en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王远明,男,1997年出生。主要研究方向为腐蚀在线监测。E-mail: wangyuanming@nimte.ac.cn

毛飞雄,男,1986年出生,博士,研究员,硕士生导师。主要研究方向为海洋腐蚀与防护方面。E-mail: maofeixiong@nimte.ac.cn

通讯作者:

毛飞雄,男,1986年出生,博士,研究员,硕士生导师。主要研究方向为海洋腐蚀与防护方面。E-mail: maofeixiong@nimte.ac.cn

中图分类号:TG172

DOI:10.11933/j.issn.1007-9289.20240111001

参考文献 1
周梦鑫,吴军,樊志彬,等.大气腐蚀在线监测技术研究现状与展望[J].中国腐蚀与防护学报,2023,43(1):38-46.ZHOU Mengxin,WU Jun,FAN Zhibin,et al.Current status and prospect of on-line monitoring technology for atmospheric corrosion[J].Chinese Journal of Corrosion and Protection,2023,43(1):38-46.(in Chinese)
参考文献 2
白生宝,肖迎春.飞机结构腐蚀监测技术研究进展[J].腐蚀与防护,2023,44(8):23-28.BAI Shengbao,XIAO Yingchun.Research progress of aircraft structural corrosion monitoring technology[J].Corrosion and Protection,2023,44(8):23-28.(in Chinese)
参考文献 3
杨飞,周永峰,胡科峰,等.腐蚀防护监测检测技术研究的进展[J].全面腐蚀控制,2009,23(11):46-51.YANG Fei,ZHOU Yongfeng,HU Kefeng,et al.Progress of research on corrosion protection monitoring and detection technology[J].Total Corrosion Control,2009,23(11):46-51.(in Chinese)
参考文献 4
赵泽,胡世杰,林睿,等.石油储罐腐蚀行为及腐蚀监测研究进展[J].电镀与涂饰,2023,42(14):42-54.ZHAO Ze,HU Shijie,LIN Rui,et al.Research progress on corrosion behaviour and corrosion monitoring of petroleum storage tanks[J].Plating and Coating,2023,42(14):42-54.(in Chinese)
参考文献 5
范银华,陈江华.钢制长输油气管道硫化氢腐蚀的电化学研究方法[J].广州化工,2020,48(11):39-43.FAN Yinhua,CHEN Jianghua.Electrochemical investigation method of hydrogen sulphide corrosion in steel long-distance oil and gas pipelines[J].Guangzhou Chemical Industry,2020,48(11):39-43.(in Chinese)
参考文献 6
韩一峰,朱烨森,陈皖滨,等.海管焊接接头腐蚀特性及监测方法研究进展[J].装备环境工程,2023,20(7):98-108.HAN Yifeng,ZHU Yesen,CHEN Wanbin,et al.Research progress on corrosion characteristics and monitoring methods of welded joints of sea pipes[J].Equipment Environmental Engineering,2023,20(7):98-108.(in Chinese)
参考文献 7
PEI Z B,XIAO K,CHEN L H,et al.Investigation of corrosion behaviors on an Fe/Cu-type ACM sensor under various environments[J].Metals,2020,10(7):905.(in Chinese)
参考文献 8
李晓刚,李清,裴梓博,等.钢铁大气腐蚀监测技术研究进展[J].鞍钢技术,2020,6:1-8.LI Xiaogang,LI Qing,PEI Zibo,et al.Research progress of steel atmospheric corrosion monitoring technology[J].Ansteel Technology,2020,6:1-8.(in Chinese)
参考文献 9
李波,杨明.贵州大气环境中耐候钢在输变电设备中的应用探讨[J].电力大数据,2021,24(10):86-92.LI Bo,YANG Ming.Discussion on the application of weathering steel in transmission and substation equipment in Guizhou atmospheric environment[J].Electric Power Big Data,2021,24(10):86-92.(in Chinese)
参考文献 10
JIA Y B,GAO H B,QIAN Z H,et al.Research and application of online corrosion monitoring technology for offshore wind power equipment[J].Materials Development and Application,2021,36(3):95-100.
参考文献 11
于金山,万闪,赵鹏,等.高压电网大气腐蚀在线监测技术进展[J].装备环境工程,2020,17(4):27-33.YU Jinshan,WAN Shan,ZHAO Peng,et al.Advances in online monitoring technology of atmospheric corrosion in high-voltage power grids[J].Equipment Environmental Engineering,2020,17(4):27-33.(in Chinese)
参考文献 12
李波,孙清,刘卓毅,等.贵州大气环境中耐侯钢在电网应用中的关键技术[J].材料保护,2023,56(3):142-149,158.LI Bo,SUN Qing,LIU Zhuoyi,et al.Key technologies of mar-resistant steel in Guizhou atmospheric environment for grid application[J].Material Protection,2023,56(3):142-149,158.(in Chinese)
参考文献 13
余磊.无线传感器网络网内数据处理安全技术研究[D].哈尔滨:哈尔滨工业大学,2011.YU Lei.Research on security technology of data processing in wireless sensor network network[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)
参考文献 14
宋木清,筱原正,达川茂男.对酸雨敏感的大气腐蚀型监测器(ACM)的研究[J].材料保护,1998,9:4-7,2.SONG Muqing,XIAO Yuanzheng,TATSUKAWA Shigeo.Study of an atmospheric corrosion monitor(ACM)sensitive to acid rain[J].Material Protection,1998,9:4-7,2.(in Chinese)
参考文献 15
陈洪江.3300ACM 电力监测智能仪表在东风发电厂电气测量中的应用[J].贵州水力发电,2001,2:75-77.CHEN Hongjiang.Application of 3300ACM power monitoring intelligent meter in electrical measurement of Dongfeng power plant[J].Guizhou Hydropower Generation,2001,2:75-77.(in Chinese)
参考文献 16
冷英,刘忠玲,张衡,等.一种改进的ACM算法及其在鄱阳湖水域监测中的应用[J].电子与信息学报,2017,39(5):1064-1070.LENG Ying,LIU Zhongling,ZHANG Heng,et al.An improved ACM algorithm and its application in monitoring the waters of Poyang Lake[J].Journal of Electronics and Information,2017,39(5):1064-1070.(in Chinese)
参考文献 17
毛红玲.在线腐蚀监测技术在炼化企业中的应用[J].石油化工自动化,2023,59(S1):22-25.MAO Hongling.Application of online corrosion monitoring technology in refining enterprises[J].Petrochemical Automation,2023,59(S1):22-25.(in Chinese)
参考文献 18
王向农.用放射技术监测腐蚀[J].腐蚀与防护,1987,1:30-31,53.WANG Xiangnong.Corrosion monitoring by radiological techniques[J].Corrosion and Protection,1987,1:30-31,53.(in Chinese)
参考文献 19
韩羽,王世海,刘战营,等.杨税务气藏集输管线腐蚀监测技术[J].石油知识,2023,4:42-43.HAN Yu,WANG Shihai,LIU Zhanying,et al.Corrosion monitoring technology of gathering pipeline in Yang tax gas reservoir[J].Petroleum Knowledge,2023,4:42-43.(in Chinese)
参考文献 20
张炜强,秦立高,李飞.腐蚀监测/检测技术[J].腐蚀科学与防护技术,2009,21(5):477-479.ZHANG Weiqiang,QIN Ligao,LI Fei.Corrosion monitoring/inspection technology[J].Corrosion Science and Protection Technology,2009,21(5):477-479.(in Chinese)
参考文献 21
纪大伟.管道内壁腐蚀监测技术研究[D].大连:大连理工大学,2010.JI Dawei.Research on corrosion monitoring technology of pipeline inner wall[D].Dalian:Dalian University of Technology,2010.(in Chinese)
参考文献 22
张敏,黄红军,李志广,等.金属腐蚀监测技术[J].腐蚀科学与防护技术,2007,5:354-357.ZHANG Min,HUANG Hongjun,LI Zhiguang,et al.Metal corrosion monitoring technology[J].Corrosion Science and Protection Technology,2007,5:354-357.(in Chinese)
参考文献 23
王文皞.基于压电超声导波的钢轨结构健康监测系统研究[D].南京:南京航空航天大学,2019.WANG Wenhao.Research on structural health monitoring system of rails based on piezoelectric ultrasonic guided wave[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2019.(in Chinese)
参考文献 24
耿云鸿.基于LoRa的水质实时监测系统的研究与实现[D].西安:西安邮电大学,2021.GENG Yunhong.Research and implementation of real-time water quality monitoring system based on LoRa[D].Xi’an:University of Posts and Telecommunications,2021.(in Chinese)
参考文献 25
DAISUKE M,SACHIKO S,SAKAE F,et al.Corrosion monitoring and materials selection for automotive environments by using atmospheric corrosion monitor(ACM)sensor[J].Corrosion Science,2014,83:217-225.
参考文献 26
LI Q,XIA X J,PEI Z B,et al.Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method[J].Npj Materials Degradation,2022,6:1-9.
参考文献 27
王少博.基于神经网络的接地网腐蚀率预测应用研究[D].西安:西安科技大学,2013.WANG Shaobo.Application of neural network-based grounding network corrosion rate prediction[D].Xi’an:University of Science and Technology,2013.(in Chinese)
参考文献 28
花广如,李文浩,郭阳阳.基于神经网络模型的海南变电站接地网Q235钢腐蚀率预测[J].腐蚀与防护,2017,38(8):573-577,588.HUA Guangru,LI Wenhao,GUO Yangyang.Prediction of corrosion rate of Q235 steel in grounding network of Hainan substation based on neural network model[J].Corrosion and Protection,2017,38(8):573-577,588.(in Chinese)
参考文献 29
尚文利,刘贤达,李世超,等.采油数据采集与监测管理平台设计与实现[J].现代电子技术,2019,42(5):124-130,134.SHANG Wenli,LIU Xianda,LI Shichao,et al.Design and realisation of oil recovery data acquisition and monitoring management platform[J].Modern Electronic Technology,2019,42(5):124-130,134.(in Chinese)
参考文献 30
马红杰,李广占,单国成,等.在线测厚腐蚀监测技术在石油化工装置的应用[J].石油化工设备技术,2022,43(2):37-42,5.MA Hongjie,LI Guangzhan,SHAN Guocheng,et al.Application of online thickness corrosion monitoring technology in petrochemical plants[J].Petrochemical Equipment Technology,2022,43(2):37-42,5.(in Chinese)
参考文献 31
刘强,丁楠,汪鹏勃,等.基于无线传感网络的油气管道监测技术研究进展[J].石油管材与仪器,2019,5(4):1-8.LIU Qiang,DING Nan,WANG Pengbo,et al.Research progress of oil and gas pipeline monitoring technology based on wireless sensor network[J].Petroleum Pipes and Instruments,2019,5(4):1-8.(in Chinese)
参考文献 32
李言涛,吴茂涛,姜信德,等.管线阴极保护在线监测评价系统的研究进展[J].材料保护,2010,43(9):50-52,78.LI Yantao,WU Maotao,JIANG Xinde,et al.Research progress of online monitoring and evaluation system for pipeline cathodic protection[J].Material Protection,2010,43(9):50-52,78.(in Chinese)
参考文献 33
YULI P A,TEDI K.Corrosion prediction for corrosion rate of carbon steel in oil and gas environment:A review[J].Indonesian Journal of Science & Technology,2018,3(1):64-74.
参考文献 34
CAI Y K,ZHAO Y,ZHANG Z T,et al.Atmospheric and marine corrosion:influential environmental factors and models[C]//International Workshop on Environmental Management,Science and Engineer,November 4-8,2018,Sukosol Hotel,Bangkok,Thailand.Britain:Physical Sciences,2018:178-186.
目录contents

