en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨睿,男,1992年出生,博士,博士后。主要研究方向为热喷涂与增材制造、金属与陶瓷材料表面使役性能。E-mail: yangrui@nimte.ac.cn

田野,男,1989年出生,硕士,工程师。主要研究方向为热喷涂与增材制造、金属与陶瓷材料表面使役性能。E-mail: tianye@nimte.ac.cn

刘奕,女,1985年出生,博士,研究员,博士研究生导师。主要研究方向为热喷涂功能涂层、生物医用材料与器械。E-mail: liuyi@nimte.ac.cn

李华,男,1971年出生,博士,研究员,博士研究生导师。主要研究方向为热喷涂与增材制造、热喷涂功能涂层、生物医用材料与器械。E-mail: lihua@nimte.ac.cn

通讯作者:

李华,男,1971年出生,博士,研究员,博士研究生导师。主要研究方向为热喷涂与增材制造、热喷涂功能涂层、生物医用材料与器械。E-mail: lihua@nimte.ac.cn

中图分类号:TG174;TH117;TV4

DOI:10.11933/j.issn.1007-9289.20231229001

参考文献 1
CHAHINE G L,FRANC J P,KARIMI A.Cavitation and cavitation erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:3-20.
参考文献 2
BRENNEN C E.Cavitation and bubble dynamics[M].Cambridge:Cambridge University Press,2013.
参考文献 3
FRANC J P,MICHEL J M.Fundamentals of Cavitation[M].Dordrecht:Springer,2005.
参考文献 4
王雨豪,陈文刚,吴华杰,等.空化作用及气泡行为轨迹观测研究进展[J].中国表面工程,2023,36(1):12-29.WANG Yuhao,CHEN Wengang,WU Huajie,et al.Research progress of cavitation and bubble behavior trajectory observation[J].China Surface Engineering,2023,36(1):12-29.(in Chinese)
参考文献 5
University of Cambridge.The examinations for the degree of Bachelor of arts,Cambridge,January,1847[M].London:George Bell,1847.
参考文献 6
BESANT W H.A Treatise on hydrostatics and hydrodynamics[M].London:Bell and Daldy,1859.
参考文献 7
REYNOLDS O.Experiments showing the boiling of water in an open tube at ordinary temperatures[J].Scientific Papers on Mechanical and Physical Subject,1894,2:1900-1903.
参考文献 8
REYNOLDS O.Experiments showing the boiling of water in an open tube at ordinary temperatures[M].Cambridge:Cambridge University Press,1901:578-587.
参考文献 9
THORNYCROFT J I,BARNABY S W.Torpedo-boat destroyers[J].Minutes of Proceedings of the Institution of Civil Engineers,1895,122:51-69.
参考文献 10
CRAVOTTO G,CINTAS P.Introduction to sonochemistry:a historical and conceptual overview[M]//CHEN D,SHARMA S K,MUDHOO A.Handbook on applications of ultrasound:sonochemistry for sustainability.Boca Raton:CRC Press,2011:23-40.
参考文献 11
RAYLEIGH L.On the pressure developed in a liquid during the collapse of a spherical cavity[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1917,34(200):94-98.
参考文献 12
COOK S S.Erosion by water-hammer[C]//Proceedings of the Royal Society of London.Series A,Containing Papers of a Mathematical and Physical Character,May 10-July 2,1928.London:Royal Society,1928,119(783):481-488.
参考文献 13
HARRISON M.An experimental study of single bubble cavitation noise[J].Journal of the Acoustical Society of America,1952,24(6):776-782.
参考文献 14
GÜTH W.Zur Entstehung der Stoβwellen bet der Kavitation[J].Acta Acustica united with Acustica,1956,6(6):526-531.
参考文献 15
KORNFELD M,SUVOROV L.On the destructive action of cavitation[J].Journal of Applied Physics,1944,15(6):495-506.
参考文献 16
SHIPILOV S E,YAKUBOV V P.History of technical protection.60 years in science:to the jubilee of Prof.V.F.Minin[J].IOP Conference Series:Materials Science and Engineering,2018,363:012033.
参考文献 17
RATTRAY M.Perturbation effects in cavitation bubble dynamics[D].California:California Institute of Technology,1951.
参考文献 18
NAUDE C F,ELLIS A T.On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary[J].Journal of Basic Engineering,1961,83(4):648-656.
参考文献 19
GOHIL P P,SAINI R P.Coalesced effect of cavitation and silt erosion in hydro turbines-A review[J].Renewable and Sustainable Energy Reviews,2014,33:280-289.
参考文献 20
LIU X,LUO Y Y,WANG Z W.A review on fatigue damage mechanism in hydro turbines[J].Renewable and Sustainable Energy Reviews,2016,54:1-14.
参考文献 21
SREEDHAR B K,ALBERT S K,PANDIT A B.Cavitation damage:theory and measurements-A review[J].Wear,2017,372:177-196.
参考文献 22
NOON A A,KIM M H.Sediment and cavitation erosion in Francis turbines-review of latest experimental and numerical techniques[J].Energies,2021,14(6):1516.
参考文献 23
BENSOW R E.Numerical prediction of cavitation and related nuisances in marine propulsion systems[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and applications.New York:Academic Press,2021:111-132.
参考文献 24
BRIJKISHORE,KHARE R,PRASAD V.Prediction of cavitation and its mitigation techniques in hydraulic turbines-A review[J].Ocean Engineering,2021,221:108512.
参考文献 25
International Energy Agency.Hydropower special market report[R].Paris:International Energy Agency,2021.
参考文献 26
U.S.Energy Information Administration.International energy outlook 2016[R].Washington:U.S.Energy Information Administration,2016.
参考文献 27
International Maritime Organization.Third IMO GHG study 2014[R].London:International Maritime Organization,2015.
参考文献 28
HUANG S,SAMANDI M,BRANDT A.Abrasive wear performance and microstructure of laser clad WC/Ni layers[J].Wear,2004,256(11-12):1095-1105.
参考文献 29
IWABUCHI Y,SAWADA S.Metallurgical characteristics of a large hydraulic runner casting of type 13Cr-Ni stainless steel[M]//BEHAL V G,MELILLI A S.ASTM STP-756 stainless steel castings.Philadelphia:American Society for Testing and Materials,1982:332-354.
参考文献 30
KJØLLE A.Hydropower in Norway[R].Trondheim:Norwegian University of Science and Technology,2001.
参考文献 31
SINGH R,TIWARI S K,MISHRA S K.Cavitation erosion in hydraulic turbine components and mitigation by coatings:current status and future needs[J].Journal of Materials Engineering and Performance,2012,21(7):1539-1551.
参考文献 32
KUMAR R K,SEETHARAMU S,KAMARAJ M.Quantitative evaluation of 3D surface roughness parameters during cavitation exposure of 16Cr-5Ni hydro turbine steel[J].Wear,2014,320:16-24.
参考文献 33
WILLIAMS W L.Aluminum bronzes for marine applications[J].Journal of the American Society for Naval Engineers,1957,69(3):453-461.
参考文献 34
BRADLEY J N.Recent developments in copper-base alloys for naval marine applications[J].International Metallurgical Reviews,1972,17(1):81-99.
参考文献 35
YOSHIKAWA T,SCHNEIDER C.Anti-erosion materials for hydroturbine(a research report at the Three Gorges Dam hydropower plant)[J].Turbomachinery,2000,28(10):577-581.
参考文献 36
PRASHAR G,VASUDEV H,THAKUR L.Performance of different coating materials against slurry erosion failure in hydrodynamic turbines:A review[J].Engineering Failure Analysis,2020,115:104622.
参考文献 37
HONG S,WU Y P,ZHANG J F,et al.Synergistic effect of ultrasonic cavitation erosion and corrosion of WC-CoCr and FeCrSiBMn coatings prepared by HVOF spraying[J].Ultrasonics Sonochemistry,2016,31:563-569.
参考文献 38
QIAO L,WU Y P,HONG S,et al.Relationships between spray parameters,microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J].Ultrasonics Sonochemistry,2017,39:39-46.
参考文献 39
QIAO L,WU Y P,HONG S,et al.Ultrasonic cavitation erosion mechanism and mathematical model of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J].Ultrasonics Sonochemistry,2019,52:142-149.
参考文献 40
GlobleCore.Hydrodynamic cavitation and its application in the fuel industry[EB/OL].(2019)[2023-12-01].https://globecore.co.za/hydrodynamic-cavitation-and-its-a pplication-in-the-fuel-industry/.
参考文献 41
SUPPONEN O,KOBEL P,OBRESCHKOW D,et al.The inner world of a collapsing bubble[J].Physics of Fluids,2015,27(9):091113.
参考文献 42
SUPPONEN O,KOBEL P,FARHAT M.The inner world of a collapsing bubble[EB/OL].(2014)[2023-12-01].https://www.epfl.ch/research/facilities/hydraulic-machineplatform/wp-content/uploads/2019/03/APS-DFD_Suppon en_EPFL_2014.mp4.
参考文献 43
ZHANG A,CUI P,WANG Y.Experiments on bubble dynamics between a free surface and a rigid wall[J].Experiments in Fluids,2013,54(10):1602.
参考文献 44
STAVROPOULOS-VASILAKIS E,KYRIAZIS N,JADIDBONAB H,et al.Review of numerical methodologies for modeling cavitation[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and applications.New York:Academic Press,2021:1-35.
参考文献 45
AKHATOV I,LINDAU O,TOPOLNIKOV A,et al.Collapse and rebound of a laser-induced cavitation bubble[J].Physics of Fluids,2001,13(10):2805-2819.
参考文献 46
MASON T J,LORIMER J P.Applied Sonochemistry:uses of power ultrasound in chemistry and processing[M].Weinheim:Wiley-VCH,2002.
参考文献 47
SHAH Y T,PANDIT A B,MOHOLKAR V S.Sources and types of cavitation[M].Dordrecht:Springer.1999:1-14.
参考文献 48
MAHULKAR A V,BAPAT P S,PANDIT A B,et al.Steam bubble cavitation[J].AIChE Journal,2008,54(7):1711-1724.
参考文献 49
GRANT M M,LUSH P A.Liquid impact on a bilinear elastic-plastic solid and its role in cavitation erosion[J].Journal of Fluid Mechanics,1987,176:237-252.
参考文献 50
WOOD G M,KNUDSEN L K,HAMMITT F G.Cavitation damage studies with rotating disk in water[J].Journal of Basic Engineering,1967,89(1):98-109.
参考文献 51
CHEN H,WANG J,LI Y,et al.Effect of hydrodynamic pressures near solid surfaces in the incubation stage of cavitation erosion[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2008,222(4):523-531.
参考文献 52
TZANAKIS I,ESKIN D G,GEORGOULAS A,et al.Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble[J].Ultrasonics Sonochemistry,2014,21(2):866-878.
参考文献 53
REUTER F,OHL C D.Nonspherical collapse of single bubbles near noundaries and in confined spaces[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and applications.New York:Academic Press,2021:37-72.
参考文献 54
FLINT E B,SUSLICK K S.The temperature of cavitation[J].Science,1991,253(5026):1397-1399.
参考文献 55
CHEN H S,LI Y J,CHEN D R,et al.Experimental and numerical investigations on development of cavitation erosion pits on solid surface[J].Tribology Letters,2007,26(2):153-159.
参考文献 56
HEATH D,ŠIROK B,HOCEVAR M,et al.The use of the cavitation effect in the mitigation of CaCO3 deposits[J].2013,59(4):203-215.
参考文献 57
BRENNEN C E.Bubble dynamics,damage and noise[M].New York:Cambridge University Press,2011:78-88.
参考文献 58
AXDAHL E.Cavitation propeller damage[EB/OL].(2006)[2023-12-01].https://commons.wikimedia.org/w/index.php?title=File:Cavitation_Propeller_Damage.JPG&oldid= 491576019.
参考文献 59
PES solutions.PES-201:Boat propeller cavitation and repair[EB/OL].(2014)[2023-12-01].http://blog.pessolutions.com/boat-propeller-cavitation-and-repair-pes201/.
参考文献 60
UTTURKAR Y.Computational modeling of thermodynamic effects in cryogenic cavitation[D].Florida:University of Florida,2015.
参考文献 61
CASCIANI-WOOD J.An introduction to propeller cavitation[EB/OL].(2015)[2023-12-01].https://www.iims.org.uk/introduction-propeller-cavitation/.
参考文献 62
VAN TERWISGA T J C,VAN RIJSBERGEN M,VAN WIJNGAARDEN E,et al.Cavitation nuisance in ship propulsion:A review of developments[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and Applications.New York:Academic Press,2021:73-109.
参考文献 63
BARK G,BENSOW R E.Hydrodynamic processes controlling cavitation erosion[M]//KIM K H,CHAHINE G,FRANC J P,KARIMI A.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:185-220.
参考文献 64
PELZ P F,KEIL T,LUDWIG G.On the kinematics of sheet and cloud cavitation and related erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:221-237.
参考文献 65
AMARENDRA H J,CHAUDHARI G P,NATH S K.Synergy of cavitation and slurry erosion in the slurry pot tester[J].Wear,2012,290:25-31.
参考文献 66
LIAN J J,GOU W J,LI H P,et al.Effect of sediment size on damage caused by cavitation erosion and abrasive wear in sediment-water mixture[J].Wear,2018,398:201-208.
参考文献 67
BASUMATARY J,NIE M,WOOD R J K.The synergistic effects of cavitation erosion-corrosion in ship propeller materials[J].Journal of Bio-and Tribo-Corrosion,2015,1:1-12.
参考文献 68
BASUMATARY J,WOOD R J K.Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5% NaCl solution[J].Wear,2017,376-377:1286-1297.
参考文献 69
BASUMATARY J,WOOD R J K.Different methods of measuring synergy between cavitation erosion and corrosion for nickel aluminium bronze in 3.5% NaCl solution[J].Tribology International,2017,147:104843.
参考文献 70
RYL J,DAROWICKI K,SLEPSKI P.Evaluation of cavitation erosion-corrosion degradation of mild steel by means of dynamic impedance spectroscopy in galvanostatic mode[J].Corrosion Science,2011,53(5):1873-1879.
参考文献 71
GARCIA-GARCIA D M,GARCIA-ANTON J,IGUAL-MUNOZ A,et al.Effect of cavitation on the corrosion behaviour of welded and non-welded duplex stainless steel in aqueous LiBr solutions[J].Corrosion Science,2006,48(9):2380-2405.
参考文献 72
MAYER A R,BERTUOL K,SIQUEIRA I,et al.Evaluation of cavitation/corrosion synergy of the Cr3C2-25NiCr coating deposited by HVOF process[J].Ultrasonics Sonochemistry,2020,69:105271.
参考文献 73
SONG Q N,TONG Y,XU N,et al.Synergistic effect between cavitation erosion and corrosion for various copper alloys in sulphide-containing 3.5% NaCl solutions[J].Wear,2020,450-451:203258.
参考文献 74
YANG J,WANG Z B,QIAO Y X,et al.Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel[J].Corrosion Science,2022,199:110210.
参考文献 75
HONG S,WU Y P,ZHANG J F,et al.Effect of ultrasonic cavitation erosion on corrosion behavior of high-velocity oxygen-fuel(HVOF)sprayed near-nanostructured WC-10Co-4Cr coating[J].Ultrasonics Sonochemistry,2015,27:374-378.
参考文献 76
American Society for Testing and Materials International(ASTM).Standard test method for cavitation erosion using vibratory apparatus:ASTM G32-16(2021)e1[S].United States:ASTM,2021.
参考文献 77
American Society for Testing and Materials International(ASTM).Standard test method for liquid impingement erosion using rotating apparatus:ASTM G73-10(2017)[S].New York:ASTM,2017.
参考文献 78
American Society for Testing and Materials International(ASTM).Standard test method for erosion of solid materials by cavitating liquid jet:ASTM G134-17[S].United States:ASTM,2017.
参考文献 79
PLESSET M S.Temperature effects in cavitation damage[J].Journal of Basic Engineering,1972,94(3):559-563.
参考文献 80
HAMMITT F G,ROGERS D O.Effects of pressure and temperature variation in vibratory cavitation damage test[J].Journal of Mechanical Engineering Science,1970,12(6):432-439.
参考文献 81
KWOK C T,MAN H C,LEUNG L K.Effect of temperature,pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel[J].Wear,1997,211(1):84-93.
参考文献 82
LI Z,HAN J S,LU J J,et al.Vibratory cavitation erosion behavior of AISI 304 stainless steel in water at elevated temperatures[J].Wear,2014,321:33-37.
参考文献 83
COJOCARU V,CAMPIAN V C,FRUNZAVERDE D.A comparative analysis of the methods used for testing the cavitation erosion resistance on the vibratory devices[J].University Politehnica of Bucharest Scientific Bulletin:Series D,2015,77(4):257-262.
参考文献 84
MAGO J,BANSAL S,GUPTA D,et al.Investigation of erosion and pressure for direct and indirect acoustic cavitation testing[J].Journal of Emerging Technologies and Innovative Research,2019,6(5):468-476.
参考文献 85
DULAR M,MONTALVO G E B,HOČEVAR M,et al.Questioning the ASTM G32-16(stationary specimen)standard cavitation erosion test[J].Ultrasonics Sonochemistry,2024,107:106930.
参考文献 86
SOYAMA H,SHIMIZU S,HATTORI S,et al.Interlaboratory study on standard test method for erosion of solid materials by a cavitating jet[C]//Proceedings of the 10th International Symposium on Cavitation(CAV2018),May 14-16,2018,Baltimore,Maryland.New York:ASME Press,2018:581-584.
参考文献 87
HATTORI S,TAKINAMI M.Comparison of cavitation erosion rate with liquid impingement erosion rate[J].Wear,2010,269(3-4):310-316.
参考文献 88
BATCHELOR G K.Irrotational flow theory and its applications[M]//BATCHELOR G K.An introduction to fluid dynamics.Cambridge:Cambridge University Press,2000:378-506.
参考文献 89
HE J,HAMMITT F G.Velocity exponent and cavitation number for Venturi cavitation erosion of 1100-O aluminum and 1018 carbon-steel[J].Wear,1982,80(1):43-58.
参考文献 90
OKADA T,HAMMITT F G.Cavitation erosion in vibratory and Venturi facilities[J].Wear,1981,69(1):55-69.
参考文献 91
HE J,HAMMITT F G.Comparison of cavitation erosion test-results from Venturi and vibratory facilities[J].Wear,1982,76(3):269-292.
参考文献 92
HATTORI S,SUN B H,HAMMITT F G,et al.An application of bubble collapse pulse-height spectra to Venturi cavitation erosion of 1100-o aluminum[J].Wear,1985,103(2):119-131.
参考文献 93
IWAI Y,OKADA T,MORI H.A study of cavitation bubble collapse pressures and erosion part 3:the results in a Venturi facility[J].Wear,1991,150(1-2):367-378.
参考文献 94
CHAHINE G L,FRANC J P,KARIMI A.Laboratory testing methods of cavitation erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands.2014:21-35.
参考文献 95
STELLER J,GIREŃ B G.International cavitation erosion test final report[R].Warsaw:Institute of Fluid-Flow Machinery of the Polish Academy of Sciences,2015.
参考文献 96
FRANC J P.Incubation time and cavitation erosion rate of work-hardening materials[J].Journal of Fluids Engineering,2009,131(2):021303.
参考文献 97
李豪,吴凤和,赵夙,等.超声波冲击技术对 AA6061-T6 空蚀行为的影响[J].中国表面工程,2021,34(3):83-89.LI Hao,WU Fenghe,ZHAO Su,et al.Effects of ultrasonic impact technology on cavitation erosion behavior of AA6061-T6[J].China Surface Engineering,2021,34(3):83-89.(in Chinese)
参考文献 98
蔡世刚,刘鹏涛,赵秀娟,等.纯钛空化水喷丸表面强化及空蚀损伤[J].中国表面工程,2014,27(1):100-105.CAI Shigang,LIU Pengtao,ZHAO Xiujuan,et al.Water cavitation peening-induced surface hardening and cavitation damage of pure titanium[J].China Surface Engineering,2014,27(1):100-105.(in Chinese)
参考文献 99
石加联,徐常亮,韩冰,等.空化水喷丸诱导45钢残余应力场的数值模拟与验证[J].中国表面工程,2013,26(3):15-20.SHI Jialian,XU Changliang,HAN Bing,et al.Experiment and numerical simulation of water-jet cavitation peening processing in 45 steel[J].China Surface Engineering,2013,26(3):15-20.(in Chinese)
参考文献 100
TIAN Y,ZHAO H,YANG R,et al.In-situ SEM investigation on stress-induced microstructure evolution of austenitic stainless steels subjected to cavitation erosion and cavitation erosion-corrosion[J].Materials & Design,2022,213:110314.
参考文献 101
SOYAMA H,CHIGHIZOLA C R,HILL M R.Effect of compressive residual stress introduced by cavitation peening and shot peening on the improvement of fatigue strength of stainless steel[J].Journal of Materials Processing Technology,2021,288:116877.
参考文献 102
SOYAMA H.Comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening,water jet peening,shot peening and laser peening[J].Journal of Materials Processing Technology,2019,269:65-78.
参考文献 103
TAKAHASHI K,OSEDO H,SUZUKI T,et al.Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening[J].Engineering Fracture Mechanics,2018,193:151-161.
参考文献 104
ODHIAMBO D,SOYAMA H.Cavitation shotless peening for improvement of fatigue strength of carbonized steel[J].International Journal of Fatigue,2003,25(9-11):1217-1222.
参考文献 105
PATELLA R F,REBOUD J L,ARCHER A.Cavitation damage measurement by 3D laser profilometry[J].Wear,2000,246(1-2):59-67.
参考文献 106
JAYAPRAKASH A,CHOI J K,CHAHINE G L,et al.Scaling study of cavitation pitting from cavitating jets and ultrasonic horns[J].Wear,2012,296(1-2):619-629.
参考文献 107
FRANC J P,RIONDET M,KARIMI A,et al.Material and velocity effects on cavitation erosion pitting[J].Wear,2012,274:248-259.
参考文献 108
CARNELLI D,KARIMI A,FRANC J P.Evaluation of the hydrodynamic pressure of cavitation impacts from stress-strain analysis and geometry of individual pits[J].Wear,2012,289:104-111.
参考文献 109
BELAHADJI B,FRANC J P,MICHEL J M.A statistical analysis of cavitation erosion pits[J].Journal of Fluids Engineering,Transactions of the ASME,1991,113(4):700-706.
参考文献 110
FATJO G G A,HADFIELD M,VIEILLARD C,et al.Early stage cavitation erosion within ceramics-An experimental investigation[J].Ceramics International,2009,35(8):3301-3312.
参考文献 111
AHMED S M,HOKKIRIGAWA K,ITO Y,et al.Scanning electron-microscopy observation on the incubation period of vibratory cavitation erosion[J].Wear,1991,142(2):303-314.
参考文献 112
FRANC J P,CHAHINE G L,KARIMI A.Pitting and Incubation Period[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:37-69.
参考文献 113
CHAHINE G L,FRANC J P,KARIMI A.Mass Loss and advanced periods of erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:97-121.
参考文献 114
GARCIA R,HAMMITT F G.Cavitation damage and correlations with material and fluid properties[J].Journal of Basic Engineering,1967,89(4):753-763.
参考文献 115
RAO P V,MARTIN C S,RAO B C S,et al.Estimation of cavitation erosion with incubation periods and material properties[J].Journal of Testing and Evaluation,1981,9(3):189-197.
参考文献 116
THIRUVENGADAM A,WARING S.Mechanical properties of metals and their cavitation-damage resistance[J].Journal of Ship Research,1966,10(1):1-9.
参考文献 117
RICHMAN R H,MCNAUGHTON W P.Correlation of cavitation erosion behavior with mechanical-properties of metals[J].Wear,1990,140(1):63-82.
参考文献 118
WASHKO S D,AGGEN G.Wrought stainless steels[M]//ASM Handbook Committee.ASM handbook volume 1:properties and selection:irons,steels,and high-performance alloys.Amsterdam:ASM International.1990:841-907.
参考文献 119
KISHOR B,CHAUDHARI G P,NATH S K.Cavitation erosion of thermomechanically processed 13/4 martensitic stainless steel[J].Wear,2014,319(1-2):150-159.
参考文献 120
MOKHTABAD-AMREI M,VERREMAN Y,BRIDIER F,et al.Microstructure characterization of single and multipass 13Cr4Ni steel welded joints[J].Metallography,Microstructure,and Analysis,2015,4(3):207-218.
参考文献 121
VERMA S,DUBEY P,SELOKAR A W,et al.Cavitation erosion behavior of nitrogen ion implanted 13Cr4Ni steel[J].Transactions of the Indian Institute of Metals,2017,70(4):957-965.
参考文献 122
SONG Y Y,PING D H,YIN F X,et al.Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel[J].Materials Science and Engineering:A,2010,527(3):614-618.
参考文献 123
HEATHCOCK C J,PROTHEROE B E,BALL A.Cavitation erosion of stainless-steels[J].Wear,1982,81(2):311-327.
参考文献 124
ZHANG X F,FANG L.The effect of stacking fault energy on the cavitation erosion resistance of α-phase aluminum bronzes[J].Wear,2002,253(11-12):1105-1110.
参考文献 125
RAO B C S,BUCKLEY D H.Deformation and erosion of FCC metals and alloys under cavitation attack[J].Materials Science and Engineering,1984,67(1):55-67.
参考文献 126
LEE Y K,CHOI C S.Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2000,31(2):355-360.
参考文献 127
HATTORI S,ISHIKURA R.Revision of cavitation erosion database and analysis of stainless steel data[J].Wear,2010,268(1-2):109-116.
参考文献 128
SANTOS L L,CARDOSO R P,BRUNATTO S F.Direct correlation between martensitic transformation and incubation-acceleration transition in solution-treated AISI 304 austenitic stainless steel cavitation[J].Wear,2020,462:203522.
参考文献 129
ZHANG L M,LI Z X,HU J X,et al.Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion[J].Tribology International,2021,155:106752.
参考文献 130
PARK M C,KIM K N,SHIN G S,et al.Effects of strain induced martensitic transformation on the cavitation erosion resistance and incubation time of Fe-Cr-Ni-C alloys[J].Wear,2012,274:28-33.
参考文献 131
GAO G Y,ZHANG Z.Cavitation erosion behavior of 316L stainless steel[J].Tribology Letters,2019,67(4):112.
参考文献 132
PARK M C,KIM K N,SHIN G S,et al.Effects of Ni and Mn on the cavitation erosion resistance of Fe-Cr-C-Ni/Mn austenitic alloys[J].Tribology Letters,2013,52(3):477-484.
参考文献 133
PARK M C,SHIN G S,YUN J Y,et al.Damage mechanism of cavitation erosion in austenite→ martensite phase transformable Fe-Cr-C-Mn/Ni alloys[J].Wear,2014,310(1-2):27-32.
参考文献 134
