等离子体对 Cr 涂层进行改性,通入 O2 流量为 65 cm3 ·min−1,偏压为−100 V,离子源电流为 0.2 A。 Cr 涂层和氧等离子体处理循环交替进行,形成 Cr / Cr(O)/ Cr / Cr(O)/ Cr 的多层结构,涂层沉积参数如表1 所示,涂层沉积流程如图2 所示。整个沉积过程为室温,未额外加热。对未经氧等离子体处理和处理一次、两次的 Cr 涂层分别命名为涂层 1、2 和 3。

  • 图2 Cr(O)复合涂层沉积流程

  • Fig.2 Deposition process of Cr (O) composite coating

  • 表1 HiPIMS 制备 Cr(O)复合涂层的沉积参数

  • Table1 Deposition parameters of Cr (O) composite coatings prepared by HiPIMS

  • 1.2 结构表征及耐蚀性能测试

  • 通过 X 射线衍射(XRD,Bruker D8 Advance 衍射仪)对涂层的晶体结构进行表征,在传统的 θ-θ 构型中,收集角范围为 5°~90°。通过配备有能谱仪(EDS,OXFORD X-Max)的扫描电子显微镜 (SEM,FEI Quanta FEG 250)表征涂层的表/截面形貌和成分。利用 X 射线光电子能谱仪(XPS SUPRA) 研究涂层的化学键,X 射线源为单色 Al Kα辐射,光子能量为 1 486.7 eV。涂层的三维表面形貌和表面粗糙度由扫描探针显微镜(3100 SPM)表征。

  • 通过电化学测量和盐雾试验箱对沉积在 316L 奥氏体不锈钢基体上的涂层进行耐腐蚀性能评价。电化学测量在三电极电化学工作站(Gamry,USA) 上完成,三电极包括工作电极、饱和甘汞参比电极和铂对电极。测试温度为常温(25±1℃),腐蚀介质为 3.5wt.% NaCl 溶液。样品的暴露面积为 0.282 6 cm2,测试前监测开路电位(OCP)1 h,以达到电化学平衡,随后记录电化学阻抗谱(EIS),然后以 1 mV / s 的扫描速率记录动电位电流-电位曲线,结束后监测开路电位 0.5 h,待系统稳定,再次监测 EIS。EIS 频率范围为 10−2 至 105 Hz,正弦扰动为 10 mV。采用 ZSimpWin 软件对采集的数据进行分析。采用国家标准中性盐雾试验(Neutral salt spray test,NSS)《人造气氛腐蚀试验盐雾试验(GB / T10125—1997)》,在 35℃恒温 5 % NaCl 中性盐雾环境、pH 值在 6.5~7.2 之间(环境试验箱,日本 ESPEC CORP,SH-241)进行盐雾腐蚀,测试 72 h 后,采用 EDS、SEM、XRD 分析探究其腐蚀结果。

  • 2 结果与讨论

  • 2.1 涂层微观结构分析

  • 图3 分别为 316L 奥氏体不锈钢基体、涂层 1~3 的 XRD 图谱。由图3 可知,三种涂层均呈体心立方结构,说明氧等离子体处理并未改变 Cr 涂层的晶体结构生长。处理前后未发现 Cr 的氧化物相,分析后推测有以下两种可能:①氧等离子体处理并未形成 Cr-O 键;②生成的 Cr-O 相含量较少或为非晶相,超出了 XRD 的探测精度。对比氧等离子体处理前后的峰位,未发现明显偏移,表明氧等离子体处理对于 Cr 涂层的晶格结构影响较小。分析衍射峰强度后发现,随着氧等离子体处理次数增加,Cr(110)衍射峰强度逐渐增强,(211)衍射峰强度变化不大。衍射峰强度的变化与应变能和表面能竞争性变化密切相关。在等离子体轰击过程中,增加了涂层表面能,对于体心立方结构 Cr,(110)为其密排面,表面能最小,因此轰击次数的增加促进了(110)晶面生长。