    摘要

    腐蚀监测是确保基础设施安全的关键技术,通过实时跟踪材料的腐蚀状况来预防结构失效和环境事故,这项技术广泛应用于石油天然气、化工、船舶和桥梁等行业以维护资产的完整性和延长使用寿命。阐述一种基于电偶型腐蚀传感器(ACM) 原理的在线腐蚀监测技术在杭州湾跨海大桥上的应用,分析材料腐蚀监测技术应用现状,开发材料腐蚀与环境作用关系分析系统,并结合机器学习方法,包括随机森林、决策树、线性回归等方法,对监测数据进行挖掘,并对几种学习方法的训练效果与预测情况进行系统分析,得出随机森林训练效果最好,决定系数 R2达到 0.83,所开发系统采用无线传输方式,数据上传至云端,可同时对八种材料或涂层腐蚀进行监测,配备客户端软件进行数据处理分析,实现对各测试材料及涂层腐蚀失效时间的预测,并以此对重大设施关键点位的腐蚀状况进行实时监测。通过实时监测腐蚀情况能够及时发现潜在的安全隐患,从而采取措施,避免因腐蚀导致的重大安全事故,保障人员生命财产安全。基于对不同材料及涂层腐蚀特性的深入了解以及利用先进的数据分析手段可以制定出更为科学合理的维护计划,减少不必要的检查和维修成本,提升整体运营效率。引入最新的传感技术和机器学习算法为腐蚀监测领域带来了新的解决方案和技术思路,推动了相关行业的技术进步与发展,而且有效控制和减缓腐蚀过程,有助于降低由于设备故障而造成的环境污染风险,符合可持续发展的要求。对腐蚀程度的精准评估可以帮助企业合理安排资源分配,避免过早更换仍具有良好性能的部件,从而节约大量资金投入。该研究不仅具有实际应用价值,也为腐蚀机理的研究提供了宝贵的试验数据支持,丰富了关于材料耐蚀性的理论体系,对于进一步探索新型防腐材料和技术具有重要意义。