WANG K Y,LO K H,KWOK C T,et al.The influences of martensitic transformations on cavitation-erosion damage initiation and pitting resistance of a lean austenitic stainless steel[J].Materials Research-IberoAmerican Journal of Materials,2016,19(6):1366-1371.
参考文献 135
LI Z X,ZHANG L M,UDOH I I,et al.Deformationinduced martensite in 304 stainless steel during cavitation erosion:effect on passive film stability and the interaction between cavitation erosion and corrosion[J].Tribology International,2022,167:107422.
参考文献 136
CAO B,WU C,WANG L,et al.Effect of residual stress and phase constituents on corrosion-cavitation erosion behavior of 304 stainless steel by iso-material manufacturing of laser surface melting[J].Journal of Materials Research and Technology,2023,26:6532-6551.
参考文献 137
KARIMI A.Cavitation erosion of a duplex stainless-steel[J].Materials Science and Engineering,1987,86:191-203.
参考文献 138
British Standard(BSI).Stainless steels Part 1:List of stainless steels:BS EN 10088-1:2014[S].London:BSI,2014.
参考文献 139
LIU W,ZHENG Y,LIU C,et al.Cavitation erosion behavior of Cr-Mn-N stainless steels in.comparison with 0Cr13Ni5Mo stainless steel[J].Wear,2003,254(7-8):713-722.
参考文献 140
骆素珍,敬和民,郑玉贵,等.CrMnN 双相不锈钢的空泡腐蚀行为研究[J].中国腐蚀与防护学报,2003,23(5):276-281.LUO Suzhen,JING Hemin,ZHENG Yugui,et al.Cavitation-corrorrosion behavior of CrMnN duplex stainless steel[J].Journal of Chinese Society of Corrosion and Protection,2003,23(5):276-281.(in Chinese)
参考文献 141
GRUBB J F,DEBOLD T,FRITZ J D.Corrosion of wrought stainless steels[M]//CRAMER S D,COVINO B S.ASM handbook volume 13B:corrosion:materials.Amsterdam:ASM International,2005:54-77.
参考文献 142
KWOK C T,MAN H C,CHENG F T.Cavitation erosion of duplex and super duplex stainless steels[J].Scripta Materialia,1998,39(9):1229-1236.
参考文献 143
KIM S,HEO H S.Electrochemical and cavitation-erosion characteristics of duplex stainless steels in seawater environment[J].Corrosion Science and Technology(Korea),2021,20(6):466-474.
参考文献 144
AL-HASHEM A,RIAD W.The effect of duplex stainless steel microstructure on its cavitation morphology in seawater[J].Materials Characterization,2001,47(5):389-395.
参考文献 145
SARAVANAN S,RAGHUKANDAN K,SIVAGURUMANIKANDAN N.Pulsed Nd:YAG laser welding and subsequent post-weld heat treatment on super duplex stainless steel[J].Journal of Manufacturing Processes,2017,25:284-289.
参考文献 146
ZHANG Z Y,ZHAO H,ZHANG H Z,et al.Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment[J].Corrosion Science,2017,121:22-31.
参考文献 147
RICHARDSON I.Overview[M]//POWELL C.Guide to nickel aluminium bronze for engineers.New York:Copper Development Association,2016:6-9.
参考文献 148
British Standard(BSI).Copper and copper alloys.Wrought and unwrought forging stock:BS EN 12165:2016[S].London:BSI,2016.
参考文献 149
RICHARDSON I.Alloying elements and microstructural phases[M]//POWELL C.Guide to nickel aluminium bronze for engineers.New York:Copper Development Association,2016:21-25.
参考文献 150
RICHARDSON I.Guide to nickel aluminium bronze for engineers[M].New York:Copper Development Association,2016.
参考文献 151
CULPAN E A,ROSE G.Microstructural characterization of cast nickel aluminum bronze[J].Journal of Materials Science,1978,13(8):1647-1657.
参考文献 152
HASAN F,JAHANAFROOZ A,LORIMER G W,et al.The morphology,crystallography,and chemistry of phases in as-cast nickel-aluminum bronze[J].Metallurgical Transactions A:Physical Metallurgy and Materials Science,1982,13(8):1337-1345.
参考文献 153
HASAN F,IQBAL J,RIDLEY N.Microstructure of as-cast aluminium bronze containing iron[J].Materials Science and Technology,1985,1(4):312-315.
参考文献 154
LORIMER G W,HASAN F,IQBAL J,et al.Observation of microstructure and corrosion behaviour of some aluminium bronzes[J].British Corrosion Journal,1986,21(4):244-248.
参考文献 155
OAKLEY R S,GALSWORTHY J C,FOX G S,et al.Long-term and accelerated corrosion testing methods for cast nickel-aluminium bronzes in seawater[M]//FÉRON D.Corrosion behaviour and protection of copper and aluminium alloys in seawater.Woodhead Publishing.2007:119-127.
参考文献 156
AL-HASHEM A,CACERES P G,RIAD W T,et al.Cavitation corrosion behavior of cast nickel-aluminum bronze in seawater[J].Corrosion,1995,51(5):331-342.
参考文献 157
AL-HASHEM A,RIAD W.The role of microstructure of nickel-aluminium-bronze alloy on its cavitation corrosion behavior in natural seawater[J].Materials Characterization,2002,48(1):37-41.
参考文献 158
NAKHAIE D,DAVOODI A,IMANI A.The role of constituent phases on corrosion initiation of NiAl bronze in acidic media studied by SEM-EDS,AFM and SKPFM[J].Corrosion Science,2014,80:104-110.
参考文献 159
SONG Q,ZHENG Y,NI D,et al.Studies of the nobility of phases using scanning Kelvin probe microscopy and its relationship to corrosion behaviour of Ni-Al bronze in chloride media[J].Corrosion Science,2015,92:95-103.
参考文献 160
SONG Q N,XU N,BAO Y F,et al.Corrosion and cavitation erosion behaviors of two marine propeller materials in clean and sulfide-polluted 3.5% NaCl solutions[J].Acta Metallurgica Sinica(English Letters),2017,30(8):712-720.
参考文献 161
TUCK C D S,POWELL C A,NUTTALL J.Corrosion of copper and its alloys[M]//COTTIS B,GRAHAM M,LINDSAY R,et al.Shreir’s corrosion.Oxford:Elsevier,2010:1937-1973.
参考文献 162
ZHANG L,MA A,YU H,et al.Correlation of microstructure with cavitation erosion behaviour of a nickel-aluminum bronze in simulated seawater[J].Tribology International,2019,136:250-258.
参考文献 163
HUCINSKA J,GLOWACKA M.Cavitation erosion of copper and copper-based alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32(6):1325-1333.
参考文献 164
KARIMI A,MAAMOURI M,MARTIN J L.Cavitation-erosion-induced microstructures in copper single-crystals[J].Materials Science and Engineering:A,1989,113:287-296.
参考文献 165
QIN Z B,ZHANG Q Z,LUO Q,et al.Microstructure design to improve the corrosion and cavitation corrosion resistance of a nickel-aluminum bronze[J].Corrosion Science,2018,139:255-266.
参考文献 166
WU Z,CHENG Y,LIU L,et al.Effect of heat treatment on microstructure evolution and erosion-corrosion behavior of a nickel-aluminum bronze alloy in chloride solution[J].Corrosion Science,2015,98:260-270.
参考文献 167
SONG Q N,ZHENG Y G,JIANG S L,et al.Comparison of corrosion and cavitation erosion behaviors between the as-cast and friction-stir-processed nickel aluminum bronze[J].Corrosion,2013,69(11):1111-1121.
参考文献 168
LI Y,LIAN Y,SUN Y J.Cavitation erosion behavior of friction stir processed nickel aluminum bronze[J].Journal of Alloys and Compounds,2019,795:233-240.
参考文献 169
LI Y,LIAN Y,SUN Y J.Synergistic effect between cavitation erosion and corrosion for friction stir processed NiAl bronze in artificial seawater[J].Metals and Materials International,2021,27(12):5082-5094.
参考文献 170
LI Y,LIAN Y,SUN Y J.Comparison of cavitation erosion behaviors between the as-cast and friction stir processed Ni-Al bronze in distilled water and artificial seawater[J].Journal of Materials Research and Technology,2021,13:906-918.
参考文献 171
RIDDIHOUGH M.Stellite as a wear-resistant material[J].Tribology,1970,3(4):211-215.
参考文献 172
WOODFORD D A.Cavitation-erosion-induced phase transformations in alloys[J].Metallurgical Transactions,1972,3:1137-1145.
参考文献 173
HEATHCOCK C J,BALL A,PROTHEROE B E.Cavitation erosion of cobalt-based Stellite® alloys,cemented carbides and surface-treated low alloy steels[J].Wear,1981,74(1):11-26.
参考文献 174
FELLER H G,KHARRAZI Y.Cavitation erosion of metals and alloys[J].Wear,1984,93(3):249-260.
参考文献 175
SZALA M,CHOCYK D,SKIC A,et al.Effect of nitrogen ion implantation on the cavitation erosion resistance and cobalt-based solid solution phase transformations of HIPed Stellite 6[J].Materials,2021,14(9):2324.
参考文献 176
SHANKAR V,RAO K B S,MANNAN S L.Microstructure and mechanical properties of Inconel 625 superalloy[J].Journal of Nuclear Materials,2001,288(2-3):222-232.
参考文献 177
RAO G A,KUMAR M,SRINIVAS M,et al.Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718[J].Materials Science and Engineering:A,2003,355(1-2):114-125.
参考文献 178
HU H,ZHENG Y,QIN C.Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion[J].Nuclear Engineering and Design,2010,240(10):2721-2730.
参考文献 179
CHEN J H,WU W T.Cavitation erosion behavior of Inconel 690 alloy[J].Materials Science and Engineering:A,2008,489(1-2):451-456.
参考文献 180
LI Z,ZHOU J S,HAN J S,et al.Formation of cavitation-induced nanosize precipitates on the eroded surface for Inconel 718 alloy[J].Materials Letters,2016,164:267-269.
参考文献 181
陈天骅,李珍,杜三明,等.Inconel 718 镍基超合金的空蚀行为研究[J].摩擦学学报,2020,40(4):415-423.CHEN Tianhua,LI Zhen,DU Sanming,et al.Investigation of the cavitation erosion behavior of Inconel 718 nickel-based superalloy[J].Tribology,2020,40(4):415-423.(in Chinese)
参考文献 182
MANSFELD F,LIU G,XIAO H,et al.The corrosion behavior of copper-alloys,stainless-steels and titanium in seawater[J].Corrosion Science,1994,36(12):2063-2095.
参考文献 183
YAN S K,SONG G L,LI Z,et al.A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments[J].Journal of Materials Science & Technology,2018,34(3):421-435.
参考文献 184
GAO Y K.Surface modification of TC4 titanium alloy by high current pulsed electron beam(HCPEB)with different pulsed energy densities[J].Journal of Alloys and Compounds,2013,572:180-185.
参考文献 185
KOVACIK J,EMMER S.Steels as materials for sonotrode tools[C]//Proceedings of the 14th Symposium on Experimental Stress Analysis and Materials Testing,May 23-25,2013,Timisoara,Romania.Durnten-Zurich:Trans Tech Publications Ltd.,2014,601:21-25.
参考文献 186
NEDELCU D,COJOCARU V,NEDELONI M,et al.Failure analysis of a Ti-6Al-4V ultrasonic horn used in cavitation erosion tests[J].Mechanika,2015,4:272-276.
参考文献 187
DIMIAN M E,MITELEA I,BORDEASU I,et al.Cavitation erosion behavior of heat treated Ti-6Al-4V alloy[C]//Proceedings of the 21st International Conference on Metallurgy and Materials,May 23-25,2012,Brno,Czech Republic.Slezska:Tanger Ltd.,2012:836-841.
参考文献 188
李海斌,崔振铎,李朝阳,等.化学热处理改善 Ti-6Al-4V 钛合金耐空蚀性能的研究[J].功能材料,2014,45(7):7148-7152.LI Haibin,CUI Zhenduo,LI Zhaoyang,et al.Improving cavitation erosion resistance of Ti-6Al-4V alloy by thermochemical treatments[J].Journal of Functional Materials,2014,45(7):7148-7152.(in Chinese)
参考文献 189
WANG Y J,HAO E K,ZHAO X Q,et al.Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater[J].Journal of Materials Science & Technology,2022,100:169-181.
参考文献 190
ZHOU K S,HERMAN H.Cavitation erosion of titanium and Ti-6A1-4V:effects of nitriding[J].Wear,1982,80(1):101-113.
参考文献 191
ROBINSON J M,ANDERSON S,KNUTSEN R D,et al.Cavitation erosion of laser melted and laser nitrided Ti-6Al-4V[J].Materials Science and Technology,1995,11(6):611-618.
参考文献 192
KASPAR J,BRETSCHNEIDER J,JACOB S,et al.Microstructure,hardness and cavitation erosion behaviour of Ti-6Al-4V laser nitrided under different gas atmospheres[J].Surface Engineering,2007,23(2):99-106.
参考文献 193
LI H B,CUI Z D,LI Z Y,et al.Effect of gas nitriding treatment on cavitation erosion behavior of commercially pure Ti and Ti-6Al-4V alloy[J].Surface and Coatings Technology,2013,221:29-36.
参考文献 194
MITELEA I,DIMIAN E,BORDEASU I,et al.Ultrasonic cavitation erosion of gas nitrided Ti-6Al-4V alloys[J].Ultrasonics Sonochemistry,2014,21(4):1544-1548.
参考文献 195
MITELEA I,DIMIAN E,BORDEASU I,et al.Cavitation erosion of laser-nitrided Ti-6Al-4V alloys with the energy controlled by the pulse duration[J].Tribology Letters,2015,59:1-9.
参考文献 196
EGGELER G,HORNBOGEN E,YAWNY A,et al.Structural and functional fatigue of NiTi shape memory alloys[J].Materials Science and Engineering:A,2004,378(1-2):24-33.
参考文献 197
SHAW J A,KYRIAKIDES S.Thermomechanical aspects of NiTi[J].Journal of the Mechanics and Physics of Solids,1995,43(8):1243-1281.
参考文献 198
FRENZEL J,GEORGE E P,DLOUHY A,et al.Influence of Ni on martensitic phase transformations in NiTi shape memory alloys[J].Acta Materialia,2010,58(9):3444-3458.
参考文献 199
AURICCHIO F,TAYLOR R L,LUBLINER J.Shape-memory alloys:macromodelling and numerical simulations of the superelastic behavior[J].Computer Methods in Applied Mechanics and Engineering,1997,146(3-4):281-312.
参考文献 200
RICHMAN R H,RAO A S,HODGSON D E.Cavitation erosion of 2 NiTi alloys[J].Wear,1992,157(2):401-407.
参考文献 201
LIU W,ZHENG Y,LIU C,et al.Cavitation erosion characteristics of a NiTi alloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2004,35(1):356-362.
参考文献 202
CHENG F,SHI P,MAN H.Cavitation erosion resistance of heat-treated NiTi[J].Materials Science and Engineering:A,2003,339(1-2):312-317.
参考文献 203
ZHUANG D D,ZHANG S H,LIU H X,et al.Cavitation erosion behavior and anti-cavitation erosion mechanism of NiTi alloys impacted by water jet[J].Wear,2023,518:204631.
参考文献 204
LONG N,ZHU J.Cavitation erosion resistance of Fe-26Mn-6Si-7Cr-1Cu shapememory alloy[J].Materials Science and Technology,2003,19(12):1733-1736.
参考文献 205
WANG Z Y,ZHU J H.Effect of phase transformation on cavitation erosion resistance of some ferrous alloys[J].Materials Science and Engineering:A,2003,358(1-2):273-278.
参考文献 206
WANG Z Y,ZHU J H.Cavitation erosion of Fe-Mn-Si-Cr shape memory alloys[J].Wear,2004,256(1-2):66-72.
参考文献 207
POHL M,STELLA J,HESSING C.Comparative study on CuZnAl and CuMnZnAlNiFe shape memory alloys subjected to cavitation-erosion[J].Advanced Engineering Materials,2003,5(4):251-256.
参考文献 208
VOLKOV-HUSOVIC T,IVANIC I,KOZUH S,et al.Microstructural and cavitation erosion behavior of the CuAlNi shape memory alloy[J].Metals,2021,11(7):997.
参考文献 209
HOWARD R L,BALL A.The solid particle and cavitation erosion of titanium aluminide intermetallic alloys[J].Wear,1995,186(1):123-128.
参考文献 210
HOWARD R L L,BALL A.Mechanisms of cavitation erosion of TiAl-based titanium aluminide intermetallic alloys[J].Acta Materialia,1996,44:3157-3168.
参考文献 211
MAHDIPOOR M S,KIROLS H S,KEVORKOV D,et al.Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V[J].Scientific Reports,2015,5:14182.
参考文献 212
NAIR R B,ARORA H S,MUKHERJEE S,et al.Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy[J].Ultrasonics Sonochemistry,2018,41:252-260.
参考文献 213
NAIR R B,ARORA H S,GREWAL H S.Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy[J].International Journal of Minerals Metallurgy and Materials,2020,27(10):1353-1362.
参考文献 214
DROZDZ D,WUNDERLICH R K,FECHT H J.Cavitation erosion behaviour of Zr-based bulk metallic glasses[J].Wear,2007,262(1-2):176-183.
参考文献 215
ARORA H S,GREWAL H S,SINGH H,et al.Unusually high erosion resistance of zirconium-based bulk metallic glass[J].Journal of Materials Research,2013,28(22):3185-3189.
参考文献 216
JI X L,ZHAO J H,ZHANG X W,et al.Erosion-corrosion behavior of Zr-based bulk metallic glass in saline-sand slurry[J].Tribology International,2013,60:19-24.
参考文献 217
WANG W F,WANG M C,SUN F J,et al.Microstructure and cavitation erosion characteristics of Al-Si alloy coating prepared by electrospark deposition[J].Surface and Coatings Technology,2008,202(21):5116-5121.
参考文献 218
刘诗汉,陈大融.双相钢空蚀破坏的力学机制[J].金属学报,2009,45(5):519-526.LIU Shihan,CHEN Darong.Mechanics mechanism of duplex steel cavitation damage[J].Acta Metallurgica Sinica,2009,45(5):519-526.(in Chinese)
参考文献 219
马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)
参考文献 220
PAWLOWSKI L.Thermal spraying techniques[M].Hoboken:John Wiley & Sons.2008:67-113.
参考文献 221
KWOK C T,MAN H C,CHENG F T,et al.Developments in laser-based surface engineering processes:with particular reference to protection against cavitation erosion[J].Surface and Coatings Technology,2016,291:189-204.
参考文献 222
MENDEZ P F,BARNES N,BELL K,et al.Welding processes for wear resistant overlays[J].Journal of Manufacturing Processes,2014,16(1):4-25.
参考文献 223
SIMONEAU R.Austenitic stainless steel with high cavitation erosion resistance:US04751046A[P].1986-06-14.
参考文献 224
KOGA G Y,WOLF W,SCHULZ R,et al.Corrosion and wear properties of FeCrMnCoSi HVOF coatings[J].Surface and Coatings Technology,2019,357:993-1003.
参考文献 225
KUMAR A,BOY J,ZATORSKI R,et al.Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps:A technical note[J].Journal of Thermal Spray Technology,2005,14(2):177-182.
参考文献 226
WILL C R,CAPRA A R,PUKASIEWICZ A G M,et al.Comparative study of three austenitic alloy with cobalt resistant to cavitation deposited by plasma welding[J].Welding International,2012,26(2):96-103.
参考文献 227
RUDOLF P,JULIS M,KLAKURKOVA L,et al.Cavitation erosion testing of different cavitation-resistent materials and coatings using the cavitating jet method[C]//Proceedings of the 29th IAHR Symposium on Hydraulic Machinery and Systems(IAHR),September 16-21,2018,Kyoto,Japan.Bristol:IOP Publishing Ltd.,2019,240:062057.
参考文献 228
LAVIGNE S,POUGOUM F,SAVOIE S,et al.Cavitation erosion behavior of HVOF CaviTec coatings[J].Wear,2017,386-387:90-98.
参考文献 229
LEE M K,KIM W W,RHEE C K,et al.Investigation of liquid impact erosion for 12Cr steel and Stellite 6B[J].Journal of Nuclear Materials,1998,257(2):134-144.
参考文献 230
HATTORI S,MIKAMI N.Cavitation erosion resistance of stellite alloy weld overlays[J].Wear,2009,267(11):1954-1960.
参考文献 231
ROMO S A,SANTA J F,GIRALDO J E,et al.Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy[J].Tribology International,2012,47:16-24.
参考文献 232
SINGH R,KUMAR D,MISHRA S K,et al.Laser cladding of Stellite 6 on stainless steel to enhance solid particle erosion and cavitation resistance[J].Surface and Coatings Technology,2014,251:87-97.
参考文献 233
DING Y P,YAO J H,LIU R,et al.Effects of surface treatment on the cavitation erosion-corrosion performance of 17-4PH stainless steel in sodium chloride solution[J].Journal of Materials Engineering and Performance,2020,29(4):2687-2696.
参考文献 234
ZHANG Q L,WU L J,ZOU H S,et al.Correlation between microstructural characteristics and cavitation resistance of Stellite-6 coatings on 17-4 PH stainless steel prepared with supersonic laser deposition and laser cladding[J].Journal of Alloys and Compounds,2021,860:158417.
参考文献 235
DING Y P,LIU R,YAO J H,et al.Stellite alloy mixture hardfacing via laser cladding for control valve seat sealing surfaces[J].Surface and Coatings Technology,2017,329:97-108.
参考文献 236
SILVA H R,FERRARESI V A.Effect of cobalt alloy addition in erosive wear and cavitation of coatings welds[J].Wear,2019,426:302-313.
参考文献 237
SREEDHAR B K,ALBERT S K,PANDIT A B.Improving cavitation erosion resistance of austenitic stainless steel in liquid sodium by hardfacing-comparison of Ni and Co based deposits[J].Wear,2015,342:92-99.
参考文献 238
AL-FADHLI H Y,STOKES J,HASHMI M S J,et al.The erosion-corrosion behaviour of high velocity oxy-fuel(HVOF)thermally sprayed inconel-625 coatings on different metallic surfaces[J].Surface and Coatings Technology,2006,200(20-21):5782-5788.
参考文献 239
JIA Q B,GU D D.Selective laser melting additive manufacturing of Inconel 718 superalloy parts:densification,microstructure and properties[J].Journal of Alloys and Compounds,2014,585:713-721.
参考文献 240
ABIOYE T E,MCCARTNEY D G,CLARE A T.Laser cladding of Inconel 625 wire for corrosion protection[J].Journal of Materials Processing Technology,2015,217:232-240.
参考文献 241
SANDHU S S,SHAHI A S.Metallurgical,wear and fatigue performance of Inconel 625 weld claddings[J].Journal of Materials Processing Technology,2016,233:1-8.
参考文献 242
YUAN X J,QIU H F,ZENG F Q,et al.Microstructural evolution and mechanical properties of Inconel 625 superalloy fabricated by pulsed microplasma rapid additive manufacturing[J].Journal of Manufacturing Processes,2022,77:63-74.
参考文献 243
JIANG X J,OVERMAN N,SMITH C,et al.Microstructure,hardness and cavitation erosion resistance of different cold spray coatings on stainless steel 316 for hydropower applications[J].Materials Today Communications,2020,25:101305.
参考文献 244
KAZASIDIS M,YIN S,CASSIDY J,et al.Microstructure and cavitation erosion performance of nickel-Inconel 718 composite coatings produced with cold spray[J].Surface and Coatings Technology,2020,382:125195.
参考文献 245
TAILLON G,MIYAGAWA K.Cavitation erosion of Ni-based superalloys manufactured by forging and additive manufacturing[J].Journal of Failure Analysis and Prevention,2021,21(5):1902-1917.
参考文献 246
WANG B,WANG Y D,ZHANG Z H.WC-M coating to improve resistance of hydraulic turbines to cavitation erosion and abrasion[J].Transactions of Nonferrous Metals Society of China,2003,13(4):893-897.
参考文献 247
高云涛,李翠林,郭维.高速火焰喷涂技术在刘家峡水电厂水轮机抗磨蚀方面的应用[J].陕西电力,2008,36(5):51-53.GAO Yuntao,LI Cuilin,GUO Wei.Application of HVOF technology in anti-abrasion for hydraulic turbine in Liujiaxia hydropower station[J].Shanxi Electric Power,2008,36(5):51-53.(in Chinese)
参考文献 248
王者昌,陈静.水轮机抗空蚀磨损金属复层方法、材料和应用[J].焊接,2009,2:38-46.WANG Zhechang,CHEN Jing.Compound metal layer with cavitation erosion and abrasion resistance and its application in hydraulic turbine[J].Welding,2009,2:38-46.(in Chinese)
参考文献 249
KUMAR H,CHITTOSIYA C,SHUKLA V N.HVOF sprayed WC based cermet coating for mitigation of cavitation,erosion & abrasion in hydro turbine blade[C]//Proceedings of the 7th International Conference of Materials Processing and Characterization(ICMPC),March 17-19,2017,Gokaraju Rangaraju Inst Engn & Technol,Hyderabad,India.Amsterdam:Elsevier,2018,5(2):6413-6420.
参考文献 250
HONG S,WU Y P,WU J H,et al.Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines[J].Renewable Energy,2021,164:1089-1099.
参考文献 251
LIU J,CHEN T Z,YUAN C Q,et al.Performance analysis of cavitation erosion resistance and corrosion behavior of HVOF-sprayed WC-10Co-4Cr,WC-12Co,and Cr3C2-NiCr coatings[J].Journal of Thermal Spray Technology,2020,29(4):798-810.
参考文献 252
PIOLA R,ANG A S M,LEIGH M,et al.A comparison of the antifouling performance of air plasma spray(APS)ceramic and high velocity oxygen fuel(HVOF)coatings for use in marine hydraulic applications[J].Biofouling,2018,34(5):479-491.
参考文献 253
HONG S,WU Y P,ZHANG J F,et al.Cavitation erosion behavior and mechanism of HVOF sprayed WC-10Co-4Cr coating in 3.5wt.% NaCl solution[J].Transactions of the Indian Institute of Metals,2015,68(1):151-159.
参考文献 254
DING X,HUANG Y,YUAN C Q,et al.Deposition and cavitation erosion behavior of multimodal WC-10Co4Cr coatings sprayed by HVOF[J].Surface and Coatings Technology,2020,392:125757.
参考文献 255
LIU X B,KANG J J,YUE W,et al.Cavitation erosion behavior of HVOF sprayed WC-10Co4Cr cermet coatings in simulated sea water[J].Ocean Engineering,2019,190:106449.
参考文献 256
WU Y P,HONG S,ZHANG J F,et al.Microstructure and cavitation erosion behavior of WC-Co-Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying[J].International Journal of Refractory Metals & Hard Materials,2012,32:21-26.
参考文献 257
HONG S,WU Y P,ZHANG J F,et al.Ultrasonic cavitation erosion of high-velocity oxygen-fuel(HVOF)sprayed near-nanostructured WC-10Co-4Cr coating in NaCl solution[J].Ultrasonics Sonochemistry,2015,26:87-92.
参考文献 258
ZHANG H J,CHEN X Y,GONG Y F,et al.In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings[J].Ultrasonics Sonochemistry,2020,60:104760.
参考文献 259