  • 图3 基体和涂层 1、2、3 的 XRD 衍射图谱

  • Fig.3 XRD spectra of the substrate and coatings 1, 2, 3

  • 图4 分别为涂层 1~3 的表 / 截面形貌和局部放大图。从表面形貌(图4a、4c、4e)观察可知,三种涂层的表面形貌有所差异。涂层 1(纯 Cr 涂层) 的表面呈“尖峰状”锥齿形貌,晶粒尺寸较为粗大。经过氧等离子体处理后,表面形貌转变为细条状,并且随着处理次数的增加,表面晶体排列更为致密,晶粒尺寸逐渐减小。从截面形貌(图4b、4d、4f)可以看出,涂层 1 呈底部晶粒细小、顶部晶粒粗大的锥齿状结构,与表面形貌特征一致,这也是 PVD 技术沉积涂层生长的典型柱状晶形貌。对图4d、4f 氧等离子体处理界面进行放大观察可知(如放大图箭头所示),等离子体处理打断了柱状晶的连续生长,使 Cr 涂层重新形核,因此晶粒尺寸随着氧等离子体处理次数的增加而减小,并且涂层更加致密。因晶界是腐蚀粒子快速扩散通道,贯穿性柱状晶涂层极易发生膜基界面腐蚀,使涂层过早失效。简单氧等离子体刻蚀即可阻断柱状晶生长,有望在提升 Cr 涂层耐蚀性方面发挥重要作用。此外,经计算,三种涂层的厚度分别为 1.94、1.92 和 1.82 μm,涂层厚度相差不大,说明氧等离子体处理并未对涂层厚度产生重要影响。

  • 图4 涂层 1、2、3 的 SEM 表面、截面形貌图、局部放大图

  • Fig.4 SEM surface, cross section morphology and local magnification of the coatings 1, 2, 3

  • 为进一步探究氧等离子体处理后界面处的化学键合形式,对处理前后涂层进行 XPS 表征(图5)。由 Cr 2p 拟合结果发现,纯 Cr 涂层和经氧等离子体处理 Cr 涂层在 576.3 eV 左右均有 Cr-O 键存在。因金属 Cr 在空气中极易吸附 O 元素,在纯 Cr 涂层中发现 Cr-O 键也是正常现象。然而,两者显著区别是,纯 Cr 涂层在 574.4 eV 左右有金属 Cr-Cr 峰,氧等离子体处理的 Cr 涂层则无 Cr-Cr 键,但在 578.4 eV 左右出现 Cr-O-Cr 峰。根据 O 1s 拟合结果可知,氧等离子体处理 Cr 涂层在 532 eV 左右的 Cr-O 键明显强于纯 Cr 涂层。此外,纯 Cr 涂层在 530.8 eV 左右还发现了 C-O 杂质键,而氧等离子体处理 Cr 涂层则在 529.4 eV 左右显示出 Cr-O-Cr 键。综上,根据 XPS 结果可以得到,氧等离子体处理成功使 O 元素与 Cr 元素结合,形成了致密的氧化层,阻断了柱状晶连续生长。

  • 图5 氧等离子处理前后的涂层的 XPS 图谱

  • Fig.5 XPS spectra of before and after surface treated with oxygen plasma treatment

  • 图6给出了三种涂层的 SPM 图像及其表面粗糙度(Ra)。结果分析发现,纯 Cr 涂层表面粗糙,有团聚大颗粒存在,表面粗糙度(Ra)值约为经过氧等离子体处理涂层的三倍以上,说明氧等离子体处理大大降低了 Cr 涂层的表面粗糙度,具有平滑 Cr 涂层表面的效果。结合表截面形貌(图4)可知,这是由于氧等离子体处理增加了表面能,对涂层有刻蚀效果,有效降低了表面 Cr 晶粒尺寸,并且随着刻蚀次数的增加,该效果越明显。

  • 图6 涂层 1、2、3 的 SPM 图像及其表面粗糙度

  • Fig.6 SPM images of coatings 1, 2 and 3 and their surface roughness

  • 2.2 盐雾腐蚀结果

  • 表2 为三种涂层的结构示意图以及在 35℃恒温 5wt.% NaCl 中性盐雾腐蚀 0、48 和 72 h 后的宏观形貌。从宏观形貌可以看出,三种涂层均有不同程度的锈蚀痕迹,且锈蚀痕迹随着时间的增加而加重,但经过两次氧等离子体处理的涂层 3 锈蚀痕迹最少。对腐蚀后的涂层进行 XRD 分析后(图7)发现,相较于腐蚀前的 XRD 衍射峰(图3),三种涂层的衍射峰均有一定变化,说明盐雾腐蚀对其影响较大。SEM 表面形貌(图8)表明,涂层 1、2 经盐雾腐蚀 72 h 后,表面出现了明显的腐蚀产物和空洞等缺陷,但涂层未有剥落现象。并且,EDS 能谱显示(表3),涂层 1、2 表面还检测到了少量 Co 元素,说明腐蚀介质沿晶界进入膜基界面,基体发生了腐蚀,涂层 2 腐蚀情况最为严重。而经过两次氧等离子体处理的 Cr 涂层因具有较致密、均匀的涂层结构,与氧化物界面层阻断,表现出最好的耐蚀性能。