    Abstract

    Corrosion monitoring is a crucial technology that ensures the safety and longevity of infrastructure by providing real-time tracking of the corrosion conditions of materials, helping prevent structural failures and major accidents. This technology has been extensively applied in various industries, including oil and gas, chemical engineering, shipping, and bridge construction, with the primary aims of ensuring operational safety and prolongating the service life of the equipment. This study focuses on the application of an advanced online corrosion-monitoring technology based on the principle of galvanic-type corrosion sensors, known as Advanced Corrosion Monitoring (ACM), specifically in the context of cross-sea bridges, which are subject to harsh environmental conditions such as saltwater, high humidity, and fluctuating temperatures, making them particularly susceptible to corrosion. The ACM system was designed to continuously monitor the corrosion processes of the various materials and coatings used in these structures, thereby enabling timely interventions and maintenance. The current landscape of material corrosion monitoring and detection technologies is diverse and rapidly evolving, complementing traditional methods such as visual inspection and periodic sampling and, in some cases, replacing more advanced and continuous monitoring systems that leverage a range of sensors and data collection techniques to provide real-time, accurate, and comprehensive information about the corrosion status of materials. Ultrasonic testing, eddy current testing, and electrochemical impedance spectroscopy are typically used to detect and quantify corrosion. To better understand the relationship between material corrosion and environmental factors, an analysis system was developed, integrating multiple environmental parameters and collected data on temperature, humidity, salinity, pH, and other relevant environmental variables. By correlating these environmental parameters with the observed corrosion rates, the system identifies key factors influencing the corrosion process and predicts future corrosion trends. For instance, high humidity and salt content in air are known to accelerate the corrosion of steel, whereas low temperatures can slow the corrosion rate. Machine learning methods, including random forests, decision trees, and linear regression, have been incorporated to enhance the predictive capabilities of corrosion-monitoring systems. These algorithms were trained on historical data to uncover close relationships between environmental data and material corrosion using random forests, which showed the best performance in the study, achieving a determination coefficient R2 of 0.83 and demonstrating a high level of accuracy in predicting corrosion rates. While decision trees provide a clear and interpretable model, allowing us to understand the decision-making process behind the predictions, they may not achieve the same level of accuracy as random forests. However, they offer valuable insights into the key factors influencing corrosion. Linear regression, although simpler, provides a useful baseline for comparison, elucidating the linear relationships between the environmental parameters and corrosion rates. The ACM-based system adopts a wireless data transmission mode and uploads real-time data to the cloud, which allows for centralized data storage, processing, and analysis. It is equipped with client software that provides a user-friendly interface for data visualization and analysis. Key features include real-time monitoring of corrosion conditions at critical points in the infrastructure, enabling immediate detection of anomalies; advanced data processing and analysis tools to extract meaningful insights from the collected data; predictive models that estimate the remaining service life of materials and coatings, helping in planning maintenance activities; automated alerts and notifications to inform stakeholders of potential issues and recommended actions; and customizable reports that can be generated to provide detailed insights into the corrosion status and trends over time. Case studies on cross-sea bridges in various regions illustrated the effectiveness of ACM systems. For example, a bridge in a coastal area with high salinity and humidity levels was monitored using the ACM system, and the data collected over a period of two years showed a significant correlation between the environmental parameters and corrosion rates of the bridge’s steel components. By implementing the recommendations provided by the system, bridge maintenance teams can reduce the corrosion rate and extend the service life of the structure. Another case study involving a bridge in a region with varying climatic conditions detected an unexpected increase in corrosion rates during a specific season; further analysis revealed that this was due to a combination of high humidity and increased pollution levels. The maintenance team took immediate action, applied protective coatings, and implemented additional measures to mitigate the corrosion. The ACM system provides several benefits. It not only enhances the safety and reliability of infrastructure but also reduces maintenance costs by enabling proactive and targeted interventions. The ability of the system to predict the remaining service life of the materials and coatings enables better planning and resource allocation. In the future, ACM systems can be further enhanced by integrating more advanced sensors, such as fiber-optic sensors, and by incorporating more sophisticated machine learning algorithms. In addition, the system can be extended to other types of infrastructure, such as pipelines, offshore platforms, and industrial facilities, to provide a comprehensive solution for corrosion management. In conclusion, the application of advanced corrosion-monitoring technologies, such as the ACM system, is essential for ensuring the safety and longevity of infrastructure, particularly in challenging environments such as those encountered in cross-sea bridges. By integrating machine learning methods and real-time data analysis, these systems provide valuable insights and predictive capabilities, enabling proactive maintenance and preventing major accidents. As technology evolves, it promises to further enhance the reliability and efficiency of infrastructure management. Keywords: corrosion monitoring, environmental parameters, coatings, machine learning, random forest, decision tree, linear regression, cross-sea bridge, infrastructure safety, service life extension.

  • 0 前言

  • 工业中常见的腐蚀评价方法主要是挂片失重法,即通过计算挂片前后的重量变化来计算腐蚀速率,通过分析样品表面的状态与腐蚀产物来获取其中的腐蚀信息,这个过程漫长而且没有实时性[1]。为弥补传统的腐蚀评价方法在时效性上的不足,需要开发更加便捷、周期短、获取数据量大的材料腐蚀检测方法。电化学分析方法的发展为大气腐蚀在线监测提供了新思路,由此发展出了电化学探针法、电化学阻抗谱法、弱极化法、电化学噪声分析法等众多监测技术[2-6],这些技术,如电化学探针,简单易行,成本较低,适合现场快速评估腐蚀状况。电化学阻抗谱法是一种非破坏性的测试技术,可以提供关于腐蚀过程动力学(如电荷转移电阻、双层电容等)和腐蚀产物膜质量的信息。但这类监测手段需要人工现场进行操作,以实现便捷式检测目的。得益于物联网技术与传感器技术的发展,可实现传感器信息的实时云传输,开发出更加具有时效性的在线腐蚀监测技术。

  • 目前,大气腐蚀监测中常用的是电偶型腐蚀传感器(Advanced corrosion monitoring,ACM)[7],它具有制作简单、分析方便等优点。除此之外,其他科技的发展也为大气腐蚀在线监测技术提供了新的方向,发展出了许多新型腐蚀监测技术,如超声波法、声发射法、分光光度法、光纤腐蚀传感器[8]。先进的大气腐蚀在线监测技术无疑是认识腐蚀、控制腐蚀的重要手段,也是保障各种工业设施安全运行的基本技术保障[19-12]。虽然当前这些技术实现了对材料腐蚀信息的便捷采集,但数据量的激增带来了数据的处理问题,并且实际环境下的材料腐蚀研究不同于实验室研究,无法在复杂的多维环境参数条件下研究单一材料的腐蚀机理。为此,本文尝试构建一种研究环境参数与材料腐蚀之间联系的在线监测方法,并结合机器学习方法,建立多维环境参数与腐蚀信息之间的模型,进而利用所训练的模型进行材料腐蚀进程的预测工作。

  • 本文所述的 ACM 大气腐蚀监测分析系统旨在搭建一个可视化、电偶腐蚀监测、机器学习的实时监测展示平台。该系统能够实时监测腐蚀电流变化,并且能够同时监测大气环境温湿度、水环境温度、 pH、溶解氧、氯离子浓度等多个参数,实现腐蚀环境、腐蚀状态可视化及腐蚀数据在线积累,并且利用多种机器学习算法构建了多维环境参数与材料腐蚀电流之间的模型,模型评价指标决定系数达 0.83,并且随着迭代次数的增加与模型复杂度的增加,其决定系数有进一步提升的趋势。

  • 1 ACM 腐蚀监测技术介绍

  • ACM 监测通过监测金属材料表面的电位和电流变化来判断金属材料的腐蚀电流变化。它可以实现实时、连续地监测金属结构的腐蚀情况,并且可以提供多种腐蚀指标,如腐蚀速率、腐蚀形貌等信息[13-16]

  • 1.1 技术原理

  • ACM 腐蚀监测技术是基于电化学原理的一种方法,通过测量金属表面的电位和电流变化来检测腐蚀情况,其原理如下[17-19]

  • (1)构建电化学电路:ACM 腐蚀监测系统会在金属结构上安装电极,并与参比电极和工作电极连接,构成一个电化学电路。

  • (2)测量电位差及电流:通过测量金属结构表面的电位差,即工作电极与参比电极之间的电位差,可以了解金属表面的电化学特性。当金属发生腐蚀时,电位会发生变化。同时电化学回路中会产生微弱电流,通过对微弱电流的监测,可以了解材料腐蚀速率等信息。

  • (3)计算腐蚀速率:根据电位变化及电流大小与腐蚀速率的关系,可以计算金属结构的腐蚀速率。通常使用特定的算法或模型来将电位电流值转换为腐蚀速率。

  • (4)监测数据分析:ACM 系统会实时采集和记录电位与电流数据,并进行数据分析和处理。通过对历史数据的比较和趋势分析,可以判断腐蚀情况的发展趋势以及采取相应的维护措施。

  • 1.2 ACM 腐蚀监测技术优势及局限性

  • ACM 腐蚀监测技术具有以下优点[20-22]

  • (1)非侵入性:ACM 监测不需要在金属结构上安装电极和传感器,因此对金属结构的损伤较小。

  • (2)实时监测:ACM 监测可以实时、连续地监测金属结构的腐蚀情况,并可以提供多种腐蚀指标。

  • (3)超长寿命:ACM 监测采用无线传输技术,其电池寿命可达 10 年以上,因此维护成本较低。

  • (4)适用范围广:ACM 监测适用于多种金属结构,包括管道、储罐、桥梁等。

  • ACM 腐蚀监测方法的局限性:

  • (1)依赖环境条件:ACM 监测系统的准确性和可靠性受到环境条件的影响,例如温度、湿度、盐度等因素。恶劣的环境条件可能导致监测结果不准确或产生误报。

  • (2)限制材料适用性:ACM 监测技术对于某些特定材料可能不适用。例如,非金属材料和部分特殊合金可能无法被准确监测。

  • (3)初始投资成本高:引入 ACM 腐蚀监测系统需要一定的初始投资,包括设备购买、安装和培训等费用。这可能对一些资源有限的企业或项目带来一定的经济压力。

  • (4)需要专业知识和技能:ACM 腐蚀监测系统的操作和维护需要相关的专业知识和技能。

  • (5)无法提供腐蚀机理信息:ACM 腐蚀监测技术只能提供腐蚀速率和腐蚀程度等信息,但无法直接提供导致腐蚀的具体机理。

  • 2 ACM 腐蚀监测系统平台搭建

  • 2.1 系统架构组成

  • ACM 无线腐蚀监测系统通过无线传输技术传输数据,具有低功耗、安装简单、系统维护成本低、检测精度高等特点[23-24]。如图1 系统架构图所示,该无线腐蚀监测系统采用 4G 网络联网,使用物联网技术监控设备[25],定时采集环境及腐蚀传感器数据,实现数据回传至云端服务器进行存储,并且根据不同场景需求,可采用有线、无线、4G、本地存储等多种数据传输方式采集存储数据。

  • 图1 腐蚀监测系统架构

  • Fig.1 Architecture of corrosion monitoring system

  • 2.2 在线腐蚀监测系统

  • 腐蚀监测系统主要由数据库、云平台、机器学习软件等组成,封装为 exe 格式安装文件,可在常规电脑系统上直接运行,使用专属账户登录后,即可对云端数据进行调用,并进行各类机器学习模型训练,目前包括随机森林学习[26]、线性回归、决策树等算法[27-28]。采用专属账户的方式保证数据安全性与独有性,多种机器学习方式应对多种环境下不同材料的腐蚀因素耦合情况实现监测系统对不同材料的契合度。

  • 云平台实现对实时数据的可视化,实时监控设备状态,可计算实时腐蚀速率和腐蚀量、设置报警等功能,包括[29-32]

  • (1)可视易读:可布局相应网址进行实时环境、腐蚀数据展示,实现环境-腐蚀可视化。软件登录专属账户,即可查看云端数据库相关数据,释放本地内存。

  • (2)数据调用便捷:可分配多个账户实现多账户同时调用,可实现多用户独有数据操作,但不改变源数据结构,保证各用户不同需求。

  • 腐蚀监测结果预测软件具有使用各种机器学习方法进行腐蚀预测[33]的功能。

  • 2.3 腐蚀监测仪

  • 腐蚀监测仪主要由电偶腐蚀传感器、温度传感器、湿度传感器、SO2 传感器、紫外线传感器[34] 和铅酸蓄电池组成。电池与主机分体设计保证设备安全,主体 IP66 防尘防水,表1 为该监测仪的基本参数。

  • 表1 腐蚀监测仪技术参数

  • Table1 Corrosion monitor technical parameters

  • 图2 为腐蚀监测仪设备校准曲线,利用电化学工作站给设备输入一个固定数值(1、10、100、1 000、 2 000 nA)的微弱电流,进行一段时间的监测。图中可以看出,监测结果围绕着准确数值上下轻微波动,整体上监测结果与实际值一致,说明设备能够准确监测微弱电流的变化,监测结果具有良好的可信度。

  • 图2 腐蚀监测仪设备校准曲线

  • Fig.2 Calibration curve for corrosion monitor equipment

  • 为检验腐蚀监测设备在大气环境下腐蚀监测效果,实验室设备模拟大气环境,对不同温湿度组合下设备腐蚀监测电流进行实时监测。

  • 为检验腐蚀监测设备在大气环境下腐蚀监测效果,实验室设备模拟大气环境,对不同温湿度组合下设备腐蚀监测电流进行实时监测。温湿度控制试验条件为 20、30、40℃与 65% RH、70% RH、80% RH、90% RH、95% RH 正交试验,共 15 组,每组监测时间不少于 24 h。

  • 图3~5 为实验室进行的铝合金与不锈钢控制温湿度的腐蚀监测试验,整体表现为铝合金腐蚀速率高于不锈钢材料的腐蚀速率。

  • 图3 20℃不同湿度铝合金与不锈钢的腐蚀电流变化规律

  • Fig.3 Corrosion current change rule of aluminium alloy and stainless steel with different humidity at 20℃

  • 图4 30℃不同湿度铝合金与不锈钢的腐蚀电流变化规律

  • Fig.4 Change rule of corrosion current of aluminium alloy and stainless steel with different humidity at 30℃

  • 图5 40℃不同湿度铝合金与不锈钢的腐蚀电流变化规律

  • Fig.5 Change rule of corrosion current of aluminium alloy and stainless steel with different humidity at 40℃

  • 温度为 20℃时,随湿度升高,铝合金与不锈钢的腐蚀电流变化并不明显,但可以观察到,在湿度升高到 70% RH 时,铝合金的腐蚀电流升高并达到稳定。这是因为在此温度条件下,铝合金样品表面已形成薄液膜。而不锈钢腐蚀电流在湿度达到 95% RH 时有所上升,表明不锈钢样品在此温度下才形成薄液膜。

  • 温度为 30℃时,随湿度升高,铝合金腐蚀电流呈现出先升高后降低的趋势,不锈钢表现出低湿度时的腐蚀电流逐渐降低并保持稳定,当湿度达到 80% RH 时会有一段升高,随后下降,不再随湿度变化。两者在湿度达到 90%~95% RH 时,均不随湿度变化再继续变化,判断为在此温度条件下,湿度到达 80%~95% RH 时,样品表面形成了液膜,使得湿度继续变化,对样品表面的液膜影响有限,体现为样品腐蚀电流对湿度变化不敏感。在实际环境中,这对应着降雨的天气情况。降雨时,样品表面形成液膜,而湿度监测上,湿度值在 70% RH 及以上即为降雨环境。

  • 温度为 40℃时,铝合金与不锈钢腐蚀电流表现为对湿度不敏感,温度较高,即使在湿度较高的情况下,样品表面也难以形成连续的薄液膜。在这种情况下,腐蚀电流相对较小。理解为实际环境下,环境温度达到 40℃时,湿度值一般较低,低于 60% RH 以下,样品表面非常干燥,这也与监测情况相一致。

  • 通过上述对不同温度条件下,改变湿度进行的实验室大气模拟试验腐蚀监测结果来看,监测系统能够准确监测材料的腐蚀状态。理论上在实际环境中能够正常工作,进行常见材料的腐蚀监测工作。上述是温湿度协同作用试验,因此可以在一定程度上揭示温湿度共同作用下材料的腐蚀进程。虽然在实际环境中仍存在其他因素会在一定程度对腐蚀产生影响,但上述试验过程已经能够证明,该腐蚀监测设备能对处于交变环境下的材料腐蚀过程进行明确的监测。

  • 3 腐蚀监测数据分析

  • 3.1 腐蚀数据概览

  • 该 ACM 腐蚀监测系统于 2022 年 9 月布设于杭州湾跨海大桥南北中三个部位,分别进行碳钢腐蚀和涂层 50、100、200 μm 防护性能监测,已稳定运行超一年。全部数据存储于云 RDS 数据库,设备可自行监测电池电压状况、设备运行情况,期间仅进行一次设备维护。