LIN J R,HONG S,ZHENG Y,et al.Cavitation erosion resistance in NaCl medium of HVOF sprayed WC-based cermet coatings at various flow velocities:a comparative study on the effect of Ni and CoCr binder phases[J].International Journal of Refractory Metals & Hard Materials,2021,94:105407.
参考文献 260
LIMA M M,GODOY C,MODENESI P J,et al.Coating fracture toughness determined by Vickers indentation:an important parameter in cavitation erosion resistance of WC-Co thermally sprayed coatings[J].Surface and Coatings Technology,2004,177-178:489-496.
参考文献 261
VARIS T,SUHONEN T,GHABCHI A,et al.Formation mechanisms,structure,and properties of HVOF-sprayed WC-CoCr coatings:an approach toward process maps[J].Journal of Thermal Spray Technology,2014,23(6):1009-1018.
参考文献 262
DING X,CHENG X D,YUAN C Q,et al.Structure of micro-nano WC-10Co4Cr coating and cavitation erosion resistance in NaCl solution[J].Chinese Journal of Mechanical Engineering,2017,30(5):1239-1247.
参考文献 263
DING X,CHENG X D,YU X,et al.Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC-10Co4Cr coating[J].Transactions of Nonferrous Metals Society of China,2018,28(3):487-494.
参考文献 264
DING X,KE D,YUAN C Q,et al.Microstructure and cavitation erosion resistance of HVOF deposited WC-Co coatings with different sized WC[J].Coatings,2018,8(9):307.
参考文献 265
LAMANA M S,PUKASIEWICZ A G M,SAMPATH S.Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings[J].Wear,2018,398-399:209-219.
参考文献 266
KANNO A,TAKAGI K,ARAI M.Influence of chemical composition,grain size,and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings[J].Surface and Coatings Technology,2020,394:125881.
参考文献 267
WANG Q,TANG Z X,CHA L M.Cavitation and sand slurry erosion resistances of WC-10Co-4Cr coatings[J].Journal of Materials Engineering and Performance,2015,24(6):2435-2443.
参考文献 268
DU J,ZHANG J F,ZHANG C.Effect of heat treatment on the cavitation erosion performance of WC-12Co coatings[J].Coatings,2019,9(10):690.
参考文献 269
BECKER A,BERTOUL K,PUKASIEWICZ A G M,et al.Influence of fuel/oxygen ratio on coating properties and cavitation resistance of WC and Cr3C2 cermet coatings deposited by HVOF[C]//Thermal Spray 2021:Proceedings from the International Thermal Spray Conference,May 24-28,2021,Quebec City,Canada.Amsterdam:ASM International,2021:716-721.
参考文献 270
VARIS T,SUHONEN T,LAAKSO J,et al.Evaluation of residual stresses and their influence on cavitation erosion resistance of high kinetic HVOF and HVAF-sprayed WC-CoCr coatings[J].Journal of Thermal Spray Technology,2020,29(6):1365-1381.
参考文献 271
DING Z X,CHEN W,WANG Q.Resistance of cavitation erosion of multimodal WC-12Co coatings sprayed by HVOF[J].Transactions of Nonferrous Metals Society of China,2011,21(10):2231-2236.
参考文献 272
丁彰雄,胡一鸣,赵辉.HVOF 制备的微纳米结构 WC-12Co 涂层组织结构与抗空蚀性能[J].摩擦学学报,2013,33(5):429-435.DING Zhangxiong,HU Yiming,ZHAO Hui.Structures and resistance of cavitation erosion micro-nanostructured WC-12Co cotings sprayed by HVOF[J].Tribology,2013,33(5):429-435.(in Chinese)
参考文献 273
HONG S,WU Y P,WU J H,et al.Effect of flow velocity on cavitation erosion behavior of HVOF sprayed WC-10Ni and WC-20Cr3C2-7Ni coatings[J].International Journal of Refractory Metals & Hard Materials,2020,92:105330.
参考文献 274
WANG H H,WU Y P,CHENG J B,et al.Effect of binder phases on the cavitation erosion behavior of HVOF sprayed WC-based coatings[J].Surface and Coatings Technology,2023,472:129887.
参考文献 275
WEI Z Y,SHI X L,CUI D D,et al.Effect of 3.5% NaCl solution with different Na2S concentrations on ultrasonic cavitation erosion behaviors of HVOF sprayed WC-Ni coatings[J].Ultrasonics Sonochemistry,2023,101:106707.
参考文献 276
KOROBOV Y,ALWAN H,SOBOLEVA N,et al.Cavitation resistance of WC-10Co4Cr and WC-20CrC-7Ni HVAF coatings[J].Journal of Thermal Spray Technology,2022,31:234-246.
参考文献 277
THAKUR L,ARORA N.A study of processing and slurry erosion behaviour of multi-walled carbon nanotubes modified HVOF sprayed nano-WC-10Co-4Cr coating[J].Surface and Coatings Technology,2017,309:860-871.
参考文献 278
TIAN Y,YANG R,GU Z,et al.Ultrahigh cavitation erosion resistant metal-matrix composites with biomimetic hierarchical structure[J].Composites Part B:Engineering,2022,234:109730.
参考文献 279
YANG R,HUANG N,TIAN Y,et al.Insights into the exceptional cavitation erosion resistance of laser surface melted Ni-WC composites:the effects of WC morphology and distribution[J].Surface and Coatings Technology,2022,444:128685.
参考文献 280
YANG R,TIAN Y,HUANG N L,et al.Effects of CeO2 addition on microstructure and cavitation erosion resistance of laser-processed Ni-WC composites[J].Materials Letters,2022,311:131583.
参考文献 281
CHENG F T,KWOK C T,MAN H C.Cavitation erosion resistance of stainless steel laser-clad with WC-reinforced MMC[J].Materials Letters,2002,57(4):969-974.
参考文献 282
LO K H,CHENG F T,MAN H C.Cavitation erosion mechanism of S31600 stainless steel laser surface-modified with unclad WC[J].Materials Science and Engineering:A,2003,357(1-2):168-180.
参考文献 283
LO K H,CHENG F T,KWOK C T,et al.Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder[J].Surface and Coatings Technology,2003,165(3):258-267.
参考文献 284
TAM K F,CHENG F T,MAN H C.Cavitation erosion behavior of laser-clad Ni-Cr-Fe-WC on brass[J].Materials Research Bulletin,2002,37(7):1341-1351.
参考文献 285
DURAISELVAM M,GALUN R,WESLING V,et al.Laser clad WC reinforced Ni-based intermetallic-matrix composites to improve cavitation erosion resistance[J].Journal of Laser Applications,2006,18(4):297-304.
参考文献 286
ZHANG X B,LIU C S,LIU X D,et al.Cavitation erosion behavior of WC coatings on CrNiMo stainless steel by laser alloying[J].International Journal of Minerals Metallurgy and Materials,2009,16(2):203-207.
参考文献 287
BAO Y F,GUO L P,ZHONG C H,et al.Effects of WC on the cavitation erosion resistance of FeCoCrNiB0.2 high entropy alloy coating prepared by laser cladding[J].Materials Today Communications,2021,26:102154.
参考文献 288
MA D,HARVEY T J,ZHUK Y N,et al.Cavitation erosion performance of CVD W/WC coatings[J].Wear,2020,452:203276.
参考文献 289
BABU A,ARORA H S,GREWAL H S.Development of cavitation erosion-resistant microwave processed WC-based cladding[J].Tribology Transactions,2021,64(6):1118-1126.
参考文献 290
HONG S,SHI X L,LIN J R,et al.Microstructure and cavitation-silt erosion behavior of two HVOF-sprayed hardfacing coatings for hydro-turbine applications[J].Alexandria Engineering Journal,2023,69:483-496.
参考文献 291
TAILLON G,POUGOUM F,LAVIGNE S,et al.Cavitation erosion mechanisms in stainless steels and in composite metal-ceramic HVOF coatings[J].Wear,2016,364:201-210.
参考文献 292
YANG X Y,ZHANG J F,LI G Y.Cavitation erosion behaviour and mechanism of HVOF-sprayed NiCrBSi-(Cr3C2-NiCr)composite coatings[J].Surface Engineering,2018,34(3):211-219.
参考文献 293
MATIKAINEN V,KOIVULUOTO H,VUORISTO P,et al.Effect of nozzle geometry on the microstructure and properties of HVAF-sprayed WC-10Co4Cr and Cr3C2-25NiCr coatings[J].Journal of Thermal Spray Technology,2018,27(4):680-694.
参考文献 294
MATIKAINEN V,KOIVULUOTO H,VUORISTO P.A study of Cr3C2-based HVOF-and HVAF-sprayed coatings:abrasion,dry particle erosion and cavitation erosion resistance[J].Wear,2020,446:203188.
参考文献 295
LUIZ L A,DE ANDRADE J,PESQUEIRA C M,et al.Corrosion behavior and galvanic corrosion resistance of WC and Cr3C2 cermet coatings in Madeira River water[J].Journal of Thermal Spray Technology,2021,30(1-2):205-221.
参考文献 296
HONG S,WU Y P,WANG Q,et al.Microstructure and cavitation-silt erosion behavior of high-velocity oxygen-fuel(HVOF)sprayed Cr3C2-NiCr coating[J].Surface and Coatings Technology,2013,225:85-91.
参考文献 297
STELLA J,POIRIER T,POHL M.Cavitation-erosion of 3Y-TZPs obtained at different sintering temperatures[J].Wear,2013,300(1-2):163-168.
参考文献 298
WANG Y,DARUT G,POIRIER T,et al.Cavitation erosion of plasma sprayed YSZ coatings produced by feedstocks with different initial sizes[J].Tribology International,2017,111:226-233.
参考文献 299
WANG Y,STELLA J,DARUT G,et al.APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion[J].Journal of Alloys and Compounds,2017,699:1095-1103.
参考文献 300
DENG W,AN Y L,HOU G L et al.Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings[J].Ultrasonics Sonochemistry,2018,46:1-9.
参考文献 301
WANG Y,LEBON B,TZANAKIS I,et al.Experimental and numerical investigation of cavitation-induced erosion in thermal sprayed single splats[J].Ultrasonics Sonochemistry,2019,52:336-343.
参考文献 302
YILMAZ S,IPEK M,CELEBI G F,et al.The effect of bond coat on mechanical properties of plasma-sprayed Al2O3 and Al2O3-13wt.% TiO2 coatings on AISI 316L stainless steel[J].Vacuum,2005,77(3):315-321.
参考文献 303
YILMAZ R,KURT A O,DEMIR A,et al.Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating[J].Journal of the European Ceramic Society,2007,27(2-3):1319-1323.
参考文献 304
PORTER J,SUHL L.Anti-fouling coating process:5080926[P].1992-01-14.
参考文献 305
GOSTEVA I,MORGALEV Y,MORGALEVA T,et al.Effect of Al2O3 and TiO2 nanoparticles on aquatic organisms[C]//Proceedings of the 3rd International Youth Conference on Interdisciplinary Problems of Nanotechnology,May 21-22,2015,Tambov,Russia.Bristol:IOP Publishing Ltd.,2015,98:012007.
参考文献 306
JAFARZADEH K,VALEFI Z,GHAVIDEL B.The effect of plasma spray parameters on the cavitation erosion of Al2O3-TiO2 coatings[J].Surface and Coatings Technology,2010,205(7):1850-1855.
参考文献 307
HU H,JIANG S,TAO Y,et al.Cavitation erosion and jet impingement erosion mechanism of cold sprayed Ni-Al2O3 coating[J].Nuclear Engineering and Design,2011,241(12):4929-4937.
参考文献 308
LATKA L,SZALA M,MICHALAK M,et al.Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3-13% TiO2 coatings[J].Acta Physica Polonica A,2019,136(2):342-347.
参考文献 309
SZALA M,LATKA L,WALCZAK M,et al.Comparative study on the cavitation erosion and sliding wear of cold-sprayed Al/Al2O3 and Cu/Al2O3 coatings,and stainless steel,aluminium alloy,copper and brass[J].Metals,2020,10(7):856.
参考文献 310
SZALA M,LATKA L,AWTONIUK M,et al.Neural modelling of APS thermal spray process parameters for optimizing the hardness,porosity and cavitation erosion resistance of Al2O3-13wt.% TiO2 Coatings[J].Processes,2020,8(12):1544.
参考文献 311
SZALA M,HEJWOWSKI T.Cavitation erosion resistance and wear mechanism model of flame-sprayed Al2O3-40% TiO2/NiMoAl cermet coatings[J].Coatings,2018,8(7):254.
参考文献 312
PANDEY S,BANSAL A,OMER A,et al.Effect of fuel pressure,feed rate,and spray distance on cavitation erosion of Rodojet sprayed Al2O3+50% TiO2 coated AISI410 steel[J].Surface and Coatings Technology,2021,410:126961.
参考文献 313
KIILAKOSKI J,PURANEN J,HEINONEN E,et al.Characterization of powder-precursor HVOF-sprayed Al2O3-YSZ/ZrO2 coatings[J].Journal of Thermal Spray Technology,2019,28(1-2):98-107.
参考文献 314
ARORA H S,RANI M,PERUMAL G,et al.Enhanced cavitation erosion-corrosion resistance of high-velocity oxy-fuel-sprayed Ni-Cr-Al2O3 coatings through stationary friction processing[J].Journal of Thermal Spray Technology,2020,29(5):1183-1194.
参考文献 315
CHENG F T,KWOK C T,MAN H C.Laser surfacing of S31603 stainless steel with engineering ceramics for cavitation erosion resistance[J].Surface and Coatings Technology,2001,139(1):14-24.
参考文献 316
WU H,WANG L,ZHANG S,et al.Corrosion and cavitation erosion behaviors of laser clad FeNiCoCr high-entropy alloy coatings with different types of TiC reinforcement[J].Surface and Coatings Technology,2023,471,15:129910.
参考文献 317
ZHANG H,WANG L,ZHANG S,et al.An investigation on wear and cavitation erosion-corrosion characteristics of the TiC modified Fe-based composite coating via laser cladding[J].Journal of Materials Research and Technology,2023,26:8440-8455.
参考文献 318
RAMPAL,SINGLA A K,BANSAL A,et al.Development,characterization,and cavitation erosion analysis of high velocity oxy-fuel(HVOF)sprayed TiC and(70Cu-30Ni)-Cr based composite coatings on SS316 steel[J].Tribology International,2023,186:108621.
参考文献 319
BAKHSHANDEH H R,ALLAHKARAM S R,ZABIHI A H.An investigation on cavitation-corrosion behavior of Ni/β-SiC nanocomposite coatings under ultrasonic field[J].Ultrasonics Sonochemistry,2019,56:229-239.
参考文献 320
GUO W M,WU Y P,ZHANG J F,et al.Fabrication and characterization of thermal-sprayed Fe-based amorphous/nanocrystalline composite coatings:An overview[J].Journal of Thermal Spray Technology,2014,23(7):1157-1180.
参考文献 321
SOUZA C A C,RIBEIRO D V,KIMINAMI C S.Corrosion resistance of Fe-Cr-based amorphous alloys:An overview[J].Journal of Non-Crystalline Solids,2016,442:56-66.
参考文献 322
HUANG B,ZHANG C,ZHANG G,et al.Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings:A review[J].Surface and Coatings Technology,2019,377:124896.
参考文献 323
VAZ R F,PUKASIEWICZ A G M,SIQUEIRA I B A F,et al.Thermal spraying of FeMnCrSi alloys:An overview[C]//Thermal Spray 2021:Proceedings from the International Thermal Spray Conference,May 24-28,2021,Quebec City,Canada.Amsterdam:ASM International,2021:431-439.
参考文献 324
HOU G L,ZHAO X Q,ZHOU H D,et al.Cavitation erosion of several oxy-fuel sprayed coatings tested in deionized water and artificial seawater[J].Wear,2014,311(1-2):81-92.
参考文献 325
WU Y P,LIN P H,CHU C L,et al.Cavitation erosion characteristics of a Fe-Cr-Si-B-Mn coating fabricated by high velocity oxy-fuel(HVOF)thermal spray[J].Materials Letters,2007,61(8-9):1867-1872.
参考文献 326
WANG Z H,ZHANG X,CHENG J B,et al.Cavitation erosion resistance of Fe-based amorphous/nanocrystal coatings prepared by high-velocity arc spraying[J].Journal of Thermal Spray Technology,2014,23(4):742-749.
参考文献 327
KIM Y J,JANG J W,LEE D W,YI S.Porosity effects of a Fe-based amorphous/nanocrystals coating prepared by a commercial high velocity oxy-fuel process on cavitation erosion behaviors[J].Metals and Materials International,2015,21(4):673-677.
参考文献 328
ZHENG Z B,ZHENG Y G,SUN W H,et al.Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution[J].Corrosion Science,2013,76:337-347.
参考文献 329
ZHENG Z B,ZHENG Y G,SUN W H,et al.Effect of applied potential on passivation and erosion-corrosion of a Fe-based amorphous metallic coating under slurry impingement[J].Corrosion Science,2014,82:115-124.
参考文献 330
ZHENG Z B,ZHENG Y G,SUN W H,et al.Effect of heat treatment on the structure,cavitation erosion and erosion-corrosion behavior of Fe-based amorphous coatings[J].Tribology International,2015,90:393-403.
参考文献 331
HUANG F,KANG J J,YUE W,et al.Effect of heat treatment on erosion-corrosion of Fe-based amorphous alloy coating under slurry impingement[J].Journal of Alloys and Compounds,2020,820:153132.
参考文献 332
LIU M M,WANG Z B,HU H X,et al.Effect of sealing treatments on erosion-corrosion of a Fe-based amorphous metallic coating in 3.5wt.% NaCl solution with 2wt.% sand[J].Metals,2022,12(4):680.
参考文献 333
LIN J R,WANG Z H,LIN P H,et al.Microstructure and cavitation erosion behavior of FeNiCrBSiNbW coating prepared by twin wires arc spraying process[J].Surface and Coatings Technology,2014,240:432-436.
参考文献 334
LIN J R,WANG Z H,LIN P H,et al.Effects of post annealing on the microstructure,mechanical properties and cavitation erosion behavior of arc-sprayed FeNiCrBSiNbW coatings[J].Materials & Design,2015,65:1035-1040.
参考文献 335
LIN J R,WANG Z H,CHENG J B,et al.Effect of initial surface roughness on cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings[J].Coatings,2017,7(11):200.
参考文献 336
LIN J R,WANG Z H,CHENG J B,et al.Evaluation of cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings in NaCl solution[J].Results in Physics,2019,12:597-602.
参考文献 337
WANG J W,YANG R,TIAN Y,et al.Effect of annealing on the cavitation erosion resistance of HVOF-sprayed Fe-based amorphous composite coatings[J].Journal of Thermal Spray Technology,2023,32(6):1758-1771.
参考文献 338
RICHMAN R H,RAO A S,KUNG D.Cavitation erosion of NiTi explosively welded to steel[J].Wear,1995,181:80-85.
参考文献 339
HIRAGA H,INOUE T,SHIMURA H,et al.Cavitation erosion mechanism of NiTi coatings made by laser plasma hybrid spraying[J].Wear,1999,231(2):272-278.
参考文献 340
CHENG F T,SHI P,MAN H C.Effect of electrolytic hydrogen pre-charging on the cavitation erosion resistance of NiTi:A preliminary study[J].Scripta Materialia,2002,47(2):89-94.
参考文献 341
CHENG F T,LO K H,MAN H C.NiTi cladding on stainless steel by TIG surfacing process Part I.Cavitation erosion behavior[J].Surface and Coatings Technology,2003,172(2-3):308-315.
参考文献 342
CHIU K Y,CHENG F T,MAN H C.Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi[J].Materials Science and Engineering:A,2005,392(1-2):348-358.
参考文献 343
CHIU K Y,CHENG F T,MAN H C.Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion[J].Materials Science and Engineering:A,2005,402(1-2):126-134.
参考文献 344
CHIU K Y,CHENG F T,MAN H C.Corrosion behavior of AISI 316L stainless steel surface-modified with NiTi[J].Surface and Coatings Technology,2006,200(20-21):6054-6061.
参考文献 345
CHIU K Y,CHENG F T,MAN H C.Hydrogen effect on the cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi[J].Materials Letters,2007,61(1):239-243.
参考文献 346
CHEN J,HE J,CHEN K,et al.Gas tungsten arc cladding of titanium-nickel overlays onto the carbon steel and stainless steel for cavitation erosion resistance[J].Key Engineering Materials,2010,479:81-89.
参考文献 347
SHI Z P,WANG Z B,WANG J Q,et al.Effect of Ni interlayer on cavitation erosion resistance of NiTi cladding by tungsten inert gas(TIG)surfacing process[J].Acta Metallurgica Sinica(English Letters),2020,33(3):415-424.
参考文献 348
SHI Z,WANG Z,CHEN F,et al.Cavitation erosion and corrosion behavior of NiTi cladding with Cu and Nb interlayers[J].Journal of Materials Engineering and Performance,2020,29(6):3840-3851.
参考文献 349
STELLA J,SCHULLER E,HESSING C,et al.Cavitation erosion of plasma-sprayed NiTi coatings[J].Wear,2006,260(9-10):1020-1027.
参考文献 350
BITZER M,RAUHUT N,MAUER G,et al.Cavitation-resistant NiTi coatings produced by low-pressure plasma spraying(LPPS)[J].Wear,2015,328:369-377.
参考文献 351
SHI Z P,WANG J Q,WANG Z B,et al.Cavitation erosion and jet impingement erosion behavior of the NiTi coating produced by air plasma spraying[J].Coatings,2018,8(10):346.
参考文献 352
WEI X L,BAN A L,ZHU W Y,et al.Cavitation erosion resistance of TiNi-based composite coating deposited by APS[J].Journal of Thermal Spray Technology,2021,30(4):937-945.
参考文献 353
WEI X L,ZHU W Y,BAN A L,et al.Effects of Co addition on microstructure and cavitation erosion resistance of plasma sprayed TiNi based coating[J].Surface and Coatings Technology,2021,409:126838.
参考文献 354
MAUER G,RAUWALD K H,SOHN Y J,et al.Cold gas spraying of nickel-titanium coatings for protection against cavitation[J].Journal of Thermal Spray Technology,2021,30(1-2):131-144.
参考文献 355
YANG L,TIEU A K,DUNNE D P,et al.Cavitation erosion resistance of NiTi thin films produced by Filtered Arc Deposition[J].Wear,2009,267(1-4):233-243.
参考文献 356
KUMAR G R,RAJYALAKSHMI G,SWAROOP S.A critical appraisal of laser peening and its impact on hydrogen embrittlement of titanium alloys[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2019,233(13):2371-2398.
参考文献 357
KWOK C T,CHENG F T,MAN H C.Laser surface modification of UNS S31603 stainless steel using NiCrSiB alloy for enhancing cavitation erosion resistance[J].Surface and Coatings Technology,1998,107(1):31-40.
参考文献 358
KWOK C T,CHENG F T,MAN H C.Laser surface modification of UNS S31603 stainless steel.Part II:cavitation erosion characteristics[J].Materials Science and Engineering:A,2000,290(1-2):74-88.
参考文献 359
KWOK C T,MAN H C,CHENG F T.Cavitation erosion-corrosion behaviour of laser surface alloyed AISI 1050 mild steel using NiCrSiB[J].Materials Science and Engineering:A,2001,303(1-2):250-261.
参考文献 360
MAN H,ZHANG S,YUE T,et al.Laser surface alloying of NiCrSiB on Al6061 aluminium alloy[J].Surface and Coatings Technology,2001,148(2-3):136-142.
参考文献 361
ZHANG X B,CHANG X,WEI T,et al.Microstructure and cavitation-erosion mechanism of laser cladding NiCrSiB coating on CrNiMo stainless steel[J].Advanced Materials Research,2010,154-155:1788-1791.
参考文献 362
ZHANG C H,WU C L,ZHANG S,et al.Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance[J].Rare Metals,2016,41:4257-4265.
参考文献 363
ZHANG S,WU C L,ZHANG C H,et al.Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance[J].Optics and Laser Technology,2016,84:23-31.
参考文献 364
WU C L,ZHANG S,ZHANG C H,et al.Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying[J].Journal of Alloys and Compounds,2017,698:761-770.
参考文献 365
WEI Z,WU Y P,HONG S,et al.Effect of WC-10Co on cavitation erosion behaviors of AlCoCrFeNi coatings prepared by HVOF spraying[J].Ceramics International,2021,47(11):15121-15128.
参考文献 366
WEI Z,WU Y P,HONG S,et al.Electrochemical properties and cavitation erosion behaviors of HVOF sprayed(AlCoCrFeNi)(1-x)(WC-10Co)(x) composite coatings in NaCl medium[J].Ceramics International,2021,47(20):29410-29422.
参考文献 367
侯国梁,安宇龙,赵晓琴,等.Co-28Mo-8Cr-2Si 涂层在去离子水和人工海水中的气蚀性能[J].中国表面工程,2014,27(1):12-17.HOU Guoliang,AN Yulong,ZHAO Xiaoqin,et al.Cavitation erosion behavior of Co-28Mo-8Cr-2Si coating in deionized water and artificial seawater[J].China Surface Engineering,2014,27(1):12-17.(in Chinese)
参考文献 368
BOHM H,BETZ S,BALL A.The wear-resistance of polymers[J].Tribology International,1990,23(6):399-406.
参考文献 369
HATTORI S,ITOH T.Cavitation erosion resistance of plastics[J].Wear,2011,271(7-8):1103-1108.
参考文献 370
DEPLANCKE T,LAME O,CAVAILLE J Y,et al.Outstanding cavitation erosion resistance of ultra high molecular weight polyethylene(UHMWPE)coatings[J].Wear,2015,328:301-308.
参考文献 371
YANG H,ZHANG M L,CHEN R R,et al.Polyurethane coating with heterogeneity structure induced by microphase separation:a new combination of antifouling and cavitation erosion resistance[J].Progress in Organic Coatings,2021,151:106032.
参考文献 372
WANG Y,DARUT G,POIRIER T,et al.Ultrasonic cavitation erosion of as-sprayed and laser-remelted yttria stabilized zirconia coatings[J].Journal of the European Ceramic Society,2017,37(11):3623-3630.
参考文献 373
DENG W,HOU G L,LI S J,et al.A new methodology to prepare ceramic-organic composite coatings with good cavitation erosion resistance[J].Ultrasonics Sonochemistry,2018,44:115-119.
参考文献 374
DENG W,AN Y L,ZHAO X Q,et al.Cavitation erosion behavior of ceramic/organic coatings exposed to artificial seawater[J].Surface and Coatings Technology,2020,399:126133.
参考文献 375
TIAN Y,ZHANG H J,CHEN X Y,et al.Effect of cavitation on corrosion behavior of HVOF-sprayed WC-10Co4Cr coating with post-sealing in artificial seawater[J].Surface and Coatings Technology,2020,397:126012.
参考文献 376
QIU N,WANG L Q,WU S H,et al.Research on cavitation erosion and wear resistance performance of coatings[J].Engineering Failure Analysis,2015,55:208-223.
参考文献 377
MARLIN P,CHAHINE G L.Erosion and heating of polyurea under cavitating jets[J].Wear,2018,414:262-274.
参考文献 378
YANG R,CHEN X Y,TIAN Y,et al.An attempt to improve cavitation erosion resistance of UHMWPE coatings through enhancing thermal conductivity via the incorporation of copper frames[J].Surface and Coatings Technology,2021,425:127705.
目录contents