  • 图7 涂层 1、2、3 盐雾腐蚀 72 h 的 XRD 衍射图谱

  • Fig.7 XRD spectra of the coating1, 2 and 3 with salt spray corrosion for 72 h

  • 表2 盐雾腐蚀 0、48、72 h 后涂层 1、2、3 的宏观形貌

  • Table2 Macroscopic morphology of coatings 1, 2 and 3 after 0, 48 and 72 h salt spray corrosion

  • 图8 涂层盐雾腐蚀 72 h 后 SEM 表面形貌及相关原子分布

  • Fig.8 Surface morphology and related elements distribution of the coating with salt spray corrosion for 72 h

  • 表3 图8 中各样品表面化学成分(原子分数 / %)

  • Table3 Chemical composition of Fig.8 (at.%)

  • 2.3 电化学腐蚀结果

  • 图9 给出了三种涂层的动电位极化曲线。得益于 HiPIMS 同步脉冲偏压技术所制备的涂层结构致密,三种涂层均拥有较低的腐蚀电流密度(Icorr,均小于 10−7 数量级),而电镀技术制备的涂层 Icorr 为 1.6×10−7 A / cm2,三种涂层的 Icorr均小于此数值[7]。由极化曲线可以看出,涂层在经过快速活化之后进入钝化区,形成高电阻耐腐蚀的钝化膜。随着电势的增加,经过两次氧等离子体处理的涂层显示出最低的 Icorr,耐蚀性能最好。表4 列出了动电位极化曲线的 Tafel 拟合参数。经两次氧等离子体处理的 Cr 涂层 Icorr 低至 3.78×10−9 A / cm2,然而经过一次氧等离子体处理的 Icorr 较未处理涂层高,说明经过一次氧等离子体处理后涂层的耐腐蚀性能变差。分析其原因可能是,一次氧等离子体处理的位置分布在涂层距顶层 1 / 3处,刻蚀界面底层晶粒尺寸粗大、顶层晶粒尺寸细小,使组织极不均匀,加速腐蚀。但是经过一次氧等离子体处理的涂层腐蚀电位(Ecorr)提升了 0.1 V 左右,说明阳极腐蚀倾向得到了减缓或抑制[19-20]

  • 图9 涂层 1、2、3 的动电位极化曲线

  • Fig.9 Potentiodynamic polarization curves of the coating 1, 2 and 3

  • 表4 动电位极化曲线的 Tafel 拟合参数

  • Table4 Tafel fitting parameters of potentiodynamic polarization curves

  • Where Ecorr is corrosion potential, Icorr is corrosion current density.

  • 图10 为涂层 1、2、3 在动电位极化前后的电化学阻抗谱结果。在 Nyquist 图(图10a)中,较大的圆弧半径代表较优的耐蚀性,而经过两次氧等离子体处理的涂层圆弧半径最大,因此可以推测该涂层耐蚀性能最好。在 Bode 图(图10b)中,阻抗模值在低频和高频分别出现两个不同的线性区域,在 10−2 Hz 低频处观察到经过两次氧等离子体处理的涂层阻抗模值最高。相角图中也表现出两个电容主导区,分别位于低频区和高频区。经过两次氧等离子体处理的涂层相位角高 (近 80°)且宽,未经氧等离子体处理的涂层相位角在低频区向低角度方向移动,而经过一次氧等离子体处理的涂层相位角最窄,说明经两次氧等离子体处理的涂层耐蚀性能更好,经一次氧等离子体处理的涂层最差,与动电位极化结果表现一致。对腐蚀后的涂层进行 EIS 阻抗测试后发现(图10c、10d),未经氧等离子体处理和一次氧等离子体处理的涂层变化较大, Nyquist 图中的圆弧半径大幅度缩小,Bode 图中的阻抗模值降低了一个数量级,由原来的 105 降至 104;而经过两次氧等离子体刻蚀的涂层较为稳定,前后差异不大。这是由于氧化形成了更为致密的氧化层,隔绝了腐蚀介质的侵入,表现出最好的耐蚀性能,而经过一次氧等离子体处理的涂层由于界面结构不均匀,具有较低的阻抗值。