  • 结合云 RDS 数据库,对其中数据直接调用可实现各参数的实时可视化。图6 为环境参数、腐蚀数据的直接展示,提高了各参数的可视化程度,能够更加直观地掌握材料的腐蚀状态。

  • 图6 腐蚀监测信息数据可视化界面

  • Fig.6 Corrosion monitoring information data visualization interface

  • 图7 为温度 / 湿度 / 腐蚀信号的监测结果图,环境参数与腐蚀电流在时间上一致。可以看出在杭州湾大桥案例中,温度与湿度整体为负相关关系,温度升高时湿度有所降低。腐蚀监测仪监测得到的腐蚀信号也随温湿度交替变化出现波动,表现为:湿度未超过 85% RH,说明并非为阴雨天,在这种天气情况下,温度升高,腐蚀电流相应增加,这与紫外线强度增加,腐蚀电流增大相一致。因为大多紫外线较为强烈的天气都为晴朗天气,在无遮盖区域处的气温相应更高。

  • 图7 腐蚀电流结果分析

  • Fig.7 Corrosion current result analysis

  • 图8 为温湿度、紫外线三个环境因素数据归一化后所得对腐蚀电流的影响热力图。如图所示,在湿度、温度、紫外线三者综合影响时,腐蚀电流较高及腐蚀最为严重,相较于单环境因素表现较为突出,对腐蚀电流的贡献较为有限,因此探究多因素条件对腐蚀的影响权重很有必要。

  • 图8 腐蚀监测温湿度、紫外线强度腐蚀电流热力图

  • Fig.8 Thermogram of temperature and humidity, UV corrosion current for corrosion monitoring

  • 3.2 腐蚀监测结果分析

  • 主要采用较为常见的线性回归、决策树、随机森林三种机器学习方法对已有腐蚀数据进行训练分析。随机森林算法如图9 所示。

  • 图9 随机森林流程图

  • Fig.9 Random Forest flow chart

  • 图9 为随机森林的基本模型示意图,随机森林算法是由多个决策树构成的集成学习算法,在处理大量的输入变量上具有优势。式(1)为本文选取的随机森林模型计算方法。

  • Y^RF(x)=1Ntrees i=1Ntrees fi(x)
    (1)
  • 式中,Ntrees 为决策树数量,Y^RF为输出值,x 为输入的环境参数。一般而言,决策树数量越多,训练得到的模型越准确。

  • 线性回归算法:

  • y=b+w1x1+w2x2+wMxM=wTx
    (2)
  • 式中,M 为自变量个数,y 为特征向量,这里代表腐蚀电流信号,每次训练输入的样本量为 NwM 维列向量,即为特征值向量,w 的计算公式如式 (3)所示。求解 w 的过程即为线性回归训练,对环境参数的各权重进行求解的过程。

  • w=i=1N wTxi-yi2min
    (3)
  • 式中,xi 为环境参数,yi 为各环境参数情况下对应的腐蚀数据,w Tw 转置矩阵,这个过程会将环境数据与腐蚀数据之间的关系拟合为一个简单的线性函数关系。

  • 评价模型拟合度的参数为 R2

  • R2=1-SSresSStot
    (4)
  • 式中,ssres 是残差平方和,表示模型预测值和实际值之间的差异;sstot 是总平方和,表示实际值和实际均值之间的差异。

  • R2 表示实际数据中因变量的变化被模型解释的程度,取值范围从 0 到 1。其中,0 表示模型无法解释因变量的变化,1 表示模型可以完美地解释因变量的变化。因此,R2 越接近 1,表示模型对数据的拟合程度越好;R2 越接近 0,表示模型对数据的拟合程度越差。

  • 使用机器学习对腐蚀数据进行训练预测中,选取线性回归、决策树与随机森林进行对比。实际用于训练的数据为 35 000 条左右,取其中 80%作为训练集,20%为测试集。随后使用经过训练测试后的模型输出同样环境下的腐蚀预测值,与实际腐蚀数据值进行对比。

  • 图10~12 腐蚀监测结果与训练后模型预测结果对比图,已实际采集的环境数据为特征值,该环境下的腐蚀信号作为标签值进行机器学习模型训练 (随机森林、决策树、线性回归)。图中 True 为原腐蚀电流与采集点图,Predicted 为利用相应的环境数据,使用训练结束的模型进行预测的结果。对于该种材料,从各个模型的 R2 值可以看出,随机森林模型预测值与原始值拟合相对较好,而决策树模型出现过拟合的现象,线性回归模型则出现了欠拟合的情况。随机森林算法是决策树算法的进一步优化,从与图11、12 对比来看,随机森林决定系数要明显优于决策树与线性回归,证明针对多个因素共同作用的情况下,单决策树学习与线性回归算法均存在不足。

  • 图10 腐蚀监测结果预测示意图-随机森林(RF)

  • Fig.10 Schematic diagram of predicted corrosion monitoring results-Random forest (RF)

  • 图11 腐蚀监测结果预测示意图-决策树(TD)

  • Fig.11 Schematic diagram of corrosion monitoring results prediction-decision tree (TD)

  • 图12 腐蚀监测结果预测示意图-线性回归(LR)

  • Fig.12 Schematic prediction of corrosion monitoring Results-linear regression (LR)

  • 实际分析中,对于三种机器学习方法的预测与训练时的速度进行考虑。线性回归在实际训练时的速度最快,但其预测效果不佳,表明实际环境因素对腐蚀的影响是复杂的,环境与材料腐蚀之间并非为一个简单的线性关系。决策树与随机森林可以对非线性关系进行处理,随机森林在决策树的基础上有很好的提升,具有较好的腐蚀预测效果,并且可以将所使用的各环境参数对腐蚀信号的影响权重进行计算输出。在表现最佳的随机森林监测结果预测图中(图10),四个环境参数的权重值分别为: Humidity:0.456 5、Temperature:0.387 2、SO2: 0.000 0、Ultraviolet intensity:0.156 3。可以看出对腐蚀贡献最大的是湿度,较高的湿度使金属表面形成水膜,溶解了空气中的氧气和其他气体,从而形成电解质液体,促进电化学反应的发生,加速金属表面的腐蚀,并且会在一定程度上增加水膜中的离子浓度,从而提高金属表面上电荷的传导速率。温度则会影响腐蚀介质中氧气和其他腐蚀物质的扩散速率,从而影响腐蚀速率。紫外线则通过光化学反应和改变材料表面物理性质等方式影响腐蚀,而 SO2 在实际环境中检测值很微弱且在较长时间内为 0,考虑是否为所使用相应传感器的精度问题,并在后续研究中会进行调整。总体而言,该腐蚀监测系统无论是在环境的影响权重,还是对腐蚀的预测上均有比较良好的表现。

  • 4 结论

  • (1)自主研发的基于 ACM 技术的腐蚀监测系统,腐蚀监测精度高,可达 pA 极腐蚀电流监测,且可灵活调整设备的灵敏度及监测量程,满足不同需求;设备配备相应云端数据库与多种数据流转方式可提高数据的时效性,且另设本地数据存储方式,适应各种不便数据上网的场景;腐蚀监测软件系统可实现对已采集的数据进行训练预测,可实现对某一材料在某一腐蚀趋势的预测,减少针对特定环境下的该种材料试验时间;理论上可实现 200 个以上环境参数采集,支持八个通道 ACM 腐蚀传感器数据采集,腐蚀传感器材料多样,可根据需求进行选择,同时可以进行涂层防护性能监测,涂层出现破损时可进行报警。

  • (2)在杭州湾跨海大桥案例中,对实际环境中的温度、湿度、紫外线、SO2 及 ACM 腐蚀传感器腐蚀电流进行实时监测,并对环境参数相应的权重及使用训练结束后的模型预测效果进行了展示。其中使用的三种学习模型中,随机森林方法训练预测效果最佳,相应的环境参数权重为:Humidity:0.456 5、 Temperature:0.387 2、SO2:0.000 0、Ultraviolet intensity:0.1563。