    摘要

    海洋作为可持续发展的重要空间和资源保障,已成为全球所需资源的最大潜在来源。在此背景下,涉海设备的持续安全运行尤为重要。空蚀是船舶螺旋桨和船舵等过流部件中最常见的失效形式。因此,研究空蚀机理和开发耐空蚀材料对于保障这些部件的稳定运行和延长使用寿命至关重要。阐述过流部件空蚀的形成机理及其影响因素,介绍评估材料耐空蚀性能的一系列方法,基于材料体系总结耐空蚀合金以及涂层的研究现状和进展,评述各种材料体系的优缺点。归纳耐空蚀材料普遍具备的特点,即较少的缺陷、较低的层错能、硬质相与韧性相的结合以及能够产生应力诱导相变。提出应从降低耐空蚀材料的成本、探索材料的力学性能对空蚀行为机理性的影响以及基于微观结构设计耐空蚀材料三个方面推动耐空蚀材料的研发。同时指出先进制造技术、高通量材料筛选、微观结构优化技术以及力学性能与耐空蚀性能关系的深入研究,将是实现未来耐空蚀材料突破的关键技术。通过聚焦以上这些研究方向、挑战和技术,将能够为耐空蚀材料的未来发展奠定坚实的基础,并开拓广泛的应用前景。

    Abstract

    International trade has become increasingly intertwined since the beginning of the 21st century. The annual ocean economy contributes approximately 1.5 trillion US dollars, which accounts for approximately 3% of the global value-added trade. This contribution is expected to double to 3 trillion US dollars by 2030. The ocean serves as not only a vast reservoir of resources but also a crucial space for sustainable development. Hence, the ocean is the world’s largest potential source of resources. Given this context, the reliable and safe operation of maritime equipment is paramount. Cavitation is the process where vapor bubbles form and collapse in a liquid due to pressure fluctuations, often resulting in surface damage known as cavitation erosion. Cavitation erosion is a frequent form of wear in components that operate in fluid environments. Thus, cavitation erosion highlights the importance of studying cavitation and developing materials that are resistant to cavitation erosion to ensure the stability and longevity of these components. This phenomenon is particularly problematic in high-speed components, such as ship propellers, hydraulic turbines, and pumps, where the dynamic pressures are significant. This review details the mechanism of cavitation erosion and the impact of cavitation erosion on maritime and hydraulic machinery. Initially, the focus of this review is to elucidate the physical principles underlying cavitation, and it begins by analyzing both the conditions under which cavitation occurs and the factors influencing its severity. This review then describes the formation of vapor bubbles and their behavior upon collapse, which is the primary cause of damage to affected materials. These collapses produce microjets and shockwaves that repeatedly impact material surfaces and thereby lead to material fatigue and eventual failure. This review also introduces a series of methods by which to evaluate the cavitation resistance of materials and summarizes progress in the development of cavitation erosion-resistant materials. These materials include various types of stainless steels, superalloys, and specialized coatings that provide enhanced resistance to the dynamic forces of cavitation. The use of vibratory devices for standard testing methods (ASTM G32), liquid impingement erosion tests (ASTM G73), and cavitating liquid jet erosion tests (ASTM G134) are discussed. Each method offers insight into the complex behaviors of materials under cavitation stress. Progress in the formulation of cavitation-resistant materials is further highlighted, focusing on the development of specialized alloys and coatings that are designed to mitigate the effects of cavitation. Stainless steels, nickel-aluminum bronzes, and superalloys are examined for their properties and effectiveness in resisting cavitation. This review also explores advanced coating technologies, such as thermal spraying and laser cladding, that enhance the surface properties of materials to withstand the erosive forces of cavitation. This work further highlights the common features of cavitation-resistant materials, including their minimal defects, low stacking fault energy, combination of hard and tough phases, and ability to undergo stress-induced phase transformations. Advancements in materials technology, particularly in the development of cavitation-resistant alloys and coatings, are highlighted. This review analyzes different material categories, their inherent advantages, and their limitations in combating cavitation erosion. Moreover, this review discusses innovations in metallurgical composition and surface engineering techniques that have shown promising results in enhancing the durability and efficiency of maritime components. This review emphasizes the ongoing need for research on cost-effective and universally applicable solutions with which to design cavitation erosion-resistant materials. Future research should prioritize reducing the costs of these materials, exploring the relationships between their mechanical properties and cavitation erosion mechanisms, and designing microstructures that inherently resist the effects of cavitation. The vast potential of the ocean as a source of global resources underscores the importance of advancing our understanding of technology with which to protect and sustainably utilize these resources. The development of materials that can withstand the harsh conditions of cavitation is crucial for the continued growth and sustainability of the ocean economy.

    关键词

    空化空蚀失效模式耐空蚀材料

  • 0 前言

  • 空化(Cavitation)现象是指当流体的局部压力降至其饱和蒸汽压以下时,在流体内部或液固交界面上产生充满蒸汽的空泡(Cavity),随后因空泡所处流场环境改变而生长和坍塌溃灭的过程[1-2]。这一现象在多个学科领域都备受关注,包括水利水电工程、管道输送、船舶工程、车辆工程和航空航天工程等。自 1890 年左右以来,科学家和工程师一直在努力应对空泡现象带来的问题,例如噪声、振动、机械效率下降和材料表面损伤等[3-4]

  • 对空化现象的研究可以追溯到 1754 年,当时瑞士数学家 LEONHARD EULER 首次考虑到空泡的存在,并提出一种水力机械理论来预测空泡的形成[1]。1847 年,英国籍爱尔兰数学家 STOKES 提出了一个关于空穴坍塌时的瞬时压力和消失的持续时间的问题[5],之后在 1859 年英国数学家 BESANT 解答了该问题[6]。1894 年,爱尔兰流体动力学家 REYNOLDS 研究了沸腾液体中和管道狭缝中空泡的寿命[7-8]

  • 随后在 1895 年,由英国工程师 FROUDE 首次创造的“空化(Cavitation)”一词出现在了英国造船商 THORNYCROFT 和英国海军工程师 BARNABY 共同撰写的论文中[9-10]。THORNYCROFT 和 BARNABY[9] 首次在历史上观察到螺旋桨叶片背面的空化现象,他们的工作证实了高速运行的螺旋桨由于空化而导致的机械效率显著下降,由此为空化研究提供了真正的动力。自此,英国物理学家 RAYLEIGH 等[11-18]都在空化现象的探索方面取得了重大进展。

  • 随着对空化现象的广泛研究,空蚀(又称汽蚀, Cavitation erosion)作为空化过程中的最为负面的后果之一,也逐渐引起了人们的关注。空泡坍塌溃灭的瞬间会释放出强烈的微射流和冲击波,当微射流和冲击波作用于材料表面时会产生高度局部化的表面应力。而无数空泡的溃灭将使得材料表面反复受到微射流和冲击波的作用,最终导致材料表面的局部疲劳脱落。这种由空泡溃灭引起的表面磨损即为空蚀[2],常发生处于高速流场中的过流部件表面,例如船舶螺旋桨、舵、水轮机叶轮、泵和管道等[19-24]

  • 水电作为低碳电力的重要支柱,在 2020 年占全球约 17%的发电量[25],因此对水轮机的稳定运行和使用寿命延长至关重要。而空蚀经常发生在水轮机叶片上,容易造成水轮机耐久性受损、效率降低,甚至机组停机等问题。在船舶工程中,空蚀也经常发生在螺旋桨和舵的叶片上,造成类似的问题。同时,空蚀造成的粗糙表面增大了运行时的阻力,使得螺旋桨运行过程中会消耗额外的燃油。鉴于海运业消耗的能源占全球运输能源消耗的大部分[26],这种额外的燃油消耗是不可忽视的,且会对环境造成显著的负面影响[27]。由于碳中和的呼吁和对环保要求的不断提高,近年来由空蚀引发的一系列问题引起了人们更加广泛的关注。

  • 因此,研究人员一直在寻找能够有效应对空蚀的方法。例如,优化过流部件的机械设计可以显著减少空泡的发生。然而,仍有许多种类的过流部件 (如螺旋桨叶片的背面和管道折弯处)不可避免地暴露于空化环境中[28]。因此,提高过流部件材料本身的耐空蚀性是非常重要的。例如,马氏体不锈钢[29-32] 和镍铝青铜[33-34]是具有良好耐空蚀性的最具代表性的材料,它们通常用于制造水力发电和海洋工程中的部件。尽管如此,这些部件在复杂环境中运行时仍然需要其他涂层材料的保护。例如,超音速火焰喷涂沉积的 WC 基涂层常用于保护水轮机叶轮叶片的表面以应对空蚀和泥沙冲蚀[35-36],而铁基非晶涂层优秀的耐腐蚀和空蚀性能使其在海洋环境下过流部件的防护方面具有广阔前景[37-39]。因此,开发具有耐空蚀性的功能涂层是对抗空蚀的最具效率与性价比的手段。

  • 本文阐述了空蚀的形成机理及其影响因素,介绍了评估材料耐空蚀性能的一系列方法以及它们所适用的范围,为即将开展耐空蚀材料研发的研究人员提供必要的信息。同时,本文基于材料体系总结了耐空蚀合金以及涂层的研究现状和进展,详述了马氏体不锈钢、镍铝青铜、热喷涂 WC 基涂层、热喷涂铁基非晶 / 纳米晶涂层等典型耐空蚀材料对抗空蚀的机理,评述了包括但不限于上述材料体系的优缺点和适用场景,为相关从业人员提供有价值的参考,并对耐空蚀材料主要的研究方向做出展望。

  • 1 空化现象与空蚀过程简述

  • 1.1 空化现象

  • 由于空化通常发生在流体中,了解空化的过程需要基本的流体动力学知识。式(1)为伯努利不可压缩流体流动方程:

  • p+12ρv2+ρgh= Constant
    (1)
  • 式中,p 为流体的局部压力,ρ 为流体的密度,v 为水流速度,g 为重力加速度,h 为流体所在位置的深度[3]

  • 假设在流体中的某一过流部件表面距离液面的高度不变,则 ρgh 项亦为常数,那么式(1)可简化为式(2):

  • p+12ρv2= Constant
    (2)
  • 当过流部件运行时,比如在水中旋转的螺旋桨,靠近螺旋桨叶片表面的水流速度(v)相对较高(图1)。因此,根据式(2)靠近叶片表面的水流局部压力(p)应该相对较低。然后,根据水的相图(图2),当压力等温降低到饱和蒸汽压力曲线以下时,水将汽化。这个过程与沸腾非常相似,但却是由于压力下降引起的,而沸腾是由温度升高引起的。由于局部压力下降导致蒸汽气泡形成的现象被称为空化,这些气泡被称为空泡[3]。在旋转螺旋桨后的空泡是生活中最常见的空化现象(图3)[40]

  • 图1 流速与流体距离螺旋桨表面距离的典型关系

  • Fig.1 Typical relationship of flow velocity and distance to the blade surface of a propeller

  • 图2 水的相图

  • Fig.2 Phase diagram of water

  • 图3 旋转螺旋桨后的空泡

  • Fig.3 A trail of cavities behind a spinning propeller

  • 图4 展示了空泡的生命周期中几个重要阶段。正如式(2)和图1 中所提到的,靠近叶片表面的流体因高流速导致此处流体的压力(plocal)下降到蒸汽压(pvapour)以下,从而导致空泡的形成(靠近叶片表面)和增长(图4a、4b)。空泡在长大的同时,也在远离叶片表面。如图1 所示,远离叶片表面的流体流速要远低于靠近叶片表面的流速,再根据式(2)(式(1)中 h 的变化非常小),随着流速的减小局部压力增加。因此,空泡在离开螺旋桨表面时,实际是从压力较低的区域移动到了压力较高的区域。当空泡移动到局部压力等于蒸汽压力的区域时,它将停止增长并达到最大尺寸(图4c)。当空泡进一步远离叶片表面时,周围流场的压力超过了蒸汽压力,空泡最薄弱的部位被挤压(图4d)。在空泡溃灭之前,空泡被自由表面诱导的微射流穿透。最后,空泡变成环形并解体(图4e)。与此同时,溃灭时会释放出具有非常高能量的冲击波和微射流[2341]。在真实的情况下,空泡从生长到溃灭的过程更为复杂(图5)[41-42],可以在相关文献中找到更为详细的介绍[243-45]

  • 图4 空泡生命周期

  • Fig.4 Lifetime of a cavitation bubble

  • 另根据生成途径,空化可以分为流体动力学空化(Hydrodynamic cavitation)、声学空化(Acoustic cavitation)、光学空化(Optical cavitation)、粒子空化(Particle cavitation)和蒸汽气泡空化(Steam bubbles cavitation)。在水动力学空化(如旋转螺旋桨中的空化)和声学空化中,空泡的成因是流体速度和压力的波动导致的局部压力下降[246]。不同之处在于,水动力学空化是由过流部件或流体的运动引起的,声学空化则是由于而声波振动诱导的。光学空化和粒子空化的成因是液体受到剧烈的能量输入。在光学空化中,光子的高强度照射使得液体破裂导致气泡形成(如图5 中的气泡是由聚焦激光脉冲诱发的)。在粒子空化中,液体的破裂是由质子、中微子或其他类型的粒子导致[47]。蒸汽气泡空化是由蒸汽直接注入过冷却液体引起的,与水动力学和声学空化的原理类似[48]

  • 图5 厘米级空泡的生命周期

  • Fig.5 Lifetime of a centimetric cavitation bubble

  • 1.2 空蚀

  • 如前所述,当空泡坍塌溃灭时会释放出极高能量密度的微射流和冲击波。微射流的速度一般可以达到 100~500 m / s(流体动力空化[49-50]),有时甚至能够达到 700~1 300 m / s(声学空化[51-52]),而冲击波的速度可高达 4 000 m / s(声学空化[53])。此外,在空泡溃灭的瞬间,其可测得的温度能够达到 5 000 K 以上(以硅油作为介质,通过声学空化测得的温度为 5 075± 156 K)[54]。因此,具有极高动能和热能的微射流和冲击波在撞击材料表面时将会不可避免地对材料表面施加极强的瞬时载荷,其范围可从数百 MPa 到数十 GPa[4955-56]。而无数空泡的溃灭能够对材料表面反复施加载荷,导致局部表面疲劳并造成材料表面发生磨损与剥落,这种由于固体表面附近空泡发生溃灭时所造成的损伤被称为空蚀(Cavitation erosion)[2]。尽管多年来关于空蚀的机理尚未有明确的结论(微射流、冲击波还是两者共同作用)[2],但毫无疑问,空蚀造成的材料表面损伤是不可忽视的,如图6 所示,各类过流部件都会受到空蚀影响[257-59]