  • 图10 涂层经过动电位极化前后的 Nyquist 图和 Bode 图

  • Fig.10 Nyquist and Bode plots of coatings before and after potentiodynamic polarization

  • 采用等效电路对腐蚀前的 EIS 数据进行拟合,进一步评价涂层的抗腐蚀性能。涂层 1 模拟的等效电路图为 RQR),图11 为涂层 2、3 模拟的等效电路图 RQR)(QR),其中 RE(Reference electrode)为参比电极,WE(Working electrode)为工作电极, R1R2 分别对应孔隙电阻和电荷转移电阻,Q1Q2 分别与涂层的常相位元件和双电层电容有关,Rs 表示溶液电阻。涂层 2、3 的等效电路均表现出相似的串联模式,说明其腐蚀机制相似。表5 总结了三种涂层等效电路拟合的参数,其中 Yn 为等效元件 Q 的两个参数,Y 为与频率无关的常相位角元件系数,n 为常相位角元件的指数因子。χ 2 代表了拟合的质量,一般要求 χ 2 值小于 10−2,而所有涂层的 χ 2 值都小于 10−3 数量级,即其拟合质量良好。RZ值为 RsR1R2 之和,是评判涂层耐蚀性能的重要指标。随刻蚀次数的增加,RZ值显著增大,说明氧等离子体处理大大提升了涂层的热力学耐腐蚀倾向。然而由于刻蚀一次后涂层组织结构的不均匀性增加,加速了动力学腐蚀过程。

  • 图11 拟合极化前 EIS 数据的等效电路

  • Fig.11 Equivalent circuit for fitting EIS data before potentiodynamic polarization

  • 表5 等效电路拟合的参数

  • Table5 Fitted parameters from the equivalent circuits

  • Where Rs is solution resistance; Y1 and Y2 are frequency-independent constant phase angle element coefficients of R1 and R2; n1 and n2 are exponential factor for constant phase angle elements of R1 and R2 (−1≤n≤1) ; R1 is gap resistance; R2 is charge transfer resistance; χ 2 represents the quality of the fit; Rz is the sum of Rs, R1 and R2.

  • 3 结论

  • 针对传统 PVD 技术制备 Cr 涂层柱状晶和耐蚀性能较差的问题,重点采用兼具高离化和高等离子体密度的 HiPIMS 同步脉冲偏压沉积技术,设计制备了 Cr 涂层,引入氧等离子体刻蚀方法,对比研究了氧等离子体处理对 Cr 涂层微结构和耐腐蚀性能的影响,为涂层微观结构的调整提供了一种新思路。此外,发现氧等离子体刻蚀可显著细化柱状晶,并提升 Cr 涂层的耐盐雾和耐电化学腐蚀性能。具体结论包括:

  • (1)氧等离子体处理后,Cr 涂层仍保持体心立方结构,涂层中未出现明显的 Cr 氧化物层。但氧等离子体处理能显著抑制 Cr 涂层的柱状晶贯穿生长,从而降低 Cr 涂层表面粗糙度,且经两次处理的 Cr 涂层表面粗糙度仅为纯 Cr 涂层的 1 / 4。

  • (2)电化学结果表明,通过一次氧等离子体处理后的 Cr 涂层组织结构不均匀,界面电偶腐蚀加剧了涂层的耐电化学腐蚀性能;但经过两次氧等离子体处理后的 Cr 涂层结构致密,Icorr 最低,较纯 Cr 涂层减小一个数量级,并具有最高的极化电阻和阻抗模值。

  • (3)一次氧等离子体处理的涂层相较于纯 Cr 涂层,其耐蚀性能并没有提升,猜测氧等离子体处理的位置对涂层的耐蚀性能有一定影响,为后续研究提供了新的思路。

  • 参考文献

    • [1] WINT N,WARREN D J,DEVOOYS A C A,et al.The use of chromium and chromium(III)oxide PVD coatings to resist the corrosion driven coating delamination of organically coated packaging steel[J].Journal of the Electrochemical Society,2020,167:141506.

    • [2] PARSA Y,LATU-ROMAIN L,WOUTERS Y,et al.Effect of oxygen partial pressure on the semiconducting properties of thermally grown chromia on pure chromium[J].Corrosion Science,2018,141:46-52.