  • (3)湿度对腐蚀的影响最大,理解为湿度增加,在试样表面形成薄液膜,使试样处于一个电解质环境中,促进电化学反应的进行。其次为温度的影响,虽然,温度与湿度在一定程度上呈负相关关系,即温度升高,湿度会有所下降,湿度下降会减弱对电化学过程的促进作用,但温度升高会影响电化学过程的反应动力学,增加腐蚀过程中的离子扩散速率。紫外线则会影响材料表面的物理性质,从而影响腐蚀进程。SO2由于含量微弱且数据基本为 0,被判断为对腐蚀没有影响,但这与实际中,SO2 与水和氧气反应生成硫酸和硫酸盐对材料腐蚀具有较大影响的情况不符。

  • 本工作初步构建了可以针对各种环境的实时腐蚀监测并进行预测的系统,这对实现在复杂环境耦合作用下的材料腐蚀损伤研究具有极大的指导意义。

  • 参考文献

    • [1] 周梦鑫,吴军,樊志彬,等.大气腐蚀在线监测技术研究现状与展望[J].中国腐蚀与防护学报,2023,43(1):38-46.ZHOU Mengxin,WU Jun,FAN Zhibin,et al.Current status and prospect of on-line monitoring technology for atmospheric corrosion[J].Chinese Journal of Corrosion and Protection,2023,43(1):38-46.(in Chinese)

    • [2] 白生宝,肖迎春.飞机结构腐蚀监测技术研究进展[J].腐蚀与防护,2023,44(8):23-28.BAI Shengbao,XIAO Yingchun.Research progress of aircraft structural corrosion monitoring technology[J].Corrosion and Protection,2023,44(8):23-28.(in Chinese)

    • [3] 杨飞,周永峰,胡科峰,等.腐蚀防护监测检测技术研究的进展[J].全面腐蚀控制,2009,23(11):46-51.YANG Fei,ZHOU Yongfeng,HU Kefeng,et al.Progress of research on corrosion protection monitoring and detection technology[J].Total Corrosion Control,2009,23(11):46-51.(in Chinese)

    • [4] 赵泽,胡世杰,林睿,等.石油储罐腐蚀行为及腐蚀监测研究进展[J].电镀与涂饰,2023,42(14):42-54.ZHAO Ze,HU Shijie,LIN Rui,et al.Research progress on corrosion behaviour and corrosion monitoring of petroleum storage tanks[J].Plating and Coating,2023,42(14):42-54.(in Chinese)

    • [5] 范银华,陈江华.钢制长输油气管道硫化氢腐蚀的电化学研究方法[J].广州化工,2020,48(11):39-43.FAN Yinhua,CHEN Jianghua.Electrochemical investigation method of hydrogen sulphide corrosion in steel long-distance oil and gas pipelines[J].Guangzhou Chemical Industry,2020,48(11):39-43.(in Chinese)

    • [6] 韩一峰,朱烨森,陈皖滨,等.海管焊接接头腐蚀特性及监测方法研究进展[J].装备环境工程,2023,20(7):98-108.HAN Yifeng,ZHU Yesen,CHEN Wanbin,et al.Research progress on corrosion characteristics and monitoring methods of welded joints of sea pipes[J].Equipment Environmental Engineering,2023,20(7):98-108.(in Chinese)

    • [7] PEI Z B,XIAO K,CHEN L H,et al.Investigation of corrosion behaviors on an Fe/Cu-type ACM sensor under various environments[J].Metals,2020,10(7):905.(in Chinese)

    • [8] 李晓刚,李清,裴梓博,等.钢铁大气腐蚀监测技术研究进展[J].鞍钢技术,2020,6:1-8.LI Xiaogang,LI Qing,PEI Zibo,et al.Research progress of steel atmospheric corrosion monitoring technology[J].Ansteel Technology,2020,6:1-8.(in Chinese)

    • [9] 李波,杨明.贵州大气环境中耐候钢在输变电设备中的应用探讨[J].电力大数据,2021,24(10):86-92.LI Bo,YANG Ming.Discussion on the application of weathering steel in transmission and substation equipment in Guizhou atmospheric environment[J].Electric Power Big Data,2021,24(10):86-92.(in Chinese)

    • [10] JIA Y B,GAO H B,QIAN Z H,et al.Research and application of online corrosion monitoring technology for offshore wind power equipment[J].Materials Development and Application,2021,36(3):95-100.

    • [11] 于金山,万闪,赵鹏,等.高压电网大气腐蚀在线监测技术进展[J].装备环境工程,2020,17(4):27-33.YU Jinshan,WAN Shan,ZHAO Peng,et al.Advances in online monitoring technology of atmospheric corrosion in high-voltage power grids[J].Equipment Environmental Engineering,2020,17(4):27-33.(in Chinese)

    • [12] 李波,孙清,刘卓毅,等.贵州大气环境中耐侯钢在电网应用中的关键技术[J].材料保护,2023,56(3):142-149,158.LI Bo,SUN Qing,LIU Zhuoyi,et al.Key technologies of mar-resistant steel in Guizhou atmospheric environment for grid application[J].Material Protection,2023,56(3):142-149,158.(in Chinese)

    • [13] 余磊.无线传感器网络网内数据处理安全技术研究[D].哈尔滨:哈尔滨工业大学,2011.YU Lei.Research on security technology of data processing in wireless sensor network network[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)

    • [14] 宋木清,筱原正,达川茂男.对酸雨敏感的大气腐蚀型监测器(ACM)的研究[J].材料保护,1998,9:4-7,2.SONG Muqing,XIAO Yuanzheng,TATSUKAWA Shigeo.Study of an atmospheric corrosion monitor(ACM)sensitive to acid rain[J].Material Protection,1998,9:4-7,2.(in Chinese)

    • [15] 陈洪江.3300ACM 电力监测智能仪表在东风发电厂电气测量中的应用[J].贵州水力发电,2001,2:75-77.CHEN Hongjiang.Application of 3300ACM power monitoring intelligent meter in electrical measurement of Dongfeng power plant[J].Guizhou Hydropower Generation,2001,2:75-77.(in Chinese)

    • [16] 冷英,刘忠玲,张衡,等.一种改进的ACM算法及其在鄱阳湖水域监测中的应用[J].电子与信息学报,2017,39(5):1064-1070.LENG Ying,LIU Zhongling,ZHANG Heng,et al.An improved ACM algorithm and its application in monitoring the waters of Poyang Lake[J].Journal of Electronics and Information,2017,39(5):1064-1070.(in Chinese)

    • [17] 毛红玲.在线腐蚀监测技术在炼化企业中的应用[J].石油化工自动化,2023,59(S1):22-25.MAO Hongling.Application of online corrosion monitoring technology in refining enterprises[J].Petrochemical Automation,2023,59(S1):22-25.(in Chinese)

    • [18] 王向农.用放射技术监测腐蚀[J].腐蚀与防护,1987,1:30-31,53.WANG Xiangnong.Corrosion monitoring by radiological techniques[J].Corrosion and Protection,1987,1:30-31,53.(in Chinese)

    • [19] 韩羽,王世海,刘战营,等.杨税务气藏集输管线腐蚀监测技术[J].石油知识,2023,4:42-43.HAN Yu,WANG Shihai,LIU Zhanying,et al.Corrosion monitoring technology of gathering pipeline in Yang tax gas reservoir[J].Petroleum Knowledge,2023,4:42-43.(in Chinese)

    • [20] 张炜强,秦立高,李飞.腐蚀监测/检测技术[J].腐蚀科学与防护技术,2009,21(5):477-479.ZHANG Weiqiang,QIN Ligao,LI Fei.Corrosion monitoring/inspection technology[J].Corrosion Science and Protection Technology,2009,21(5):477-479.(in Chinese)