  • 在海洋和水力工程中,根据运行条件和流体特性,流体动力空化可以又分为五大类型(图7)[60]。另外,这些类型的空化可以根据螺旋桨或叶轮暴露于空化的部位进一步细分(图8)[61]。这里简要介绍通常不可避免并且可能造成严重侵蚀的片状空化(Sheet cavitation)和云状空化(Cloud cavitation)。片状空化 (图7a)是一簇基本上固定在过流部件相对位置的空泡,因此片状空化也被称为附着或固定型空化[2]。对于螺旋桨,片状空化通常发生在叶片背面(图8),这是由于叶片前缘附近存在显著的吸力压力。

  • 图6 多种部件表面的空蚀损伤

  • Fig.6 Cavitation erosion on various components

  • 图7 流体动力空化的主要类型

  • Fig.7 Major types of hydrodynamic cavitation

  • 图8 螺旋桨叶片不同位置上的空化类型

  • Fig.8 Various types of cavitation occurring on a propeller

  • 如果片状空化保持稳定,空化对材料表面的影响是较小的。然而,片状空化总是会被其末端的重入湍流周期性干扰,导致涡流脱落并引发云状空化[2-3]。云状空化因为重入流的分隔,可以在距离叶片边缘一定距离的地方发生。由于云状空化涉及到大量的空泡溃灭,因此极易导致严重的空蚀。如图6 所示,螺旋桨叶片背面通常会发生大量的侵蚀。同时,靠近边缘的侵蚀比边缘处的侵蚀更为显著(图6b~6d),有时侵蚀可能只发生在叶片的内部区域(图6a),这与云状空化发生的区域相符。而图8 所示的其他类型的空化通常不会造成严重的空蚀[2-361-62]。关于片状空化和云状空化导致空蚀的更深入分析可以参考 BARK 等[63]和 PELZ 等[64]的研究。

  • 另外,空蚀还可以与其他类型的材料损伤产生协同效应。例如,空蚀和泥沙冲蚀的结合效应可以显著损害材料,因为空蚀磨损可以破坏材料结构的完整性并加速泥沙侵蚀,反之亦然[192265-66]。另一方面,由于空化可以加强化学过程,因此在海洋等腐蚀性环境中工作的过流部件的腐蚀行为可能会因空化而加速,从而进一步加剧材料损伤[67-70]。因此,空蚀-腐蚀的协同效应也受到了广泛关注[71-75]

  • 2 材料耐空蚀性的测试方法

  • 2.1 使用振动装置进行空蚀的标准测试方法 (ASTM G32)

  • ASTM G32[76]、G73[77]和 G134[78]标准是适用于评估材料耐空蚀性的三种标准测试标准。其中最广泛应用的是 ASTM G32 标准,因为基于该标准的测试装置结构简单且成本低廉。测试装置可视为一种简化版的超声波均质仪(图9),可以产生声学空化[76]。在这种方法中,空泡群通过超声波工具头的高频振动在样品表面生成,随后它们在样品表面坍塌溃灭,对样品表面造成空蚀。

  • 图9 超声振动空蚀测试装置

  • Fig.9 Ultrasonic vibratory cavitation erosion apparatus

  • 需要注意的是,测试介质的温度控制非常重要。如图2 所示,形成空泡所需的最低压力与液体温度高度相关。因此,不稳定的温控将会导致测试结果存在巨大的差异[7679-80]。例如,对于在蒸馏水中测试的样品,温度每上升 1℃(从标准的测试温度 25℃上升到约 50℃的区间内)可能会使空蚀速率增加 1%~2%[767981]。值得一提的是,当测试介质的温度大约在冰点和沸点之间时,空蚀速率往往是最大的。因此,若要以蒸馏水作为介质,测试特别耐空蚀的材料时,将测试温度设定在 40~50℃将会更有效率[767982]。然而,在测试设备中引入加热装置可能会给测试系统带来更多的复杂性。因此,更常规的选择是延长测试时间或使用尺寸较大的样品(但样品直径通常不超过 20 mm[76])。根据样品的位置,使用振动装置进行空蚀的测试方法又可以分为直接空化法和间接空化法(图10)。 ASTM G32 中的标准测试方法为直接空化法,测试时样品通过螺纹紧固在超声波工具头上,因此在直接空化法中,空化实际上是由样品的振动引发的。而间接空化法则是对 ASTM G32 测试方法进行的改良。在这种方法中,样品被放置或固定在支架上,并浸没在测试介质中。同时,为了确保由超声工具头振动引发的空化能够有效作用于样品表面,工具头的底面与样品表面之间的距离需要足够接近。

  • 图10 直接空化法和间接空化法

  • Fig.10 Direct and indirect methods for cavitation erosion tests

  • 根据文献[7683-84],直接空化和间接空化这两种方法都有其优势和局限(表1)。直接空化法测试过程中的材料所受空蚀的速率要远高于间接空化[83-84],这不仅缩短了测试时间,还非常适合评估具有极高耐空蚀性的材料。而使用间接空化法则需要更长的测试时间来评估材料的耐空蚀性,有时需要数百小时来评估具有极高耐空蚀性的材料。此外,如果使用间接法,工具头底部也会受到空蚀损伤,因此在几十小时的测试后需要对工具头底部进行修复(打磨或车削)。而由于修复过程中工具头长度的缩短,其共振频率最终会脱离测试标准的频率范围,因而在评估具有极高耐空蚀性的材料时需要经常更换工具头。而若采用直接空化法,因超声工具头不会暴露于空化中,工具头无需经常维护,除非其螺纹口发生疲劳失效。

  • 表1 直接空化法和间接空化法的比较

  • Table1 Comparison of the direct and the indirect cavitation approaches

  • 尽管直接空化法具有测试高效和维护简便等优点,但其存在两个主要缺点,使其在实践中较少用于对多种材料进行筛选测试。首先,由于样品被固定在超声工具头底部,样品和工具头被视为一个振动单元。这意味着如果将尺寸或密度不同的样品固定在工具头上,其共振频率可能会变化,导致共振频率脱离测试标准的频率范围。由于大多数商业振动设备都设计在特定共振频率(20 kHz)下运行,因而评估尺寸或密度差异较大的不同材料需要定制一系列超声工具头。此外,样品与工具头之间的紧固扭矩也会影响频率,从而带来额外的误差。同时,即便使用输出参数可调的设备,要同时将频率和振幅配置在所需范围内也是非常具有挑战性的。因此,使用直接方法评估许多不同的样品反而可能极其不便且成本高昂。

  • 另外,适用于直接空化法的材料较为有限[7683]。脆性材料难以加工成带螺纹的样品,因此无法被固定在工具头上。而具有较高顺应性的高分子材料因顺应性可以缓解振动诱发的空化烈度,因此,即使测试参数相同,作用于高顺应性材料的空化烈度将显著低于其他低顺应性材料,故直接法无法揭示高顺应性材料的真实的耐空蚀性。此外,对于涂层尤其是热喷涂无机涂层,很难判断涂层表面的损伤是由振动引起的脱落还是空泡溃灭时的冲击。

  • 鉴于直接空化法的局限性,许多关于评估材料耐空蚀性的研究都采用了间接空化法。因无需在样品上加工螺纹,故脆性材料的耐空蚀性可以通过该方法评估。同时,该方法的空化不是由样品的振动诱发的,因此具有高顺应性的材料和热喷涂涂层也适用。此外,因为材料的性质不影响超声工具头的频率,所以可以使用相同规格的工具头测试不同的材料。

  • 而间接空化法在测试过程中,工具头底面与样品表面之间的距离是一个关键因素,但目前研究人员对于最优测试距离尚未形成统一意见[76]。由于不同的研究采用了不同的距离(通常为 0.5~2 mm,其中以 0.5 mm 最为常见),这使得比较来自不同文献的研究结果较为困难。值得一提的是,最近一项关于不同测试距离对空化过程影响的研究表明,当测试距离小于 1 mm 时,空泡呈现出扁平的柱状形态,导致其塌缩较慢,侵蚀作用减弱,无法有效模拟真实工况[85]。而当测试距离大于等于 1 mm 时,气泡趋于球形,塌缩速度加快,侵蚀作用增强。该研究质疑了 0.5 mm 这一常见选择,建议在实际应用中增加测试距离至少到 1 mm 以获得更符合真实工况的测试结果。另一方面,不准确的测试距离会导致每次测试的空化强度不一致,造成较大的随机误差。而扩大测试距离可以缩小误差,但由于空化强度降低,测试时间需要延长。

  • 2.2 使用液体冲击侵蚀试验的测试方法(ASTM G73)

  • ASTM G73 是使用旋转设备的液体射流冲击侵蚀的测试方法[77]。如图11 所示,样品固定在转盘的外围,通过旋转穿过液体射流[77]。在测试过程中,样品受到液体射流的直接和周期性的冲击。由于材料抵抗液体射流的冲击侵蚀的能力与其耐空蚀性密切相关,ASTM G73 可以被视为 ASTM G32 的一个替代方法。因为在旋转盘的外围有足够的空间, ASTM G73 的优点是可以同时测试多个样品。这不仅缩短了测试周期,而且减少了由于样品更换和不同测试批次而产生的误差。同时,这种测试方法也适用于脆性材料、高顺应性材料和涂层。然而,由于 ASTM G73 中的设备规格和测试参数没有标准化,对不同测试条件下的结果进行定量比较较为困难。因而参比样品是必要的,但以何种材料为参比样品也尚未在学界达成一致。此外,需要注意的是,该测试方法中最重要的测试参数是液体射流的撞击速度,通常根据设备条件在 60~600 m / s 之间。如果液体射流是腐蚀性的且撞击速度较低,则样品的损伤将以腐蚀为主。而如果液体射流的撞击速度非常高,则样品的失效机理可能会与低速下的有所不同,并且样品的温度可能会显著升高,将会显著影响试验结果[77]

  • 图11 液体冲击侵蚀试验装置

  • Fig.11 Apparatus for liquid impingement erosion tests

  • 2.3 使用空化液体射流侵蚀材料的标准测试方法 (ASTM G134)

  • ASTM G134 是另一种可以替代 ASTM G32 的用于评估液体射流侵蚀固体材料的标准测试方法[78]。如图12 所示,样品与喷嘴同轴固定,并浸没在测试液体中[86]。从长孔喷嘴发出的空化射流冲击样品表面,使得空泡在样品表面坍塌溃灭,从而导致样品表面发生空蚀[78]。标准中规定了包括喷嘴的尺寸、上游和下游压力、射流的温度等测试参数。有研究指出,该标准测试方法可以实现良好的重复性和再现性[85]。需要注意的是,这种方法不适用于弹性材料,因为射流压力导致样品表面的形变可能会改变样品表面液体的流动状态。而且这种方法也不适用于脆性的材料,因为材料可能会因射流的停滞压力而非空化,导致损伤。此外,如果试验腔内填充的是空气而非液体,该设置也可替代 ASTM G73 进行液体冲击侵蚀测试[87]

  • 图12 空化液体射流试验所用腔室

  • Fig.12 Chamber assembly for cavitating liquid jet test

  • 2.4 使用文丘里管进行空蚀测试

  • 除了上述三种有标准可循的测试方法外,还有其他可用的方法,如文丘里管测试法。文丘里管是先收缩而后逐渐扩大的管道(图13)。流经管道的流体压力会先降低,直到达到喉部。在此过程中,流体的压力可能低于其饱和蒸汽压,形成空化[88]。在文丘里管空蚀测试中,样品和压力传感器安装在喉部下游的轴向平面上,该平面位于空化云消失位置的附近。空化云消失的位置可以通过调节管道上游(通过隔膜泵)和下游(通过阀门)的压力来实现[89]。由于这需要直接观察管道内流体的状态,用于进行该试验的文丘里管通常是由透明的聚甲基丙烯酸甲酯制成。在 20 世纪,许多关于材料空蚀的研究采用了文丘里管测试法[89-93]。然而,除非是为了研究特定条件下材料的空蚀行为,由于非常空蚀速率非常低[90-91],现在很少使用文丘里管测试法。

  • 图13 基于文丘里管的空蚀测试

  • Fig.13 Venturi test apparatus for cavitation erosion test

  • 2.5 使用高速水洞进行空蚀测试

  • 对于一些具有极高硬度和极高耐空蚀性的材料来说,为了在可接受的周期内测试它们的空蚀行为,测试装置必须要能够诱发烈度足够强的空化。由于材料受到的侵蚀速率与环境中流体的速度具有强相关性,一种合适的方法是在高速水洞中进行材料的空蚀测试[94-95]。图14 展示的是一个专为空蚀测试设计的典型的高速水洞,运行时其流体的最大速度可达 90 m / s [96]。该方法的优点是极高强度的空化令测试周期大大缩短。然而,由于设备的复杂性和高成本,该方法并未被广泛应用。

  • 图14 用于测试材料空蚀行为的高速水洞

  • Fig.14 High-speed water tunnel for material cavitation erosion test

  • 2.6 材料耐空蚀性能测试方法的选择

  • 详细介绍了一系列用于测试材料耐空蚀性能的方法,包括超声振动法(ASTM G32)、液体射流冲击旋转样品法(ASTM G73)、空化液体射流法 (ASTM G134)、文丘里管法以及高速水洞法。每种测试方法都有其独特的优势和适用场景,选择合适的测试方法需要根据具体的研究目的和条件进行。 ASTM G32、G73 和 G134 等实验室规模的测试方法非常适用于材料的筛选和初步性能的评估。相较于 ASTM G73 和 G134,本章详细介绍的 ASTM G32 因其设备简单、成本低廉、易于操作、测试快速、适用材料广泛等优势,而被普遍使用。另一方面,高速水洞试验则更复杂且成本更高,但能够对材料性能进行深入理解。在实际应用中,综合利用不同的测试方法可以更全面地评估材料的耐空蚀性能。

  • 3 评估材料的耐空蚀性

  • 在材料经过了一段时间的空蚀测试后,可以通过称重来确定由空蚀引起的质量损失。然而,以质量损失来比较不同材料的耐空蚀性是非常不恰当的。例如,基于质量损失来比较高分子材料和金属材料的耐空蚀性显然是错误的。因此,符合标准的做法是将质量损失转换为平均侵蚀深度(Mean depth of erosion,MDE),以比较不同材料的耐空蚀性[76],如式(3)所示,其中 VlossAmlossρsample 分别是样品的体积损失、样品的质量损失、样品表面暴露于空化的面积和样品的密度。同时,基于 MDE 的空蚀速率(Erosion rate in terms of MDE,MDER),也可以通过 MDE 的变化量除以相应的测试时间(t)得到(式(4))。

  • MDE=Vloss A=mloss ρsample A
    (3)
  • MDER=ΔMDEΔt
    (4)
  • 在对样品进行空蚀测试前,应对其表面进行磨抛处理。每经过一段时间的测试后,应对样品进行称重并计算其 MDE,以获得其累积空蚀损伤和空蚀损伤速率相对于空化暴露时间的两条曲线(图15)[76]。这两条曲线为评估材料的耐空蚀性能提供了最重要的定量结果。如图15a 所示,空蚀测试的最初结果是累积空蚀-空化时间曲线。由于在比较不同密度材料时质量损失没有意义,因此纵坐标应该使用 MDE 代表空蚀造成的损伤。虽然累积空蚀-空化时间曲线(图15a)可以用来直接比较不同材料在空化作用下造成的损伤,但是比较不同材料的耐空蚀性的更具有工程意义的方法是比较不同材料达到相同 MDE 所需的空化时间。例如达到 1 或 10 μm 的 MDE 所需要的空化时间。另一种常用的方法是比较相同空化时间后的 MDE。例如,对于 ASTM G32 方法,通常 10 到 20 h 的空化时间就足以评估绝大多数材料的耐空蚀性能[76]

  • 图15 材料的累积空蚀损伤和空蚀损伤速率相对于空化暴露时间的曲线

  • Fig.15 Plots of the cumulative erosion-time curve and the erosion rate-time curve

  • 然而,累积空蚀-空化时间曲线提供的信息较为有限,若要进一步分析材料的空蚀行为,还需要分析空蚀速率-空化时间曲线。根据图15b 所示的累积空蚀-空化时间曲线,一般材料的空蚀进程可以被划分为不同的阶段。

  • 空蚀的初始阶段被称为孵化期(Incubation stage)。在这个阶段,材料表面暴露于空化时会积累压缩残余应力[76]。同时,材料表面可能会发生位错、局部材料的位移、塑性变形(即空蚀位点)以及微裂纹的产生。由于空化的反复冲击事实上对材料表面产生了加工硬化的效果,材料表面的硬度会暂时提高[97-99]。有些材料在此阶段还可能发生应力诱导的相变[100]。因此,可以利用残余应力的积累(即空化喷丸效应)来提高材料的疲劳强度[101-104]。此外,如果原始表面抛光良好,可以通过轮廓测量[105-108]、干涉测量[109-110]或扫描电子显微镜(SEM)[5597110-111]观察空蚀位点,这有助于研究空蚀位点的形成过程[109-112]和空化冲击的载荷大小[55108112]。由于在这个阶段几乎不会发生材料的剥落,材料的质量损失损失几乎可以忽略不计。因此,孵化期与随后的加速期(Acceleration stage)之间的分界线并不明显,导致估计孵化期的长度比较困难。一种方法是在空蚀速率达到某个阈值时记录总的暴露时间,但目前没有标准就该阈值作出规定。另一种方法是在累积空蚀-空化时间图中取最大速率切线与水平轴的交点作为“名义孵化时间 (Nominal incubation time)”(图15a),但此时可能已经有一些材料损失。因此,目前暂时没有标准化的方法来定义孵化期的时间长度[76]。尽管估计孵化期的长度对于研究材料的空蚀早期阶段可能很重要,但是从工程应用的角度来看,它并不是筛选抗空蚀材料的最关键标准,而材料的长期耐空蚀表现才更为重要。

  • 当表面部分的材料达到其塑性形变的极限时,进一步暴露于空化冲击将不再能够产生加工硬化效果,反而会导致表面发生断裂和侵蚀。自此,材料的空蚀速率逐渐增加,而这一阶段被称为加速期。空蚀速率的增加可能是由于空化冲击作用下表面硬化了的材料被移除,下面未经处理的材料直接暴露于空化。同时,粗糙表面的流场条件与光滑表面不同,因此空化冲击可能无法对粗糙表面造成类似的加工硬化效果。最终,空蚀速率将达到最大值。随后,根据材料的性质,空蚀速率可能会在达到最大值后立刻变小,或是在最大值附近保持一段时间 (Maximum rate stage)[76]

  • 在材料的空蚀速率达到最大时,材料将进入减速期(Deceleration stage)。在这个阶段,由于空化冲击作用于新暴露的表面,空化冲击作用与材料表面的性质将重新平衡[113]。例如,空泡的动力学会受到表面粗糙度的影响,而之前因空化冲击形成的空蚀位点和空蚀坑里的气体和液体又会对空泡溃灭时的微射流和冲击波产生阻尼作用[113]。一旦空化冲击作用与材料表面的性质重新达到平衡,即材料的表面性质不会因后续的空化冲击而变化导致材料表面附近的流场改变时,空蚀速率变得稳定,材料步入空蚀的终末期(Terminal stage)。在评估材料的空蚀速率时,应使用空蚀速率稳定时的阶段,如材料在终末期的空蚀速率(图15b)。然而,对于一些材料来说,达到终末期可能需要极长的时间。因此,使用材料的最大空蚀速率更为合适。需要注意的是,图15 所示的各个阶段的划分高度依赖于材料属性。例如,一些材料可能不存在减速期,并且会在以最大空蚀速率保持相当长时间的稳定。而对于另一些材料(如弹性体涂层[113]),空蚀速率可能永远不会稳定。因此,在评估不同的材料时需要特别注意应采用哪个阶段的空蚀速率。此外,同一材料采用不同测试方法得到的曲线在形状上可能差异较大。例如,一些材料通过空化射流测试得到的终末期空蚀速率与空化时间呈非线性关系而非使用振动空化装置测试得到的稳定的空蚀速率。

  • 4 耐空蚀合金块材

  • 在 20 世纪初,螺旋桨、舵、叶轮和管道等过流部件通常由铜合金或铸铁制成。然后在 20 世纪 50 年代,不锈钢逐渐取代它们在非腐蚀环境中的应用。马氏体不锈钢 13Cr4Ni 是典型的耐空蚀不锈钢,它被广泛用于从管道和阀门部件到高速泵叶轮等各种水力部件。在海洋等腐蚀环境中,更常用的耐空蚀合金一般是铜合金,比如铝青铜和镍铝青铜。同时,对于合金块材,由于耐空蚀性与材料的力学性能相关,如硬度、弹性模量、极限抗拉强度、极限弹性和疲劳强度等[114-117],其他具有良好力学性能的合金在抵抗空蚀方面也有一定的潜力。总结了一些不锈钢和镍铝青铜材料的耐空蚀性能和空蚀失效机制,还简要介绍了其他一些具有耐空蚀能力的合金。

  • 4.1 不锈钢

  • 马氏体不锈钢具有体心立方(Body-centered cubic,BCC)晶体结构(马氏体),并且可以通过各种热处理方式进行硬化和回火[118]。马氏体不锈钢广泛用于水轮机部件的制造,其中最典型的是 13Cr4Ni,也被称为CA6NM水轮机钢(图16) [119-120]。 13Cr4Ni 拥有卓越的焊接性、断裂韧性、耐腐蚀性和耐空蚀性[29-30]。因此,13Cr4Ni 被广泛应用于暴露于高速流体中的水轮机部件,如导叶、转子和迷宫环[30-31]。同时,13Cr4Ni 在大尺寸下也具有良好的可加工性[29],其力学性能可以通过简单的热处理轻松提高[121-122],进一步拓宽了其应用场景。

  • 而其他类型的马氏体不锈钢,如 13Cr0.5Ni、 13Cr1Ni、13Cr5Ni、16Cr5Ni 和 18Cr8Ni,也常用于水力工程[29-32]。一些研究者认为,马氏体不锈钢良好的耐空蚀能力在一定程度上可归因于其较低的层错能[31123]。对于具有高层错能的材料,在暴露于空化冲击时容易形成交叉滑移,因此会产生高度局部化的塑性流,导致微裂纹的形成和扩展[122],而低层错能材料可以通过阻止部分位错的重组来抑制交叉滑移的形成[121]。针对其他合金的研究也表明,良好的耐空蚀性能与低层错能相关[124-125]。因此,除了热处理外,进一步提高马氏体不锈钢耐空蚀性的可能的方法是通过增加 Si、Mn 和 Co 元素的含量来降低马氏体不锈钢中奥氏体部分的层错能[126]

  • 图16 13Cr4Ni 马氏体不锈钢的微观形貌和空蚀行为

  • Fig.16 Microstructure and cavitation erosion behaviour of 13Cr4Ni martensitic stainless steel

  • 尽管早期的研究认为,马氏体不锈钢比奥氏体和铁素体不锈钢具有更好耐空蚀性 [123],但 HATTORI 等[127]对大量不锈钢进行筛选测试表明,其他类型的不锈钢,如一些奥氏体不锈钢和双相不锈钢,也可能具有良好的耐空蚀性。奥氏体不锈钢在室温下的主要晶体结构是面心立方(Face-centered cubic,FCC)奥氏体,一般具有较高的 N、Mn、Ni 或其他奥体氏化元素[118]。304 和 316L 奥氏体不锈钢常被用作评估其他材料耐空蚀性的标样,它们的空蚀速率与410 马氏体不锈钢也非常相近[127]。304 不锈钢在暴露于空化环境中时可以发生奥氏体到马氏体的应力诱导相变 (图17e),这使得部分空化冲击能量被相变而非塑性形变所消耗[97123128-130],而 316L 不锈钢则无法发生这种相变[97123131]。此外,硬质马氏体的形成也可以抑制空蚀过程中裂纹的产生和扩展[132-133]。因此,304 不锈钢的耐空蚀性能要优于 316L 不锈钢。然而,一些研究表明,腐蚀电位和钝化膜的稳定性与马氏体含量呈负相关[134-135],这意味着当 304 奥氏体不锈钢在腐蚀介质中暴露于空化环境时,其耐腐蚀性和耐空蚀性可能会受到影响。值得一提的是,CAO 等[136] 使用激光表面重熔调节了 304 不锈钢中表面的相构成,使其耐空蚀和耐腐蚀性能得到进一步提高。