    • [3] LIANG A M,ZHANG J Y.Why the decorative chromium coating electrodeposited from trivalent chromium electrolyte containing formic acid is darker[J].Surface and Coatings Technology,2012,206(17):3614-3618.

    • [4] NAVINEK B,PANJAN P,MILOEV I.PVD coatings as an environmentally clean alternative to electroplating and electroless processes[J].Surface and Coatings Technology,1999,116-119:476-487.

    • [5] 张治国.磁控溅射纳米多层膜替代电镀铬涂层的研究[D].大连:大连理工大学,2009.ZHANG Zhiguo.Elaboration of nano-composite coatings using sputtering processes with application to the substitution of electrolytie Cr coating[D].Dalian:Dalian University of Technology,2009.(in Chinese)

    • [6] MASOUMI H,SAFAVI S M,SALEHI M,et al.Effect of grinding on the residual stress and adhesion strength of HVOF thermally sprayed WC-10Co-4Cr coating[J].Advanced Manufacturing Processes,2014,29(9):1139-1151.

    • [7] MARTINUZZI S M,DONATI L,GIURLANI W,et al.A comparative research on corrosion behavior of electroplated and magnetron sputtered chromium coatings[J].Coatings,2022,12(2):257-269.

    • [8] LEGG K O,GRAHAM M,CHANG P,et al.The replacement of electroplating[J].Surface & Coatings Technology,1996,81(1):99-105.

    • [9] FILIPA P,POOJA S,NUNO M F,et al.Decorative chromium coatings on polycarbonate substrate for the automotive industry[J].Materials,2023,16:2315-2331.

    • [10] HE J Y,LAN X X,LIU Z W,et al.Modification of Cr/CrN composite structure by Fe addition and its effect on decorative performance and corrosion resistance[J].Ceramics International,2021,47(17):23888-23894.

    • [11] IBRAHIM K,RAHMAN M M,ZHAO X L,et al.Annealing effects on microstructural,optical,and mechanical properties of sputtered CrN thin film coatings:experimental studies and finite element modeling[J].Journal of Alloys and Compounds,2018,750:451-464.

    • [12] MYDLOWSKA K,MYSLINSKI P,SZPARAGA L,et al.Analysis of the effect of antiwear CrN coating thickness on the evolution of thermomechanical interactions in the substrate/PVD coating system[J].Journal of Thermal Analysis and Calorimetry,2016,125(3):1241-1247.

    • [13] ZEILINGER A,DANIEL R,SCHOBERL T,et al.Resolving depth evolution of microstructure and hardness in sputtered CrN film[J].Thin Solid Films,2015,581:75-79.

    • [14] HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):a review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.

    • [15] ZHANG D,ZUO X,WANG Z Y,et al.Comparative study on protective properties of CrN coatings on the ABS substrate by DCMS and HiPIMS techniques[J].Surfaceand Coatings Technology,2020,394:125890.

    • [16] 余斌.锆合金表面磁控溅射制备Cr涂层的微观结构及高温抗氧化性能研究[D].重庆:重庆大学,2021.YU Bin.Microstructure and high temperature oxidation resistance of Cr coating prepared by magnetron sputtering on zirconium alloy surface[D].Chongqing:Chongqing University,2021.(in Chinese)

    • [17] 陈军.后氮/氧化处理对磁控溅射制备涂层的改性研究[D].鞍山:辽宁科技大学,2022.CHEN Jun.Study on post-nitriding/oxidizing modification of coatings prepared by magnetron sputtering[D].Anshan:Unversity of Science and Technology Liaoning,2022.(in Chinese)

    • [18] LEI Z F,LIU X J,WU Y,et al.Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J].Nature,2018,563(7732):546-550.

    • [19] LIU Y R,LI S Y,LI H,et al.Controllable defect engineering to enhance the corrosion resistance of Cr/GLC multilayered coating for deep-sea applications[J].Corrosion Science,2022,199:110175.

    • [20] FLITT H J,SCHWEINSBERG D P.Evaluation of corrosion rate from polarisation curves not exhibiting a Tafel region[J].Corrosion Science,2005,47(12):3034-3052.

  • 参考文献

    • [1] WINT N,WARREN D J,DEVOOYS A C A,et al.The use of chromium and chromium(III)oxide PVD coatings to resist the corrosion driven coating delamination of organically coated packaging steel[J].Journal of the Electrochemical Society,2020,167:141506.