    • [21] 纪大伟.管道内壁腐蚀监测技术研究[D].大连:大连理工大学,2010.JI Dawei.Research on corrosion monitoring technology of pipeline inner wall[D].Dalian:Dalian University of Technology,2010.(in Chinese)

    • [22] 张敏,黄红军,李志广,等.金属腐蚀监测技术[J].腐蚀科学与防护技术,2007,5:354-357.ZHANG Min,HUANG Hongjun,LI Zhiguang,et al.Metal corrosion monitoring technology[J].Corrosion Science and Protection Technology,2007,5:354-357.(in Chinese)

    • [23] 王文皞.基于压电超声导波的钢轨结构健康监测系统研究[D].南京:南京航空航天大学,2019.WANG Wenhao.Research on structural health monitoring system of rails based on piezoelectric ultrasonic guided wave[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2019.(in Chinese)

    • [24] 耿云鸿.基于LoRa的水质实时监测系统的研究与实现[D].西安:西安邮电大学,2021.GENG Yunhong.Research and implementation of real-time water quality monitoring system based on LoRa[D].Xi’an:University of Posts and Telecommunications,2021.(in Chinese)

    • [25] DAISUKE M,SACHIKO S,SAKAE F,et al.Corrosion monitoring and materials selection for automotive environments by using atmospheric corrosion monitor(ACM)sensor[J].Corrosion Science,2014,83:217-225.

    • [26] LI Q,XIA X J,PEI Z B,et al.Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method[J].Npj Materials Degradation,2022,6:1-9.

    • [27] 王少博.基于神经网络的接地网腐蚀率预测应用研究[D].西安:西安科技大学,2013.WANG Shaobo.Application of neural network-based grounding network corrosion rate prediction[D].Xi’an:University of Science and Technology,2013.(in Chinese)

    • [28] 花广如,李文浩,郭阳阳.基于神经网络模型的海南变电站接地网Q235钢腐蚀率预测[J].腐蚀与防护,2017,38(8):573-577,588.HUA Guangru,LI Wenhao,GUO Yangyang.Prediction of corrosion rate of Q235 steel in grounding network of Hainan substation based on neural network model[J].Corrosion and Protection,2017,38(8):573-577,588.(in Chinese)

    • [29] 尚文利,刘贤达,李世超,等.采油数据采集与监测管理平台设计与实现[J].现代电子技术,2019,42(5):124-130,134.SHANG Wenli,LIU Xianda,LI Shichao,et al.Design and realisation of oil recovery data acquisition and monitoring management platform[J].Modern Electronic Technology,2019,42(5):124-130,134.(in Chinese)

    • [30] 马红杰,李广占,单国成,等.在线测厚腐蚀监测技术在石油化工装置的应用[J].石油化工设备技术,2022,43(2):37-42,5.MA Hongjie,LI Guangzhan,SHAN Guocheng,et al.Application of online thickness corrosion monitoring technology in petrochemical plants[J].Petrochemical Equipment Technology,2022,43(2):37-42,5.(in Chinese)

    • [31] 刘强,丁楠,汪鹏勃,等.基于无线传感网络的油气管道监测技术研究进展[J].石油管材与仪器,2019,5(4):1-8.LIU Qiang,DING Nan,WANG Pengbo,et al.Research progress of oil and gas pipeline monitoring technology based on wireless sensor network[J].Petroleum Pipes and Instruments,2019,5(4):1-8.(in Chinese)

    • [32] 李言涛,吴茂涛,姜信德,等.管线阴极保护在线监测评价系统的研究进展[J].材料保护,2010,43(9):50-52,78.LI Yantao,WU Maotao,JIANG Xinde,et al.Research progress of online monitoring and evaluation system for pipeline cathodic protection[J].Material Protection,2010,43(9):50-52,78.(in Chinese)

    • [33] YULI P A,TEDI K.Corrosion prediction for corrosion rate of carbon steel in oil and gas environment:A review[J].Indonesian Journal of Science & Technology,2018,3(1):64-74.

    • [34] CAI Y K,ZHAO Y,ZHANG Z T,et al.Atmospheric and marine corrosion:influential environmental factors and models[C]//International Workshop on Environmental Management,Science and Engineer,November 4-8,2018,Sukosol Hotel,Bangkok,Thailand.Britain:Physical Sciences,2018:178-186.

  • 参考文献

    • [1] 周梦鑫,吴军,樊志彬,等.大气腐蚀在线监测技术研究现状与展望[J].中国腐蚀与防护学报,2023,43(1):38-46.ZHOU Mengxin,WU Jun,FAN Zhibin,et al.Current status and prospect of on-line monitoring technology for atmospheric corrosion[J].Chinese Journal of Corrosion and Protection,2023,43(1):38-46.(in Chinese)

    • [2] 白生宝,肖迎春.飞机结构腐蚀监测技术研究进展[J].腐蚀与防护,2023,44(8):23-28.BAI Shengbao,XIAO Yingchun.Research progress of aircraft structural corrosion monitoring technology[J].Corrosion and Protection,2023,44(8):23-28.(in Chinese)

    • [3] 杨飞,周永峰,胡科峰,等.腐蚀防护监测检测技术研究的进展[J].全面腐蚀控制,2009,23(11):46-51.YANG Fei,ZHOU Yongfeng,HU Kefeng,et al.Progress of research on corrosion protection monitoring and detection technology[J].Total Corrosion Control,2009,23(11):46-51.(in Chinese)

    • [4] 赵泽,胡世杰,林睿,等.石油储罐腐蚀行为及腐蚀监测研究进展[J].电镀与涂饰,2023,42(14):42-54.ZHAO Ze,HU Shijie,LIN Rui,et al.Research progress on corrosion behaviour and corrosion monitoring of petroleum storage tanks[J].Plating and Coating,2023,42(14):42-54.(in Chinese)

    • [5] 范银华,陈江华.钢制长输油气管道硫化氢腐蚀的电化学研究方法[J].广州化工,2020,48(11):39-43.FAN Yinhua,CHEN Jianghua.Electrochemical investigation method of hydrogen sulphide corrosion in steel long-distance oil and gas pipelines[J].Guangzhou Chemical Industry,2020,48(11):39-43.(in Chinese)

    • [6] 韩一峰,朱烨森,陈皖滨,等.海管焊接接头腐蚀特性及监测方法研究进展[J].装备环境工程,2023,20(7):98-108.HAN Yifeng,ZHU Yesen,CHEN Wanbin,et al.Research progress on corrosion characteristics and monitoring methods of welded joints of sea pipes[J].Equipment Environmental Engineering,2023,20(7):98-108.(in Chinese)

    • [7] PEI Z B,XIAO K,CHEN L H,et al.Investigation of corrosion behaviors on an Fe/Cu-type ACM sensor under various environments[J].Metals,2020,10(7):905.(in Chinese)

    • [8] 李晓刚,李清,裴梓博,等.钢铁大气腐蚀监测技术研究进展[J].鞍钢技术,2020,6:1-8.LI Xiaogang,LI Qing,PEI Zibo,et al.Research progress of steel atmospheric corrosion monitoring technology[J].Ansteel Technology,2020,6:1-8.(in Chinese)

    • [9] 李波,杨明.贵州大气环境中耐候钢在输变电设备中的应用探讨[J].电力大数据,2021,24(10):86-92.LI Bo,YANG Ming.Discussion on the application of weathering steel in transmission and substation equipment in Guizhou atmospheric environment[J].Electric Power Big Data,2021,24(10):86-92.(in Chinese)

    • [10] JIA Y B,GAO H B,QIAN Z H,et al.Research and application of online corrosion monitoring technology for offshore wind power equipment[J].Materials Development and Application,2021,36(3):95-100.