  • 图17 空蚀后 304 和 316L 不锈钢的 SEM 图像和 XRD 结果

  • Fig.17 SEM images and XRD patterns of 304 and 316L austenitic stainless steels after cavitation erosion

  • 双相不锈钢一般指由 FCC 奥氏体和 BCC 铁素体以大致相等的比例组成的不锈钢(图18a)[118137]。通常,除了 Fe 元素外,其他成分主要包括 18wt.%~28wt.%的 Cr、1wt.%~9wt.%的 Ni、最多 5wt.%的 Mo、0.05wt.%~0.50wt.%的 N 以及最多 0.05wt.%的 C,有些还可能含有 Si、P、S、Mn、Co、Cu 和 W 元素[118138]。由于双相不锈钢具有低 Ni 元素含量但良好的力学性能、比强度和耐腐蚀性,研究人员一直在尝试使用双相不锈钢作为过流部件中的马氏体不锈钢和奥氏体不锈钢的廉价替代。根据文献,CrMnN 双相不锈钢和其他特种双相不锈钢在抗空蚀方面具有很大潜力。得益于 CrMnN 优秀的加工硬化性能,CrMnN 的耐空蚀性要优于 13Cr5Ni[139-140]。而且 CrMnN 中 Ni 元素含量极低,其成本较低。而特种双相不锈钢,如 ASTM S32750 和 S32760 不锈钢,则拥有卓越的耐点蚀和耐应力腐蚀性能[81141],它们的耐空蚀性与 304 和 410 不锈钢相似[127142-143]。同时,特种双相不锈钢还具有对空蚀-腐蚀协同损伤的极佳抗性[81],因此它们可能非常适合在对抗腐蚀环境下的空蚀。当双相不锈钢暴露于空化环境中时,材料损伤主要发生在奥氏体与铁素体的相界处(图18c~18e),其失效的主要原因是硬质铁素体的脆性断裂(图18f)[137139-140142-144]。因此,通常认为双相不锈钢的耐空蚀性与铁素体的含量呈负相关。另一方面,又因为一定的铁素体含量有利于防止焊接时产生热裂纹,所以双相不锈钢在焊接过流部件的应用上非常有前景,但是需要额外的热处理来降低铁素体含量[145-146]

  • 图18 双相不锈钢的微观形貌和空蚀行为

  • Fig.18 Microstructure and cavitation erosion behaviour of duplex stainless steel

  • 4.2 镍铝青铜

  • 铜及其合金具有良好的耐腐蚀性、加工性、热电导率和抗菌效果,其中铝青铜拥有兼顾优秀的力学性能和耐腐蚀性的特点,自 20 世纪早期已经在海洋和船舶工程中得到应用[33-34]。随后,第二次世界大战加速了铝青铜的发展,镍铝青铜作为一种更为先进的铝青铜分支,其多种性能超过许多不锈钢、黄铜和青铜,逐渐取代了铝青铜的部分市场,并已成为相关领域中最广泛使用的铜合金之一[147]

  • 镍铝青铜一般由 Cu、6wt.%~13wt.%的 Al、最多 7wt.%的 Fe 和 Ni 以及一些微量合金元素如 Si 和 Mn 组成[148]。这些合金元素对镍铝青铜的性能有不同的影响[149]。Al 元素以牺牲材料的延展性为代价来提高强度和硬度。Ni 元素能够增强材料的耐腐蚀性和机械强度,显著提高材料在高速流体中的耐空蚀性能。Fe 元素的含量通常低于 Ni 元素,主要作用是提供细化的微观结构和良好的韧性。

  • 如图19 所示,镍铝青铜的相组成包括富铜的 FCC α 相、富铜的 BCC 马氏体 β 相,以及各种形态的金属间化合物 κ 相[150-155]。β 相在高温下出现,具有相对较高的硬度。类似于淬火硬化钢,镍铝青铜可以通过快速冷却发生马氏体相变,从而获得较高的强度和硬度,但其延展性较低。因此,热处理可以用来将 β 相转变为 α / κ 共晶相以提高延展性。有时在热处理后仍然有一些 β 相残留,这是因为冷却速率不够慢,而这些 β 相也被称为残留 β′相。同时,在热处理期间可以形成次级 κ 相析出物,通过析出硬化增强镍铝青铜的强度。此外,κ 相还可以根据形态、位置和分布进一步分类。κI相呈玫瑰花形,主要由 Fe 或 Fe3Al 组成。κII 相也是花瓣形或球状的 NiAl-FeAl 沉淀物,主要位于 α / β 相界和晶界。κIII相是片层状的,其组成从 NiAl 过渡到 FeAl。κIV相是 α 晶粒内形成的细针状析出物,主要成分为 Fe3Al。此外,这些 κ 相还展示出不同的晶体结构[67151153]。κIII相具有基于 BCC 的 B2结构,而其他 κ 相呈现 DO3结构。镍铝青铜中这些具有不同化学和晶体学特性的相的复杂构成,赋予了其优秀的耐蚀性,但会受到选择性相腐蚀[156-160]

  • 图19 镍铝青铜的 SEM 图像和相成分的示意图

  • Fig.19 SEM image and schematic showing the phase composition of nickel-aluminium-bronze

  • 与许多不锈钢和其他铜合金相比,镍铝青铜因具有硬质 β′和 κ 相强化的结构,具有出色的耐空蚀性[161]。在空蚀过程中,空蚀位点和微裂纹通常在靠近 κ 析出物的 α 相中形成,而不是在大片的 α 相中或在 κ 相中(图20a),这些微裂纹通常沿着 α / κ 相界扩展[66-68156-157],并平行于表面(图20b)。这是因为 FCC α 相具有低应变率敏感性和良好的延展性,位错和滑移更容易发生,但 κ 相具有高硬度,使得 α 相中晶体缺陷的移动被 α / κ 相界阻挡,导致 α 相在 α / κ 相界处发生塑性形变和材料断裂(图20c~20f)[162]。其次,FCC α 相的低层错能可以使得其具有良好的加工硬化性能[163-164],因此空蚀的起始位点一般不在大片的 α 相中产生。另一方面,如果在腐蚀性环境中,由于 κ 相往往比 α 相具有更高的电负性,α 相在 α / κ 相界处与 κ 相耦合,发生局部电偶腐蚀[67-68156-157]

  • 当镍铝青铜进一步暴露于空化中时,微裂纹将不断扩展并导致表面材料剥落。材料的损伤一般先发生在 α / κ 相界处的 α 相中,然后因附近 α 相的磨损导致裸露的 κ 相开始从表面脱落[66-68156-157]。同时,较大的 κI-III相的脱落将会留下大的空蚀坑和非常粗糙的表面,这不仅加剧了空蚀,还留下了大片易受腐蚀影响的金属相[165]。另一方面,α 相中含有大量细小而坚硬的 κIV相,这些 κIV相也可以抑制部分裂纹的扩展[162]。同时,由于反复的空化冲击,材料的近表面可以通过形成密集的位错和形变孪晶来大大增强材料的硬度,这也有利于抵抗空蚀[162]。然而,其他研究认为,表层下的这种硬化效应可能会因降低断裂韧性而导致表层下产生裂纹[67157]

  • 图20 镍铝青铜的空蚀行为

  • Fig.20 Cavitation erosion behaviour of nickel-aluminium-bronze

  • 鉴于镍铝青铜中的各个相能够以不同方式影响材料在腐蚀环境和空化环境中的行为,采用一系列能够改变镍铝青铜的微观结构的后处理方法能够提高其耐腐蚀和耐空蚀的能力。根据研究,镍铝青铜铸件通过正火和淬火等热处理可以提高其耐腐蚀性和耐空蚀性[165-166]。淬火和淬火时效处理后的镍铝青铜不含大尺寸的 κ 相,有效减小了选择性相腐蚀的发生。淬火以及淬火时效处理后细化和均匀化的微观结使得腐蚀能够均匀地在表面发生,容易形成状态良好的钝化膜。同时,硬质 β′和 κ 相密集且均匀的分布可以增强镍铝青铜表面对空化冲击的抵抗。此外,均匀分散的富含 Ni 和 Al 的 κ 相也促进了钝化膜的形成。除了热处理外,摩擦搅拌焊接处理也可以优化镍铝青铜的微观结构,从而增强其耐腐蚀和耐空蚀的能力[167-170]

  • 4.3 Stellite 和 Inconel 合金

  • 除了不锈钢和镍铝青铜,Stellite 系列合金和 Inconel 系列合金在抵抗空蚀方面也显示出巨大潜力。Stellite 合金是具有细小碳化物微观结构的钴基合金,最初在 1910 年左右作为切削工具材料开发,并在 1970 年左右发现具有耐磨性[171]。后续研究表明,由于 Stellite 系列合金具有低层错能和能够通过应力诱导相变吸收冲击能量的特性,它们表现出了优秀的耐空蚀性能[172-174]。近期,SZALA 等[175]发现通过氮离子注入可以显著提升 Stellite-6 合金的耐空蚀性,因为氮离子注入将六方密排(Hexagonal close-packed,HCP)相转变为 FCC 相,从而使富钴相通过加工硬化效应和应力诱导相变有效地消耗空化冲击的能量。Inconel 合金是高性能镍基超合金,具有卓越的力学性能、耐腐蚀性和耐高温性,常用于核工业和航空航天工业[176-177]。研究表明,因于具有应力诱导的孪晶效应和较高的硬度,一些Inconel 合金也具有良好的耐空蚀性[178-181]。近期许多研究尝试使用这两种商用合金的粉末和丝材来制备喷涂涂层和焊接覆盖层,这部分内容将在之后介绍。

  • 4.4 Ti-6Al-4V 合金

  • 钛合金具有卓越的钝化能力,使得其在海水中的腐蚀非常缓慢[182-183]。如今,钛合金在腐蚀环境的应用场景中是不可或缺的,其中 Ti-6Al-4V 合金 (即 TC4 合金)在海洋工程中占据极大的用量[184]。 TC4 合金也是常用的制造超声波工具头的材料(用于 ASTM G32 的设备中的工具头一般就是由 TC4 合金制成的)[185-186]。需要注意的是,未经处理的 TC4 合金的耐磨性能不佳,需要通过热处理[187-189] 和氮化处理[190-195]来提高其耐空蚀性。

  • 4.5 NiTi 合金

  • NiTi 合金具有近等原子比的 Ni 和 Ti,因其诸多出众的工程属性而闻名[91-93],尤其是形状记忆效应和超弹性[196-198]。超弹性是指在恒温下进行循环加载时,大的塑性形变(2%~4%或更大应变)能够恢复的现象,主要由应力诱导的相变(加载时) 和相变的恢复(卸载时)驱动[199]。如前所述,具有应力诱导相变能力的合金往往具有良好的耐空蚀性,因此 NiTi 合金也不例外。一项早期关于两种 NiTi 合金的空蚀行为的研究报告称,具有超弹性的 NiTi 合金表现出更好的耐空蚀性[200],因为正向和逆向的应力诱导相变可以有效且持续地吸收空化冲击的能量[201]。此外,进一步的研究指出,适当的热处理可以使 NiTi 合金中的超弹性奥氏体和超塑性马氏体共存,使得其在空化环境中拥有超长的孵化期和显著的耐空蚀性[202]。另外,ZHUANG 等[203]使用 ASTM G134 方法测试 NiTi 合金发现,NiTi 合金能够消耗由空化射流冲击产生的位错来形成新的晶粒,从而减缓空蚀损伤。然而,由于成本高昂,实践中通常更倾向于将 NiTi 涂层沉积到过流部件上,而不是用 NiTi 合金直接制造部件。关于 NiTi 合金涂层将在之后介绍。

  • 4.6 其他合金材料

  • 还有一些其他合金通过不同的特性实现了有效的耐空蚀性,但尚未引起研究人员的广泛关注。Fe 基和 Cu 基的形状记忆合金在受到空化冲击时可以经历类似马氏体不锈钢和 NiTi 合金的应力诱导相变,它们的局部表面弹性也有助于对抗空化冲击[204-208]。TiAl 合金[209-211]和高熵合金[212]具有良好的加工硬化能力,在空化环境中具有较长的孵化期和耐空蚀性。高熵合金的耐空蚀性可以通过摩擦搅拌焊接处理得到进一步提升,并增强了其硬度、屈服应力和抵抗塑性形变的能力[213]。非晶合金具有非常高的硬度,有助于抵抗空蚀,但其加工硬化性能较差[214-216]。除此之外,一些含有硬质相和韧性相的合金通过其特殊的微观结构,拥有出色的耐空蚀性能[217-218]

  • 4.7 与耐空蚀应用相关的合金材料特性

  • 本章综述了一系列耐空蚀合金块材,详细介绍和分析了目前过流部件常用的耐空蚀不锈钢和镍铝青铜材料的一系列特性。不锈钢材料,尤其是马氏体不锈钢(如 13Cr4Ni),因其卓越的耐腐蚀性、耐空蚀性和力学性能而被广泛应用。其耐空蚀能力部分归因于低层错能,有利于抑制微裂纹的形成和扩展。另一方面,奥氏体不锈钢(如 304 不锈钢)因其能够进行应力诱导相变,也显示出良好的耐空蚀性。然而奥氏体不锈钢在某些条件下可能受到腐蚀影响。而镍铝青铜则因其出色的力学性能和耐腐蚀性,特别适用于海洋和船舶工程。由于硬质 β′和 κ 相的强化作用,其耐空蚀性能也要优于许多不锈钢和其他铜合金。本章还介绍了其他具有潜力的耐空蚀合金材料。Stellite 合金通过其细小碳化物结构和低层错能提供耐空蚀性,而 Inconel 合金的应力诱导孪晶和高硬度也有助于其对抗空蚀。钛合金尤其是 NiTi 合金所具备的形状记忆效应、超弹性和应力诱导相变能力使得其在耐空蚀方面表现优异。而其他 Fe 基和 Cu 基形状记忆合金、TiAl 合金、高熵合金和非晶合金等,也通过各自独特的力学性能和微观结构,表现出良好的耐空蚀性能。

  • 5 耐空蚀涂层

  • 在过流部件的真实工况中,空蚀并不是唯一关注的问题。取决于工作环境,过流部件可能会面临泥沙冲蚀、腐蚀、生物无损等其他问题。因此,需要采取其他方法段来解决这些问题,而最有效且经济的方法是在过流部件表面沉积保护性涂层。这些涂层主要可以分为无机涂层和有机涂层两类。在商业化应用中,这两类涂层在保护空化环境中的过流部件皆有应用。然而,绝大多数文献报道的耐空蚀涂层都是无机涂层。本章按照材料体系总结了一系列无机耐空蚀涂层,包括主要的沉积方法和改性手段,另外还简单介绍一些有机耐空蚀涂层。

  • 5.1 相关的涂层技术

  • 通常,大多数无机耐空蚀涂层是通过热喷涂技术制备的[219]。热喷涂技术是一种利用热源将喷涂材料加热到熔融或半熔融状态,然后以一定的速度喷涂到经过预处理的基体表面,最终形成涂层的技术。根据原理,热喷涂技术可以分为火焰喷涂、大气等离子喷涂(Atmospheric plasma spray,APS)、真空等离子喷涂、电弧喷涂、爆轰枪喷涂、超音速(氧气) 火焰喷涂(High-velocity oxygen-fuel,HVOF)、超音速(空气)火焰喷涂(High-velocity air-fuel,HVAF)、冷喷涂等。PAWLOWSKI[220]的专著中详细地介绍了这些热喷涂技术。

  • 激光表面工程技术也可用于制备耐空蚀涂层或提高涂层的耐空蚀性能。其中,激光熔覆技术已经被大量地使用以开发耐空蚀涂层。激光表面重熔、激光硬化以及其他激光表面改性技术在改善涂层的耐空蚀性上也有很大的潜力。KWOK 等[221]的综述全面介绍了对上述通过激光表面工程技术实现耐空蚀涂层的制备与改良方法。此外,通过熔覆来沉积涂层也可利用一些焊接技术实现,如电弧堆焊和钨惰性气体(Tungsten inert gas,TIG)堆焊[222]

  • 5.2 无机商用合金涂层

  • 具有耐空蚀能力的商用合金涂层主要有 CaviTec、Stellite 和 Inconel。CaviTec 是一种铁基奥氏体合金,由于其良好的抗空蚀和耐腐蚀性能,常用于修复水轮机[223-224]。CaviTec 的堆焊层在抵抗空蚀方面优于许多合金和 HVOF 涂层 [225-227]。 LAVIGNE 等[228]研究发现,使用通过高能球磨处理的 CaviTec 喷涂粉末制备出的 HVOF 涂层也具有良好的耐空蚀性,但不如 CaviTec 的堆焊层。这是因为涂层界面之间的结合力弱,且涂层中存在缺陷、氧化物和其他杂质,这使得涂层在空蚀早期就会受到较大的损伤,没有借助相变来消耗空化冲击能量的机会(图21)[226228]

  • 图21 CaviTec 合金的堆焊层和 HVOF 涂层的空蚀行为

  • Fig.21 Weld overlay of CaviTec and the HVOF-sprayed CaviTec coating subjected to cavitation erosion

  • 在 Stellite 系列合金中,用于制备合金涂层的一般是 Stellite 6。HVOF 喷涂制备的 Stellite 6 涂层具有较好的耐冲蚀性能和良好的耐空蚀性能[225]。而 Stellite 6 的堆焊层比其 HVOF 喷涂涂层具有更好的耐空蚀和耐冲蚀性,并且优于 13Cr4Ni 和其他常用于水力部件的不锈钢,因此许多研究者认为 Stellite 6 适合以堆焊的方式修复磨损的过流部件[229-231]。此外,上述研究还发现,含有大型碳化物颗粒的涂层比在枝晶间具有细小碳化物微观结构的涂层具有更有效的耐空蚀性(图22)[229-231],这可能是因为冷却过程中在枝晶间共晶碳化物产生的裂纹导致其易受空化冲击损伤。然而,Co 主相在与碳化物的相界处也易受空蚀,随后进一步暴露于空化而剥离后导致裸露的碳化物脱落[229]。此外,激光熔覆也可以沉积 Stellite 6 涂层,其抗空蚀、耐腐蚀和抗泥沙侵蚀性能与堆焊层相似[232-233]。同时,一些研究还通过优化熔覆过程[234]和混用不同 Stellite 产品[235-236]成功提高了 Stellite 涂层的耐空蚀性。值得一提的是,对液态钠中 Stellite 6 涂层的空蚀性能的研究表明,该涂层在快速反应堆的离心钠泵中具有潜在应用[237]

  • 图22 两种 Stellite 合金的堆焊层的空蚀行为

  • Fig.22 Weld overlays of two Stellite alloys subjected to cavitation erosion

  • 关于 Inconel 涂层,目前已有大量研究表明它们具有优秀的力学性能和对磨损、冲蚀、腐蚀以及冲蚀-腐蚀的有效抗性[238-242]。然而,只有少数研究关注到它们的空蚀行为 [243-245]。 JIANG 等 [243] 和 KAZASIDIS 等[244]尝试通过冷喷涂将 Inconel 涂层沉积在不锈钢基底上,但结果显示冷喷涂的 Inconel 涂层无法有效抵抗空蚀。TAILLON 等[245]探讨了使用激光选区熔覆 Inconel 合金作为运载火箭发动机低温流体管道的低成本替代品的可行性,结果表明其可能具有良好的耐空蚀性。虽然对 Inconel 涂层的耐空蚀性研究较少,但 Inconel 涂层的一系列卓越性能表明,进一步研究 Inconel 涂层的耐空蚀性能或对耐空蚀涂层的开发有所帮助。

  • 5.3 WC 基金属陶瓷涂层

  • 对水轮机叶片来说,除空蚀外,泥沙冲蚀也是一个重要的问题,它可能会导致水轮机效率降低和部件损伤[3035-36]。而 WC 基金属陶瓷的热喷涂涂层可以提供出色的耐空蚀和耐冲蚀性能,因此,它们是最为广泛使用的水轮机叶片防护涂层[35-36246-250],其中最常见的是 HVOF 喷涂的 WC-Co 和 WC-CoCr涂层。在去离子水中,WC-Co 和 WC-CoCr 涂层具有相似的耐空蚀性[251]。然而,在腐蚀环境中运行时 WC-Co 涂层的 Co 相对容易被腐蚀,而 WC-CoCr 涂层则可以形成具有保护性的表面氧化物[251]。在海洋环境的应用中,生物污损是另一个关键问题。尽管很少有研究关注 WC 基金属陶瓷涂层的防污能力,PIOLA 等[252]研究发现,与常用的保护海洋船舶液压执行器活塞杆的 Al2O3-TiO2 涂层相比,WC 基金属陶瓷涂层具有更好的抵抗生物污损能力。

  • HVOF 喷涂的 WC 基金属陶瓷涂层优秀的耐空蚀性可以归因于硬质 WC 相和韧性金属粘结相的结合。在理想情况下,硬相直接抵抗空化冲击,而较韧的金属相通过形成位错、滑移、孪晶以及晶体缺陷的移动来消散冲击能量。然而,涂层中扁平粒子之间的界面和微裂纹、孔隙等缺陷可能会导致空化环境中的各种失效模式。由于扁平粒子之间的界面结合力较弱,空化冲击可能会导致扁平粒子在金属相能形成位错、滑移和孪晶之前就被剥离。这意味着涂层中的金属相反而更易受空化冲击的影响。因此,WC 基金属陶瓷涂层的典型失效模式是金属粘结相先受到损伤,随后微裂纹沿相界扩展导致 WC 颗粒的脆性脱落(图23)[37253-261]。另一方面,由于喷涂涂层相界处的结合强度也比较弱,另一种典型的失效模式是 WC 颗粒的突然脱落,使其下方的金属粘结相直接暴露于空化中,这将导致未受保护的金属粘结相被严重损伤而加速空蚀(图23c)[253256-257]。此外,对涂层表面的孔隙和其他缺陷处的空化冲击可能引发微裂纹的形成,而进一步的空化冲击可能导致裂纹扩展。尽管硬质 WC 颗粒可以阻碍裂纹扩展,但由于扁平粒子之间的界面结合力较弱以及相界处的选相腐蚀(如果在腐蚀介质中),微裂纹可能沿着扁平粒子之间的界面生长并绕过 WC 颗粒,导致表面材料的严重剥离(图23e~23f)[37251253-255]

  • 图23 HVOF 喷涂的 WC-Co-Cr 涂层的空蚀行为

  • Fig.23 HVOF-sprayed WC-Co-Cr coatings subjected to cavitation erosion

  • 目前普遍认为,断裂韧性、孔隙率和显微硬度是与 HVOF 喷涂的 WC 基金属陶瓷涂层的耐空蚀性密切相关。较高的断裂韧性意味着界面之间(扁平粒子之间的界面以及相界)具有良好结合强度,因此具有高断裂韧性的涂层可以有效吸收空化冲击能量,抑制微裂纹的形成和扩展[262-266]。涂层的孔隙率应尽量降低,因为孔隙通常被认为是形成微裂纹的潜在位置,并会在空化环境中优先受到损伤[251255-256264]。至于显微硬度,当比较不同材料体系涂层的耐空蚀性时,它或许不是一个可靠的标准[260]。然而,许多研究仍然将微硬度考虑在内,并发现它与 HVOF 喷涂的 WC 基涂层的耐空蚀性呈正相关,因为它在一定程度上表明了涂层中缺陷的含量[255-257266-267]