    • [2] PARSA Y,LATU-ROMAIN L,WOUTERS Y,et al.Effect of oxygen partial pressure on the semiconducting properties of thermally grown chromia on pure chromium[J].Corrosion Science,2018,141:46-52.

    • [3] LIANG A M,ZHANG J Y.Why the decorative chromium coating electrodeposited from trivalent chromium electrolyte containing formic acid is darker[J].Surface and Coatings Technology,2012,206(17):3614-3618.

    • [4] NAVINEK B,PANJAN P,MILOEV I.PVD coatings as an environmentally clean alternative to electroplating and electroless processes[J].Surface and Coatings Technology,1999,116-119:476-487.

    • [5] 张治国.磁控溅射纳米多层膜替代电镀铬涂层的研究[D].大连:大连理工大学,2009.ZHANG Zhiguo.Elaboration of nano-composite coatings using sputtering processes with application to the substitution of electrolytie Cr coating[D].Dalian:Dalian University of Technology,2009.(in Chinese)

    • [6] MASOUMI H,SAFAVI S M,SALEHI M,et al.Effect of grinding on the residual stress and adhesion strength of HVOF thermally sprayed WC-10Co-4Cr coating[J].Advanced Manufacturing Processes,2014,29(9):1139-1151.

    • [7] MARTINUZZI S M,DONATI L,GIURLANI W,et al.A comparative research on corrosion behavior of electroplated and magnetron sputtered chromium coatings[J].Coatings,2022,12(2):257-269.

    • [8] LEGG K O,GRAHAM M,CHANG P,et al.The replacement of electroplating[J].Surface & Coatings Technology,1996,81(1):99-105.

    • [9] FILIPA P,POOJA S,NUNO M F,et al.Decorative chromium coatings on polycarbonate substrate for the automotive industry[J].Materials,2023,16:2315-2331.

    • [10] HE J Y,LAN X X,LIU Z W,et al.Modification of Cr/CrN composite structure by Fe addition and its effect on decorative performance and corrosion resistance[J].Ceramics International,2021,47(17):23888-23894.

    • [11] IBRAHIM K,RAHMAN M M,ZHAO X L,et al.Annealing effects on microstructural,optical,and mechanical properties of sputtered CrN thin film coatings:experimental studies and finite element modeling[J].Journal of Alloys and Compounds,2018,750:451-464.

    • [12] MYDLOWSKA K,MYSLINSKI P,SZPARAGA L,et al.Analysis of the effect of antiwear CrN coating thickness on the evolution of thermomechanical interactions in the substrate/PVD coating system[J].Journal of Thermal Analysis and Calorimetry,2016,125(3):1241-1247.

    • [13] ZEILINGER A,DANIEL R,SCHOBERL T,et al.Resolving depth evolution of microstructure and hardness in sputtered CrN film[J].Thin Solid Films,2015,581:75-79.

    • [14] HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):a review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.

    • [15] ZHANG D,ZUO X,WANG Z Y,et al.Comparative study on protective properties of CrN coatings on the ABS substrate by DCMS and HiPIMS techniques[J].Surfaceand Coatings Technology,2020,394:125890.

    • [16] 余斌.锆合金表面磁控溅射制备Cr涂层的微观结构及高温抗氧化性能研究[D].重庆:重庆大学,2021.YU Bin.Microstructure and high temperature oxidation resistance of Cr coating prepared by magnetron sputtering on zirconium alloy surface[D].Chongqing:Chongqing University,2021.(in Chinese)

    • [17] 陈军.后氮/氧化处理对磁控溅射制备涂层的改性研究[D].鞍山:辽宁科技大学,2022.CHEN Jun.Study on post-nitriding/oxidizing modification of coatings prepared by magnetron sputtering[D].Anshan:Unversity of Science and Technology Liaoning,2022.(in Chinese)

    • [18] LEI Z F,LIU X J,WU Y,et al.Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J].Nature,2018,563(7732):546-550.

    • [19] LIU Y R,LI S Y,LI H,et al.Controllable defect engineering to enhance the corrosion resistance of Cr/GLC multilayered coating for deep-sea applications[J].Corrosion Science,2022,199:110175.

    • [20] FLITT H J,SCHWEINSBERG D P.Evaluation of corrosion rate from polarisation curves not exhibiting a Tafel region[J].Corrosion Science,2005,47(12):3034-3052.

  • 手机扫一扫看