    • [11] 于金山,万闪,赵鹏,等.高压电网大气腐蚀在线监测技术进展[J].装备环境工程,2020,17(4):27-33.YU Jinshan,WAN Shan,ZHAO Peng,et al.Advances in online monitoring technology of atmospheric corrosion in high-voltage power grids[J].Equipment Environmental Engineering,2020,17(4):27-33.(in Chinese)

    • [12] 李波,孙清,刘卓毅,等.贵州大气环境中耐侯钢在电网应用中的关键技术[J].材料保护,2023,56(3):142-149,158.LI Bo,SUN Qing,LIU Zhuoyi,et al.Key technologies of mar-resistant steel in Guizhou atmospheric environment for grid application[J].Material Protection,2023,56(3):142-149,158.(in Chinese)

    • [13] 余磊.无线传感器网络网内数据处理安全技术研究[D].哈尔滨:哈尔滨工业大学,2011.YU Lei.Research on security technology of data processing in wireless sensor network network[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)

    • [14] 宋木清,筱原正,达川茂男.对酸雨敏感的大气腐蚀型监测器(ACM)的研究[J].材料保护,1998,9:4-7,2.SONG Muqing,XIAO Yuanzheng,TATSUKAWA Shigeo.Study of an atmospheric corrosion monitor(ACM)sensitive to acid rain[J].Material Protection,1998,9:4-7,2.(in Chinese)

    • [15] 陈洪江.3300ACM 电力监测智能仪表在东风发电厂电气测量中的应用[J].贵州水力发电,2001,2:75-77.CHEN Hongjiang.Application of 3300ACM power monitoring intelligent meter in electrical measurement of Dongfeng power plant[J].Guizhou Hydropower Generation,2001,2:75-77.(in Chinese)

    • [16] 冷英,刘忠玲,张衡,等.一种改进的ACM算法及其在鄱阳湖水域监测中的应用[J].电子与信息学报,2017,39(5):1064-1070.LENG Ying,LIU Zhongling,ZHANG Heng,et al.An improved ACM algorithm and its application in monitoring the waters of Poyang Lake[J].Journal of Electronics and Information,2017,39(5):1064-1070.(in Chinese)

    • [17] 毛红玲.在线腐蚀监测技术在炼化企业中的应用[J].石油化工自动化,2023,59(S1):22-25.MAO Hongling.Application of online corrosion monitoring technology in refining enterprises[J].Petrochemical Automation,2023,59(S1):22-25.(in Chinese)

    • [18] 王向农.用放射技术监测腐蚀[J].腐蚀与防护,1987,1:30-31,53.WANG Xiangnong.Corrosion monitoring by radiological techniques[J].Corrosion and Protection,1987,1:30-31,53.(in Chinese)

    • [19] 韩羽,王世海,刘战营,等.杨税务气藏集输管线腐蚀监测技术[J].石油知识,2023,4:42-43.HAN Yu,WANG Shihai,LIU Zhanying,et al.Corrosion monitoring technology of gathering pipeline in Yang tax gas reservoir[J].Petroleum Knowledge,2023,4:42-43.(in Chinese)

    • [20] 张炜强,秦立高,李飞.腐蚀监测/检测技术[J].腐蚀科学与防护技术,2009,21(5):477-479.ZHANG Weiqiang,QIN Ligao,LI Fei.Corrosion monitoring/inspection technology[J].Corrosion Science and Protection Technology,2009,21(5):477-479.(in Chinese)

    • [21] 纪大伟.管道内壁腐蚀监测技术研究[D].大连:大连理工大学,2010.JI Dawei.Research on corrosion monitoring technology of pipeline inner wall[D].Dalian:Dalian University of Technology,2010.(in Chinese)

    • [22] 张敏,黄红军,李志广,等.金属腐蚀监测技术[J].腐蚀科学与防护技术,2007,5:354-357.ZHANG Min,HUANG Hongjun,LI Zhiguang,et al.Metal corrosion monitoring technology[J].Corrosion Science and Protection Technology,2007,5:354-357.(in Chinese)

    • [23] 王文皞.基于压电超声导波的钢轨结构健康监测系统研究[D].南京:南京航空航天大学,2019.WANG Wenhao.Research on structural health monitoring system of rails based on piezoelectric ultrasonic guided wave[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2019.(in Chinese)

    • [24] 耿云鸿.基于LoRa的水质实时监测系统的研究与实现[D].西安:西安邮电大学,2021.GENG Yunhong.Research and implementation of real-time water quality monitoring system based on LoRa[D].Xi’an:University of Posts and Telecommunications,2021.(in Chinese)

    • [25] DAISUKE M,SACHIKO S,SAKAE F,et al.Corrosion monitoring and materials selection for automotive environments by using atmospheric corrosion monitor(ACM)sensor[J].Corrosion Science,2014,83:217-225.

    • [26] LI Q,XIA X J,PEI Z B,et al.Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method[J].Npj Materials Degradation,2022,6:1-9.

    • [27] 王少博.基于神经网络的接地网腐蚀率预测应用研究[D].西安:西安科技大学,2013.WANG Shaobo.Application of neural network-based grounding network corrosion rate prediction[D].Xi’an:University of Science and Technology,2013.(in Chinese)

    • [28] 花广如,李文浩,郭阳阳.基于神经网络模型的海南变电站接地网Q235钢腐蚀率预测[J].腐蚀与防护,2017,38(8):573-577,588.HUA Guangru,LI Wenhao,GUO Yangyang.Prediction of corrosion rate of Q235 steel in grounding network of Hainan substation based on neural network model[J].Corrosion and Protection,2017,38(8):573-577,588.(in Chinese)

    • [29] 尚文利,刘贤达,李世超,等.采油数据采集与监测管理平台设计与实现[J].现代电子技术,2019,42(5):124-130,134.SHANG Wenli,LIU Xianda,LI Shichao,et al.Design and realisation of oil recovery data acquisition and monitoring management platform[J].Modern Electronic Technology,2019,42(5):124-130,134.(in Chinese)

    • [30] 马红杰,李广占,单国成,等.在线测厚腐蚀监测技术在石油化工装置的应用[J].石油化工设备技术,2022,43(2):37-42,5.MA Hongjie,LI Guangzhan,SHAN Guocheng,et al.Application of online thickness corrosion monitoring technology in petrochemical plants[J].Petrochemical Equipment Technology,2022,43(2):37-42,5.(in Chinese)

    • [31] 刘强,丁楠,汪鹏勃,等.基于无线传感网络的油气管道监测技术研究进展[J].石油管材与仪器,2019,5(4):1-8.LIU Qiang,DING Nan,WANG Pengbo,et al.Research progress of oil and gas pipeline monitoring technology based on wireless sensor network[J].Petroleum Pipes and Instruments,2019,5(4):1-8.(in Chinese)

    • [32] 李言涛,吴茂涛,姜信德,等.管线阴极保护在线监测评价系统的研究进展[J].材料保护,2010,43(9):50-52,78.LI Yantao,WU Maotao,JIANG Xinde,et al.Research progress of online monitoring and evaluation system for pipeline cathodic protection[J].Material Protection,2010,43(9):50-52,78.(in Chinese)

    • [33] YULI P A,TEDI K.Corrosion prediction for corrosion rate of carbon steel in oil and gas environment:A review[J].Indonesian Journal of Science & Technology,2018,3(1):64-74.

    • [34] CAI Y K,ZHAO Y,ZHANG Z T,et al.Atmospheric and marine corrosion:influential environmental factors and models[C]//International Workshop on Environmental Management,Science and Engineer,November 4-8,2018,Sukosol Hotel,Bangkok,Thailand.Britain:Physical Sciences,2018:178-186.

  • 手机扫一扫看