  • 因此,提高 HVOF 喷涂 WC 基金属陶瓷涂层的耐空蚀性通常是从上述几个方面出发,许多研究通过各种方法取得了积极的结果。其中,最直接的方法是热处理。例如,DU 等[268]报告称,热处理可以有效降低 HVOF 喷涂的 WC-12Co 涂层的孔隙率并改善界面间的结合力,热处理后的涂层空蚀速率几乎是未处理涂层的一半。表面重熔也是提高热喷涂涂层耐空蚀性的有效后处理方法。如前所述,微裂纹倾向于在扁平粒子之间的界面形成和扩展,而重熔可以减少这些界面并重塑热喷涂涂层的固有层状微观结构。同时,断裂韧性也可以得到显著改善(图24)[260]。因此,表面重熔被认为是增强热喷涂涂层耐空蚀性能的可行方法。

  • 图24 HVOF 喷涂 WC-CoNiCr 原始和经过重熔处理的涂层

  • Fig.24 HVOF-sprayed and post-melted WC-CoNiCr coatings subjected to cavitation erosion

  • 优化喷涂参数可以提高 HVOF 喷涂 WC 基金属陶瓷涂层的质量[261],从而提高其耐空蚀性。KANNO 等[266]发现,如果在喷涂过程中燃烧压力为 0.8 MPa,则 HVOF 喷涂的 WC-CoCr 涂层会展现出致密的微观结构和卓越的耐空蚀性。BECKER 等[269]报告称,氧气和燃料比可以极大地影响 HVOF 喷涂的 WC-20Cr3C2-7Ni 涂层的耐空蚀性能。DING 等[254] 建议,使用煤油可以降低 HVOF 喷涂 WC-10Co-4Cr 涂层的孔隙率和并提高耐空蚀性(图25),LAMANA等[265]在 HVOF 喷涂的 WC-Co 涂层上也发现了类似的结果。WANG 等[267]报告称,HVAF 喷涂过程中, WC-10Co-4Cr涂层不易脱碳,且具有较低的孔隙率、更高的硬度、更高的断裂韧性,因此比 HVOF 喷涂的 WC-10Co-4Cr 涂层具有更好的耐空蚀性。VARIS 等[270]评估了 HVOF 和 HVAF 喷涂的 WC-10Co-4Cr 涂层的压缩残余应力,并指出 HVAF 喷涂涂层较高的压缩残余应力可能有助于更好的耐空蚀性。

  • 图25 使用丙烷和煤油作为燃料的 HVOF 喷涂 WC-CoCr 涂层

  • Fig.25 WC-CoCr coatings deposited by HVOF spraying using propane and kerosene subjected to cavitation erosion

  • 除了喷涂参数外,许多研究表明,原料粉末的性质对 HVOF 喷涂的 WC 基金属陶瓷涂层的耐空蚀性有显著影响。HONG 等[257]使用接近纳米尺寸的 WC-10Co-4Cr 粉末制备了 HVOF 涂层,并表明涂层的非晶相、高硬度和高断裂韧性有助于抵抗腐蚀和空蚀。LIU 等[255]用常规的微米粉末和纳米-微米双模粉末制备了两种 HVOF 喷涂的 WC-10Co-4Cr 涂层,发现双模涂层具有较低的孔隙率、更高的硬度和更好的耐空蚀性。丁彰雄等[271-272]对使用不同大小的 WC-12Co 粉末喷涂的 HVOF 涂层进行了一系列研究,评估了它们的耐空蚀性,并指出含有大尺寸 WC 颗粒的涂层的耐空蚀性能不如那些 WC 颗粒较小的以及尺寸混合的 WC 颗粒的涂层。DING 等[254262-264]近期分别使用纳米粉末、纳米-微米双模粉末和纳米-亚微米-微米多尺寸粉末制备了各种 HVOF 喷涂的 WC-10Co-4Cr 涂层,其中含有多尺寸 WC 颗粒的涂层展现出最低的孔隙率、最高的断裂韧性和最佳的耐空蚀性(图26)。

  • 图26 使用不同粉末粒度的两种 HVOF 喷涂的 WC-CoCr 涂层的空蚀行为

  • Fig.26 Two HVOF-sprayed WC-CoCr coatings with different powder size distributions subjected to cavitation erosion

  • 改变涂层中金属粘结相的比例和化学成分也能够改善 HVOF 喷涂的 WC 基金属陶瓷涂层的耐空蚀性。LAMANA 等[265]研究了 HVOF 喷涂的 WC-12Co 和 WC-17Co 涂层的耐空蚀性,并发现增加 Co 含量可以改善断裂韧性和耐空蚀性。LIMA 等[260]使用 WC-12Co 和 NiCr 的混合粉末制备了 HVOF 喷涂的 WC-Co-NiCr 涂层。结果显示,由于断裂韧性的提高,WC-Co-NiCr 涂层的耐空蚀性要优于 WC-12Co 涂层,而前者在重熔后的耐空蚀性更是大大增强。 LIN 等[259]报告称,HVOF 喷涂的 WC-10Ni 涂层展示出比 WC-10Co-4Cr 涂层更高的弹性模量和更好的耐空蚀性(图27)。而 HONG 等[273]发现,HVOF 喷涂的 WC-20Cr3C2-7Ni 涂层的耐空蚀性又略优于 WC-10Ni 涂层。上述两项[259273]以及 WANG 等[274] 的研究还表明,高硬度(H)与弹性模量(E)比和高 H3 / E2 对暴露于空化环境的材料的塑性和弹性能量吸收有积极影响。此外 WEI 等 [275] 还发现 WC-10Ni 涂层在含硫 NaCl 溶液中具有良好的耐空蚀性能。KOROBOV 等[276]研究了 HVAF 喷涂的 WC-10Co-4Cr 和 WC-20Cr3C2-7Ni 涂层在碱性环境中的空蚀行为,发现 WC-20Cr3C2-7Ni 涂层由于硬度和塑性的提高而具有更好的耐空蚀性。此外,用于改性的材料不仅限于金属或碳化物。例如, THAKUR 等[277]发现,用碳纳米管改性可以有效提高 HVOF 喷涂纳米 WC-10Co-4Cr 涂层的断裂韧性和抗冲蚀性。

  • 图27 HVOF 喷涂的 WC-CoCr 和 WC-Ni 涂层的空蚀行为

  • Fig.27 HVOF-sprayed WC-CoCr and WC-Ni coatings subjected to cavitation erosion

  • 除了喷涂技术,激光加工技术同样适用于制备具有优异耐空蚀性能的 WC 基涂层。TIAN 等[278]以及 YANG 等[279-280]通过对 Ni-WC 涂层进行激光重熔处理,成功在涂层中引入了蜂巢状仿生结构,且涂层的耐空蚀性几十倍于常见的热喷涂 WC 基金属陶瓷涂层和不锈钢(图28)。CHENG 等[281]用 WC-Ni 和 WC-Co 粉末对 316L 不锈钢进行了激光表面合金化处理。结果显示,激光表面合金化处理的 316L 不锈钢的耐空蚀性得到了改善,且以 WC-Co 粉末合金化的样品表现出最佳的耐空蚀性,这可能是由于涂层较低的层错能和含 Co 相的马氏体转变。LO 等[282-283]通过用大颗粒和小颗粒 WC 粉末对 316 不锈钢进行激光表面合金化处理,拓展了之前的研究。由于激光表面合金化样品展现出由枝晶碳化物和共晶间枝晶碳化物 / γ-FeCrNiW 组成的微观结构,因此显著增强了耐空蚀性。然而,用大颗粒 WC 粉末激光合金化的样品中的 WC 颗粒会受到严重的脆性剥离[282]。因此,用小颗粒 WC 粉末激光合金化的样品实现了最佳的耐空蚀性,比原始的 316 不锈钢高出 30 倍[283]。其他研究尝试用 WC 或含 WC 的材料对各种基材进行激光表面合金化处理以提高耐空蚀性[284-287]。除了激光处理,还有其他的技术可以用来制备具有优秀耐空蚀性能的 WC 基涂层,如化学气相沉积[288]和微波熔覆[289]

  • 图28 具有仿生结构的 Ni-WC 涂层展现出卓越的耐空蚀性能

  • Fig.28 Ni-WC coating with biomimetic microstructure exhibits excellent cavitation erosion resistance

  • 5.4 其他含陶瓷涂层

  • 尽管热喷涂的 WC 基金属陶瓷涂层是用于保护水力部件的最广泛使用的涂层,但由于 WC 成本高昂,研究人员正在寻求替代材料[36]。HONG 等[290]发现,将 WC 基金属陶瓷涂层中的 WC 部分替代为 Cr3C2 能够在泥沙环境中具有优异的耐空蚀-冲蚀性能。而许多其他 Cr3C2 基金属陶瓷涂层具有与 WC 基金属陶瓷涂层相似的耐腐蚀、抗泥沙冲蚀和耐空蚀性能[291-296],因此 Cr3C2 基金属陶瓷涂层可能是 WC 基金属陶瓷涂层的潜在低成本替代。与 WC 基涂层相似,Cr3C2 基涂层良好的耐空蚀性可归因于硬质相和韧性相的组合,其失效模式也遵循 WC 基涂层的模式[251291296]

  • 一些研究还分析了氧化钇稳定化氧化锆 (Yttria-stabilized zirconia,YSZ)和 YSZ 基涂层的空蚀行为。块状 YSZ 暴露于空化环境中时可以发生四方-单斜马氏体相变[297]。然而,与 HVOF 喷涂的 WC 基金属陶瓷涂层相比,YSZ 和 YSZ 基涂层的耐空蚀性不佳[298-300],可能的原因是结合强度低[301]

  • Al2O3 基涂层以其极低的成本吸引了研究者的注意,其中 Al2O3-TiO2涂层具有较大潜力,因为它具有良好的力学性能和一定的防污能力[302-305]。尽管许多研究发现 Al2O3-TiO2 涂层和其他 Al2O3 基涂层界面间较差的结合力导致其较低的耐空蚀性[306-310],但一些研究也成功制备出了具有良好耐空蚀性能的 Al2O3 基涂层,如火焰喷涂 Al2O3-40% TiO2 / NiMoAl 涂层[311]、火焰喷涂 Al2O3-50% TiO2 涂层[312]和 HVOF 喷涂的 Al2O3-40% YSZ / ZrO2涂层[313]。此外,ARORA 等[314] 对HVOF喷涂的Ni-Cr-Al2O3涂层进行了静态摩擦加工和摩擦搅拌焊接加工处理,实现了良好的耐空蚀性。然而,由于添加了镍和引入了额外的后处理,成本仍需验证。

  • 使用陶瓷粉末对金属进行激光表面改性也能增强材料的耐空蚀性。CHENG 等[315]评估了使用 SiC、TiC、CrB2和 Cr2O3粉末的激光表面改性 316L 不锈钢的耐空蚀性,发现添加 CrB2 能使 316L 不锈钢的耐空蚀性提高约九倍,而其他除 Cr2O3 之外的瓷粉末结合激光表面改性的 316L 不锈钢的耐空蚀性也得到了增强。近期,TiC 展现了其在耐空蚀性方面的巨大潜力。使用 TiC 粉末对铁基复合涂层和高熵合金进行激光表面改性能够极大地提升它们对抗空蚀的能力[316-317],而使用 TiC 基复合粉末制备的热喷涂涂层也具备优秀的耐空蚀性[318]

  • 化学镀是一种常见技术,可以产生具有密集和均匀微观结构的涂层,从而实现良好的耐空蚀性。例如,化学镀的 Ni / β-SiC 涂层显示出非常好的抗空蚀和耐腐蚀性能[319]。然而,化学镀涂层的低厚度限制了其使用寿命。

  • 5.5 铁基非晶 / 纳米晶涂层

  • 热喷涂铁基非晶 / 纳米晶涂层具有优秀的耐磨性和耐腐蚀性以及相对较低的成本,因此在近年来吸引了研究人员的注意[320-323]。这些研究还探索了各种喷涂技术[320322]和合金元素[320321]对铁基非晶/ 纳米晶涂层的影响。尽管在某些情况下,基于铁基非晶 / 纳米晶涂层的耐空蚀性可能低于 WC 基金属陶瓷涂层[37324],但热喷涂铁基非晶 / 纳米晶涂层在一些使用 WC 基金属陶瓷涂层的应用场景中仍具有很大的潜力。

  • WU 等[325]制备了 HVOF 喷涂的 FeCrSiBMn 涂层,该涂层的耐空蚀性优于 13Cr5Ni 涂层(图29)。 WANG 等[326]通过高速电弧喷涂(High-velocity arc spray,HVAS)制备了 FeCrNiBSiNb、FeCrBSiWNb 和 18Cr9Ni 涂层。结果显示,两种 HVAS 基于铁基非晶 / 纳米晶涂层的耐空蚀性远高于18Cr9Ni涂层。这两项研究[325-326]还表明,空蚀损伤倾向于在孔隙边缘和扁平粒子的界面处开始。KIM 等[327]也发现了类似的结果,指出 HVOF 喷涂的基于铁基非晶 / 纳米晶涂层的耐空蚀性与孔隙率呈负相关。同时,由未熔化或部分熔化颗粒形成的界面易受空蚀影响[325-327]

  • ZHENG 等[328-330]在 3.5wt.% NaCl 溶液中对 HVOF 喷涂的铁基非晶涂层进行了泥水冲蚀-腐蚀测试。结果表明,这些涂层的冲蚀-腐蚀抗性高于 304 不锈钢,这是因为涂层具有较高的硬度和良好的再钝化能力[328329]。此外,在 750℃下进行热处理可增加其硬度,从而提高涂层在 3.5wt.% NaCl 溶液中的冲蚀-腐蚀抗性和在去离子水中的空蚀抗性,但热处理涂层在 3.5wt.% NaCl 溶液中的耐空蚀性却显著降低[330]。HUANG 等[331]也研究了热处理对 HVAF 喷涂的基于铁基非晶涂层侵蚀-腐蚀行为的影响,发现热处理导致的结晶和晶粒生长增加晶界可能会促进氯离子进入涂层,导致涂层的耐腐蚀性下降。至于其他可行的后处理方法,LIU 等[332]分别使用硬脂酸、磷酸铝和铈盐密封 HVOF 喷涂的铁基非晶涂层。结果显示,所有封孔剂都降低了涂层的孔隙率,从而提高了涂层的冲蚀-腐蚀抵抗性,而用磷酸铝密封的涂层展现出了最佳的抗性。

  • 除了使用 HVOF 喷涂,LIN 等[333-336]还研究了使用双丝电弧喷涂(Twin wire arc spray,TWAS)沉积的铁基非晶涂层的耐空蚀性能。与 316L 不锈钢相比,TWAS 基于铁基非晶涂层具有更高的耐空蚀性[333336],其失效模式与 HVOF 和 HVAS 制备的涂层相似[38-39325-327]。同时,这些研究发现氧化物[333-336]和表面粗糙度[335]可能会对涂层的耐腐蚀性和耐空蚀性产生负面影响。此外,LIN 等[334]报告称,退火处理后的 TWAS 铁基非晶涂层的孔隙率有所下降,但氧化物的增加和断裂韧性的降低导致退火处理后 TWAS 铁基非晶涂层的耐空蚀性下降。而 WANG 等[337]则发现,虽然热处理会导致铁基非晶涂层中部分非晶相转变为晶相,但能够降低涂层的孔隙率并提升断裂韧性,使得其耐空蚀性能上升。

  • 图29 HVOF 喷涂的铁基非晶 / 纳米晶涂层的空蚀行为

  • Fig.29 HVOF-sprayed Fe-based amorphous / nanocrystalline coating subjected to cavitation erosion

  • 5.6 NiTi 合金涂层

  • 如前所述,NiTi 合金块材具有出色的耐空蚀性,但成本较高,因此 NiTi 合金涂层更受青睐。研究人员自 1995 年以来就已经发现,爆炸焊接的 NiTi 焊层和激光重熔的等离子喷涂的 NiTi 涂层具有良好的耐空蚀性[338-339]。比如,后者的耐空蚀性是 TC4 合金的数百倍[339]。随后,一系列关于 NiTi 合金和在 316 不锈钢上熔覆 NiTi 涂层的研究报告了它们的耐腐蚀和耐空蚀性能[340-345],提出了一种使用 NiTi 条带作为原料替代 NiTi 粉末的相对低成本加工路线[343]。这些不同的 NiTi 涂层的耐空蚀性从高到低排列为:NiTi 合金块材、用 NiTi 条带激光熔覆的涂层、用 NiTi 粉末激光熔覆的涂层以及用 NiTi 线材 TIG 加工的涂层,它们的耐空蚀性都比 316 不锈钢好[342-343]。NiTi 合金块材和涂层的耐腐蚀性通常遵循相同的顺序,但都不如 316 不锈钢的耐腐蚀性[344]。然而,微波辅助钎焊可能会提高 NiTi 样品的耐腐蚀性,使其与与 316 不锈钢相近[344]。其他研究也以不同方式扩展了具有高效耐空蚀性的 NiTi 涂层的开发,如 TIG 焊接加工[346-348]、等离子喷涂[349-353]、冷喷涂[354]和过滤电弧沉积[355],且大多取得了积极的结果。与块状 NiTi 类似,NiTi 涂层的出色耐空蚀性可以归因于高硬度、高弹性、良好的加工硬化能力和超弹性[339342-343]。尽管一些研究表明 NiTi 容易受到氢脆影响,导致力学性能和耐空蚀性下降[340345],但水动力部件不太可能发生氢脆,且空化作用实际上可以抑制氢脆引起的损伤[356]

  • 5.7 其他无机涂层

  • 不锈钢、铝合金和镍合金的耐空蚀性可以通过添加 NiCrSiB 结合进行激光表面改性来提升[357-362]。比如,由于硼化物和硼碳化物的均匀分散和其细小结构增加了硬度,316 不锈钢的耐空蚀性可以提高约七倍[357-358]。用 AlSiFe 结合进行激光表面改性也可以大大提高 316 不锈钢耐空蚀性,这是由于硬度的增加和层错能的降低 [358]。激光合金化的 FeCoCrAlNi高熵合金涂层的耐空蚀性比304不锈钢高七倍,这是由于硬质相和韧性相之间的特殊排列[363]。WU 等[364]研究了 Ti 结合对激光表面合金化 FeCoCrAlNi 高熵合金涂层的耐空蚀性,发现含 2wt.%钛的 FeCoCrAlNiTi 涂层在去离子水中展现了优秀的耐空蚀性。WEI 等[365-366]报告称,HVOF 喷涂的 AlCoCrFeNi 高熵合金涂层也表现出良好的耐空蚀性,但向其添加 WC-10Co 对 AlCoCrFeNi 涂层的耐空蚀性影响不大,并且可能会显著降低在 3.5wt.% NaCl 介质中的耐空蚀性。侯国梁等[367]使用 HVOF 制备了 Co 基合金涂层,由于在人工海水中腐蚀产物有效地填充了涂层表面的孔隙,大大降低了扁平粒子剥落情况的发生,令该涂层在人工海水中的耐空蚀性能要优于在去离子水中,为涉海无机耐空蚀涂层材料体系的设计提供了思路。

  • 5.8 有机耐空蚀涂层的简要介绍

  • 目前市场上有许多专为抵抗空蚀(以及泥沙冲蚀、腐蚀和生物污损)所开发的高分子涂层,例如 Proptreat®(Franmarine Underwater Services)、Velox Plus®(PYI Inc.)、Metaline®-785(Global Pumps) 和 Belzona®-2141(Belzona Polymerics Ltd.),这些品牌的涂层大多数是聚氨酯基。例如, Belzona®-2141是一种基于双组分PU树脂的丙烯酸流体弹性体,可为卡普兰和弗朗西斯式水轮机提供空蚀防护。

  • 除了商用产品外,其他文献报导的有机涂层也具有良好的耐空蚀性能,比如高密度聚乙烯 (HDPE)和聚酰胺 66(PA66)[368-369]。而向 PA66 中添加聚乙烯(PE)可以进一步增强其耐空蚀性,经过 5 h 空蚀后,PA66-PE 的体积损失是 HDPE 的十分之一[368]。以分子量为 1.05×107 g / mol 的超高分子量聚乙烯(UHMWPE)通过压实烧结法制备的涂层具有卓越的耐空蚀性,优于 S32205 双相不锈钢和镍铝青铜[370]。近期,YANG 等[371]开发了具有微相分离诱导的异质结构的 PU 涂层,涂层兼具防污和耐空蚀性。另一方面,聚合物也可用作封孔剂,通过填充热喷涂涂层的孔隙和其他缺陷来提高其耐空蚀性[372-375]

  • 有机涂层良好耐空蚀性可归因于其吸收和分散微射流和冲击波能量的能力[370376]。然而,相当一部分空化冲击的能量可以转化为热量。因为有机涂层的热导率非常低,无法有效散热,局部的温度骤升会导致有机涂层的结构被破坏[369377]。因此,热稳定性也会影响有机涂层的耐空蚀性[370]。针对有机涂层的这一问题,YANG 等[378]尝试在 UHMWPE 涂层中引入铜框架以改善其导热性能,发现改善了导热性能的涂层的耐空蚀性得到加强。

  • 5.9 耐空蚀涂层的选择

  • 本章按照材料体综述了一系列耐空蚀无机涂层,着重介绍了使用热喷涂技术制备的 WC 基金属陶瓷涂层以及铁基非晶 / 纳米晶涂层。WC 基涂层中的高强度 WC 相和高韧金属相提供了强韧一体化特性,使其具有优秀的耐空蚀性。然而,其较高的成本令研究人员转向了更具性价比的涂层。热喷涂铁基非晶 / 纳米晶涂层则是这些替代涂层中最具潜力的一种,能够以较低的成本同时提供良好的耐空蚀性和耐腐蚀性。而其他商用合金涂层,如 Stellite、 Inconel 和 CaviTec,也都能够在特定应用场景中提供针对空蚀的防护或是修复受空蚀损伤的部件。此外,本章还简述了一系列其他无机以及有机耐空蚀涂层,它们通过各不相同的机械与材料特性提供有效的耐空蚀能力。需要注意的是,耐空蚀涂层的发展应集中在提高涂层的综合性能,包括耐空蚀性、耐腐蚀性、耐冲蚀性等以及成本效益性。未来的研究应着眼于探索新型涂层材料、开发更高效的涂层技术以及进一步优化涂层性能,以适应更广泛的工业应用需求。

  • 6 结论与展望

  • 详细述阐述了过流部件空蚀的形成机理及其影响因素,并介绍了评估材料耐空蚀性能的一系列方法,基于材料体系,总结了耐空蚀合金以及涂层的研究现状和进展,评述了各种材料体系的优缺点,针对耐空蚀材料的一些特点具体总结如下。

  • (1)较少的缺陷:空蚀优先发生在材料的缺陷处,且材料的耐空蚀性与其缺陷的多少呈负相关,因此要实现良好的耐空蚀性则需要最小化材料的缺陷。

  • (2)硬质相与韧性相的结合:硬质相可以直接抵抗空化冲击,而韧性相通过形成位错、滑移、孪晶以及晶体缺陷的移动来消耗空化冲击能量,通过这种结合可实现优秀的耐空蚀性。

  • (3)低层错能:低层错能材料可以阻止部分位错发生重组,减少交叉滑移的形成和疲劳裂纹的产生,同时有利于提高加工硬化性能,从而提升材料的耐空蚀性。

  • (4)应力诱导相变:一些材料在空化冲击下可以通过应力诱导相变消耗部分冲击能量,减少冲击造成的形变,从而缓解空蚀的严重程度。

  • 面向未来,耐空蚀材料研究应聚焦于以下关键方向与挑战:

  • (1)经济高效的涂层材料开发:目前,防护水轮机常用的 HVOF 喷涂 WC 基金属陶瓷涂层成本不断上升。未来研究须寻求如 SiC、SiO2、Al2O3、TiC 等廉价金属陶瓷作为 WC 基涂层的替代品,以实现成本效益的提升和资源的可持续利用。

  • (2)力学性能与耐空蚀性能的深入关系:尽管普遍认为材料的力学性能与耐空蚀性能存在强相关性,具体力学性能如何影响耐空蚀性仍不明确。深入研究这一关系,特别是在材料空蚀失效机制中的作用,将为材料设计提供重要指导。

  • (3)基于微观结构的材料设计:目前,从材料微观结构出发探索和设计普适的耐空蚀的微观结构的研究较少。加大对此方向的研究投入,特别是通过先进的材料表征和模拟技术,将有助于开发新型耐空蚀材料,并提升现有材料的性能。

  • 此外,先进制造技术、高通量材料筛选、微观结构优化技术以及力学性能与耐空蚀性能关系的深入研究,将是实现未来耐空蚀材料突破的关键技术。通过聚焦以上这些研究方向、挑战和技术,将能够为耐空蚀材料的未来发展奠定坚实的基础,并开拓广泛的应用前景。

  • 参考文献

    • [1] CHAHINE G L,FRANC J P,KARIMI A.Cavitation and cavitation erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:3-20.

    • [2] BRENNEN C E.Cavitation and bubble dynamics[M].Cambridge:Cambridge University Press,2013.

    • [3] FRANC J P,MICHEL J M.Fundamentals of Cavitation[M].Dordrecht:Springer,2005.

    • [4] 王雨豪,陈文刚,吴华杰,等.空化作用及气泡行为轨迹观测研究进展[J].中国表面工程,2023,36(1):12-29.WANG Yuhao,CHEN Wengang,WU Huajie,et al.Research progress of cavitation and bubble behavior trajectory observation[J].China Surface Engineering,2023,36(1):12-29.(in Chinese)

    • [5] University of Cambridge.The examinations for the degree of Bachelor of arts,Cambridge,January,1847[M].London:George Bell,1847.

    • [6] BESANT W H.A Treatise on hydrostatics and hydrodynamics[M].London:Bell and Daldy,1859.

    • [7] REYNOLDS O.Experiments showing the boiling of water in an open tube at ordinary temperatures[J].Scientific Papers on Mechanical and Physical Subject,1894,2:1900-1903.

    • [8] REYNOLDS O.Experiments showing the boiling of water in an open tube at ordinary temperatures[M].Cambridge:Cambridge University Press,1901:578-587.

    • [9] THORNYCROFT J I,BARNABY S W.Torpedo-boat destroyers[J].Minutes of Proceedings of the Institution of Civil Engineers,1895,122:51-69.

    • [10] CRAVOTTO G,CINTAS P.Introduction to sonochemistry:a historical and conceptual overview[M]//CHEN D,SHARMA S K,MUDHOO A.Handbook on applications of ultrasound:sonochemistry for sustainability.Boca Raton:CRC Press,2011:23-40.

    • [11] RAYLEIGH L.On the pressure developed in a liquid during the collapse of a spherical cavity[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1917,34(200):94-98.

    • [12] COOK S S.Erosion by water-hammer[C]//Proceedings of the Royal Society of London.Series A,Containing Papers of a Mathematical and Physical Character,May 10-July 2,1928.London:Royal Society,1928,119(783):481-488.

    • [13] HARRISON M.An experimental study of single bubble cavitation noise[J].Journal of the Acoustical Society of America,1952,24(6):776-782.

    • [14] GÜTH W.Zur Entstehung der Stoβwellen bet der Kavitation[J].Acta Acustica united with Acustica,1956,6(6):526-531.

    • [15] KORNFELD M,SUVOROV L.On the destructive action of cavitation[J].Journal of Applied Physics,1944,15(6):495-506.

    • [16] SHIPILOV S E,YAKUBOV V P.History of technical protection.60 years in science:to the jubilee of Prof.V.F.Minin[J].IOP Conference Series:Materials Science and Engineering,2018,363:012033.

    • [17] RATTRAY M.Perturbation effects in cavitation bubble dynamics[D].California:California Institute of Technology,1951.

    • [18] NAUDE C F,ELLIS A T.On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary[J].Journal of Basic Engineering,1961,83(4):648-656.

    • [19] GOHIL P P,SAINI R P.Coalesced effect of cavitation and silt erosion in hydro turbines-A review[J].Renewable and Sustainable Energy Reviews,2014,33:280-289.

    • [20] LIU X,LUO Y Y,WANG Z W.A review on fatigue damage mechanism in hydro turbines[J].Renewable and Sustainable Energy Reviews,2016,54:1-14.

    • [21] SREEDHAR B K,ALBERT S K,PANDIT A B.Cavitation damage:theory and measurements-A review[J].Wear,2017,372:177-196.

    • [22] NOON A A,KIM M H.Sediment and cavitation erosion in Francis turbines-review of latest experimental and numerical techniques[J].Energies,2021,14(6):1516.

    • [23] BENSOW R E.Numerical prediction of cavitation and related nuisances in marine propulsion systems[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and applications.New York:Academic Press,2021:111-132.

    • [24] BRIJKISHORE,KHARE R,PRASAD V.Prediction of cavitation and its mitigation techniques in hydraulic turbines-A review[J].Ocean Engineering,2021,221:108512.

    • [25] International Energy Agency.Hydropower special market report[R].Paris:International Energy Agency,2021.

    • [26] U.S.Energy Information Administration.International energy outlook 2016[R].Washington:U.S.Energy Information Administration,2016.

    • [27] International Maritime Organization.Third IMO GHG study 2014[R].London:International Maritime Organization,2015.

    • [28] HUANG S,SAMANDI M,BRANDT A.Abrasive wear performance and microstructure of laser clad WC/Ni layers[J].Wear,2004,256(11-12):1095-1105.

    • [29] IWABUCHI Y,SAWADA S.Metallurgical characteristics of a large hydraulic runner casting of type 13Cr-Ni stainless steel[M]//BEHAL V G,MELILLI A S.ASTM STP-756 stainless steel castings.Philadelphia:American Society for Testing and Materials,1982:332-354.

    • [30] KJØLLE A.Hydropower in Norway[R].Trondheim:Norwegian University of Science and Technology,2001.

    • [31] SINGH R,TIWARI S K,MISHRA S K.Cavitation erosion in hydraulic turbine components and mitigation by coatings:current status and future needs[J].Journal of Materials Engineering and Performance,2012,21(7):1539-1551.

    • [32] KUMAR R K,SEETHARAMU S,KAMARAJ M.Quantitative evaluation of 3D surface roughness parameters during cavitation exposure of 16Cr-5Ni hydro turbine steel[J].Wear,2014,320:16-24.

    • [33] WILLIAMS W L.Aluminum bronzes for marine applications[J].Journal of the American Society for Naval Engineers,1957,69(3):453-461.

    • [34] BRADLEY J N.Recent developments in copper-base alloys for naval marine applications[J].International Metallurgical Reviews,1972,17(1):81-99.

    • [35] YOSHIKAWA T,SCHNEIDER C.Anti-erosion materials for hydroturbine(a research report at the Three Gorges Dam hydropower plant)[J].Turbomachinery,2000,28(10):577-581.

    • [36] PRASHAR G,VASUDEV H,THAKUR L.Performance of different coating materials against slurry erosion failure in hydrodynamic turbines:A review[J].Engineering Failure Analysis,2020,115:104622.

    • [37] HONG S,WU Y P,ZHANG J F,et al.Synergistic effect of ultrasonic cavitation erosion and corrosion of WC-CoCr and FeCrSiBMn coatings prepared by HVOF spraying[J].Ultrasonics Sonochemistry,2016,31:563-569.

    • [38] QIAO L,WU Y P,HONG S,et al.Relationships between spray parameters,microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J].Ultrasonics Sonochemistry,2017,39:39-46.

    • [39] QIAO L,WU Y P,HONG S,et al.Ultrasonic cavitation erosion mechanism and mathematical model of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J].Ultrasonics Sonochemistry,2019,52:142-149.

    • [40] GlobleCore.Hydrodynamic cavitation and its application in the fuel industry[EB/OL].(2019)[2023-12-01].https://globecore.co.za/hydrodynamic-cavitation-and-its-a pplication-in-the-fuel-industry/.

    • [41] SUPPONEN O,KOBEL P,OBRESCHKOW D,et al.The inner world of a collapsing bubble[J].Physics of Fluids,2015,27(9):091113.

    • [42] SUPPONEN O,KOBEL P,FARHAT M.The inner world of a collapsing bubble[EB/OL].(2014)[2023-12-01].https://www.epfl.ch/research/facilities/hydraulic-machineplatform/wp-content/uploads/2019/03/APS-DFD_Suppon en_EPFL_2014.mp4.

    • [43] ZHANG A,CUI P,WANG Y.Experiments on bubble dynamics between a free surface and a rigid wall[J].Experiments in Fluids,2013,54(10):1602.

    • [44] STAVROPOULOS-VASILAKIS E,KYRIAZIS N,JADIDBONAB H,et al.Review of numerical methodologies for modeling cavitation[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and applications.New York:Academic Press,2021:1-35.

    • [45] AKHATOV I,LINDAU O,TOPOLNIKOV A,et al.Collapse and rebound of a laser-induced cavitation bubble[J].Physics of Fluids,2001,13(10):2805-2819.

    • [46] MASON T J,LORIMER J P.Applied Sonochemistry:uses of power ultrasound in chemistry and processing[M].Weinheim:Wiley-VCH,2002.

    • [47] SHAH Y T,PANDIT A B,MOHOLKAR V S.Sources and types of cavitation[M].Dordrecht:Springer.1999:1-14.

    • [48] MAHULKAR A V,BAPAT P S,PANDIT A B,et al.Steam bubble cavitation[J].AIChE Journal,2008,54(7):1711-1724.

    • [49] GRANT M M,LUSH P A.Liquid impact on a bilinear elastic-plastic solid and its role in cavitation erosion[J].Journal of Fluid Mechanics,1987,176:237-252.

    • [50] WOOD G M,KNUDSEN L K,HAMMITT F G.Cavitation damage studies with rotating disk in water[J].Journal of Basic Engineering,1967,89(1):98-109.

    • [51] CHEN H,WANG J,LI Y,et al.Effect of hydrodynamic pressures near solid surfaces in the incubation stage of cavitation erosion[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2008,222(4):523-531.

    • [52] TZANAKIS I,ESKIN D G,GEORGOULAS A,et al.Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble[J].Ultrasonics Sonochemistry,2014,21(2):866-878.

    • [53] REUTER F,OHL C D.Nonspherical collapse of single bubbles near noundaries and in confined spaces[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and applications.New York:Academic Press,2021:37-72.

    • [54] FLINT E B,SUSLICK K S.The temperature of cavitation[J].Science,1991,253(5026):1397-1399.

    • [55] CHEN H S,LI Y J,CHEN D R,et al.Experimental and numerical investigations on development of cavitation erosion pits on solid surface[J].Tribology Letters,2007,26(2):153-159.

    • [56] HEATH D,ŠIROK B,HOCEVAR M,et al.The use of the cavitation effect in the mitigation of CaCO3 deposits[J].2013,59(4):203-215.

    • [57] BRENNEN C E.Bubble dynamics,damage and noise[M].New York:Cambridge University Press,2011:78-88.

    • [58] AXDAHL E.Cavitation propeller damage[EB/OL].(2006)[2023-12-01].https://commons.wikimedia.org/w/index.php?title=File:Cavitation_Propeller_Damage.JPG&oldid= 491576019.

    • [59] PES solutions.PES-201:Boat propeller cavitation and repair[EB/OL].(2014)[2023-12-01].http://blog.pessolutions.com/boat-propeller-cavitation-and-repair-pes201/.

    • [60] UTTURKAR Y.Computational modeling of thermodynamic effects in cryogenic cavitation[D].Florida:University of Florida,2015.

    • [61] CASCIANI-WOOD J.An introduction to propeller cavitation[EB/OL].(2015)[2023-12-01].https://www.iims.org.uk/introduction-propeller-cavitation/.

    • [62] VAN TERWISGA T J C,VAN RIJSBERGEN M,VAN WIJNGAARDEN E,et al.Cavitation nuisance in ship propulsion:A review of developments[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and Applications.New York:Academic Press,2021:73-109.

    • [63] BARK G,BENSOW R E.Hydrodynamic processes controlling cavitation erosion[M]//KIM K H,CHAHINE G,FRANC J P,KARIMI A.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:185-220.

    • [64] PELZ P F,KEIL T,LUDWIG G.On the kinematics of sheet and cloud cavitation and related erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:221-237.

    • [65] AMARENDRA H J,CHAUDHARI G P,NATH S K.Synergy of cavitation and slurry erosion in the slurry pot tester[J].Wear,2012,290:25-31.

    • [66] LIAN J J,GOU W J,LI H P,et al.Effect of sediment size on damage caused by cavitation erosion and abrasive wear in sediment-water mixture[J].Wear,2018,398:201-208.

    • [67] BASUMATARY J,NIE M,WOOD R J K.The synergistic effects of cavitation erosion-corrosion in ship propeller materials[J].Journal of Bio-and Tribo-Corrosion,2015,1:1-12.

    • [68] BASUMATARY J,WOOD R J K.Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5% NaCl solution[J].Wear,2017,376-377:1286-1297.

    • [69] BASUMATARY J,WOOD R J K.Different methods of measuring synergy between cavitation erosion and corrosion for nickel aluminium bronze in 3.5% NaCl solution[J].Tribology International,2017,147:104843.

    • [70] RYL J,DAROWICKI K,SLEPSKI P.Evaluation of cavitation erosion-corrosion degradation of mild steel by means of dynamic impedance spectroscopy in galvanostatic mode[J].Corrosion Science,2011,53(5):1873-1879.

    • [71] GARCIA-GARCIA D M,GARCIA-ANTON J,IGUAL-MUNOZ A,et al.Effect of cavitation on the corrosion behaviour of welded and non-welded duplex stainless steel in aqueous LiBr solutions[J].Corrosion Science,2006,48(9):2380-2405.

    • [72] MAYER A R,BERTUOL K,SIQUEIRA I,et al.Evaluation of cavitation/corrosion synergy of the Cr3C2-25NiCr coating deposited by HVOF process[J].Ultrasonics Sonochemistry,2020,69:105271.

    • [73] SONG Q N,TONG Y,XU N,et al.Synergistic effect between cavitation erosion and corrosion for various copper alloys in sulphide-containing 3.5% NaCl solutions[J].Wear,2020,450-451:203258.

    • [74] YANG J,WANG Z B,QIAO Y X,et al.Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel[J].Corrosion Science,2022,199:110210.

    • [75] HONG S,WU Y P,ZHANG J F,et al.Effect of ultrasonic cavitation erosion on corrosion behavior of high-velocity oxygen-fuel(HVOF)sprayed near-nanostructured WC-10Co-4Cr coating[J].Ultrasonics Sonochemistry,2015,27:374-378.

    • [76] American Society for Testing and Materials International(ASTM).Standard test method for cavitation erosion using vibratory apparatus:ASTM G32-16(2021)e1[S].United States:ASTM,2021.

    • [77] American Society for Testing and Materials International(ASTM).Standard test method for liquid impingement erosion using rotating apparatus:ASTM G73-10(2017)[S].New York:ASTM,2017.

    • [78] American Society for Testing and Materials International(ASTM).Standard test method for erosion of solid materials by cavitating liquid jet:ASTM G134-17[S].United States:ASTM,2017.

    • [79] PLESSET M S.Temperature effects in cavitation damage[J].Journal of Basic Engineering,1972,94(3):559-563.

    • [80] HAMMITT F G,ROGERS D O.Effects of pressure and temperature variation in vibratory cavitation damage test[J].Journal of Mechanical Engineering Science,1970,12(6):432-439.

    • [81] KWOK C T,MAN H C,LEUNG L K.Effect of temperature,pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel[J].Wear,1997,211(1):84-93.

    • [82] LI Z,HAN J S,LU J J,et al.Vibratory cavitation erosion behavior of AISI 304 stainless steel in water at elevated temperatures[J].Wear,2014,321:33-37.

    • [83] COJOCARU V,CAMPIAN V C,FRUNZAVERDE D.A comparative analysis of the methods used for testing the cavitation erosion resistance on the vibratory devices[J].University Politehnica of Bucharest Scientific Bulletin:Series D,2015,77(4):257-262.

    • [84] MAGO J,BANSAL S,GUPTA D,et al.Investigation of erosion and pressure for direct and indirect acoustic cavitation testing[J].Journal of Emerging Technologies and Innovative Research,2019,6(5):468-476.

    • [85] DULAR M,MONTALVO G E B,HOČEVAR M,et al.Questioning the ASTM G32-16(stationary specimen)standard cavitation erosion test[J].Ultrasonics Sonochemistry,2024,107:106930.

    • [86] SOYAMA H,SHIMIZU S,HATTORI S,et al.Interlaboratory study on standard test method for erosion of solid materials by a cavitating jet[C]//Proceedings of the 10th International Symposium on Cavitation(CAV2018),May 14-16,2018,Baltimore,Maryland.New York:ASME Press,2018:581-584.

    • [87] HATTORI S,TAKINAMI M.Comparison of cavitation erosion rate with liquid impingement erosion rate[J].Wear,2010,269(3-4):310-316.

    • [88] BATCHELOR G K.Irrotational flow theory and its applications[M]//BATCHELOR G K.An introduction to fluid dynamics.Cambridge:Cambridge University Press,2000:378-506.

    • [89] HE J,HAMMITT F G.Velocity exponent and cavitation number for Venturi cavitation erosion of 1100-O aluminum and 1018 carbon-steel[J].Wear,1982,80(1):43-58.

    • [90] OKADA T,HAMMITT F G.Cavitation erosion in vibratory and Venturi facilities[J].Wear,1981,69(1):55-69.

    • [91] HE J,HAMMITT F G.Comparison of cavitation erosion test-results from Venturi and vibratory facilities[J].Wear,1982,76(3):269-292.

    • [92] HATTORI S,SUN B H,HAMMITT F G,et al.An application of bubble collapse pulse-height spectra to Venturi cavitation erosion of 1100-o aluminum[J].Wear,1985,103(2):119-131.

    • [93] IWAI Y,OKADA T,MORI H.A study of cavitation bubble collapse pressures and erosion part 3:the results in a Venturi facility[J].Wear,1991,150(1-2):367-378.

    • [94] CHAHINE G L,FRANC J P,KARIMI A.Laboratory testing methods of cavitation erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands.2014:21-35.

    • [95] STELLER J,GIREŃ B G.International cavitation erosion test final report[R].Warsaw:Institute of Fluid-Flow Machinery of the Polish Academy of Sciences,2015.

    • [96] FRANC J P.Incubation time and cavitation erosion rate of work-hardening materials[J].Journal of Fluids Engineering,2009,131(2):021303.

    • [97] 李豪,吴凤和,赵夙,等.超声波冲击技术对 AA6061-T6 空蚀行为的影响[J].中国表面工程,2021,34(3):83-89.LI Hao,WU Fenghe,ZHAO Su,et al.Effects of ultrasonic impact technology on cavitation erosion behavior of AA6061-T6[J].China Surface Engineering,2021,34(3):83-89.(in Chinese)

    • [98] 蔡世刚,刘鹏涛,赵秀娟,等.纯钛空化水喷丸表面强化及空蚀损伤[J].中国表面工程,2014,27(1):100-105.CAI Shigang,LIU Pengtao,ZHAO Xiujuan,et al.Water cavitation peening-induced surface hardening and cavitation damage of pure titanium[J].China Surface Engineering,2014,27(1):100-105.(in Chinese)

    • [99] 石加联,徐常亮,韩冰,等.空化水喷丸诱导45钢残余应力场的数值模拟与验证[J].中国表面工程,2013,26(3):15-20.SHI Jialian,XU Changliang,HAN Bing,et al.Experiment and numerical simulation of water-jet cavitation peening processing in 45 steel[J].China Surface Engineering,2013,26(3):15-20.(in Chinese)

    • [100] TIAN Y,ZHAO H,YANG R,et al.In-situ SEM investigation on stress-induced microstructure evolution of austenitic stainless steels subjected to cavitation erosion and cavitation erosion-corrosion[J].Materials & Design,2022,213:110314.

    • [101] SOYAMA H,CHIGHIZOLA C R,HILL M R.Effect of compressive residual stress introduced by cavitation peening and shot peening on the improvement of fatigue strength of stainless steel[J].Journal of Materials Processing Technology,2021,288:116877.

    • [102] SOYAMA H.Comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening,water jet peening,shot peening and laser peening[J].Journal of Materials Processing Technology,2019,269:65-78.

    • [103] TAKAHASHI K,OSEDO H,SUZUKI T,et al.Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening[J].Engineering Fracture Mechanics,2018,193:151-161.

    • [104] ODHIAMBO D,SOYAMA H.Cavitation shotless peening for improvement of fatigue strength of carbonized steel[J].International Journal of Fatigue,2003,25(9-11):1217-1222.

    • [105] PATELLA R F,REBOUD J L,ARCHER A.Cavitation damage measurement by 3D laser profilometry[J].Wear,2000,246(1-2):59-67.

    • [106] JAYAPRAKASH A,CHOI J K,CHAHINE G L,et al.Scaling study of cavitation pitting from cavitating jets and ultrasonic horns[J].Wear,2012,296(1-2):619-629.

    • [107] FRANC J P,RIONDET M,KARIMI A,et al.Material and velocity effects on cavitation erosion pitting[J].Wear,2012,274:248-259.

    • [108] CARNELLI D,KARIMI A,FRANC J P.Evaluation of the hydrodynamic pressure of cavitation impacts from stress-strain analysis and geometry of individual pits[J].Wear,2012,289:104-111.

    • [109] BELAHADJI B,FRANC J P,MICHEL J M.A statistical analysis of cavitation erosion pits[J].Journal of Fluids Engineering,Transactions of the ASME,1991,113(4):700-706.

    • [110] FATJO G G A,HADFIELD M,VIEILLARD C,et al.Early stage cavitation erosion within ceramics-An experimental investigation[J].Ceramics International,2009,35(8):3301-3312.

    • [111] AHMED S M,HOKKIRIGAWA K,ITO Y,et al.Scanning electron-microscopy observation on the incubation period of vibratory cavitation erosion[J].Wear,1991,142(2):303-314.

    • [112] FRANC J P,CHAHINE G L,KARIMI A.Pitting and Incubation Period[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:37-69.

    • [113] CHAHINE G L,FRANC J P,KARIMI A.Mass Loss and advanced periods of erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:97-121.

    • [114] GARCIA R,HAMMITT F G.Cavitation damage and correlations with material and fluid properties[J].Journal of Basic Engineering,1967,89(4):753-763.

    • [115] RAO P V,MARTIN C S,RAO B C S,et al.Estimation of cavitation erosion with incubation periods and material properties[J].Journal of Testing and Evaluation,1981,9(3):189-197.

    • [116] THIRUVENGADAM A,WARING S.Mechanical properties of metals and their cavitation-damage resistance[J].Journal of Ship Research,1966,10(1):1-9.

    • [117] RICHMAN R H,MCNAUGHTON W P.Correlation of cavitation erosion behavior with mechanical-properties of metals[J].Wear,1990,140(1):63-82.

    • [118] WASHKO S D,AGGEN G.Wrought stainless steels[M]//ASM Handbook Committee.ASM handbook volume 1:properties and selection:irons,steels,and high-performance alloys.Amsterdam:ASM International.1990:841-907.

    • [119] KISHOR B,CHAUDHARI G P,NATH S K.Cavitation erosion of thermomechanically processed 13/4 martensitic stainless steel[J].Wear,2014,319(1-2):150-159.

    • [120] MOKHTABAD-AMREI M,VERREMAN Y,BRIDIER F,et al.Microstructure characterization of single and multipass 13Cr4Ni steel welded joints[J].Metallography,Microstructure,and Analysis,2015,4(3):207-218.

    • [121] VERMA S,DUBEY P,SELOKAR A W,et al.Cavitation erosion behavior of nitrogen ion implanted 13Cr4Ni steel[J].Transactions of the Indian Institute of Metals,2017,70(4):957-965.

    • [122] SONG Y Y,PING D H,YIN F X,et al.Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel[J].Materials Science and Engineering:A,2010,527(3):614-618.

    • [123] HEATHCOCK C J,PROTHEROE B E,BALL A.Cavitation erosion of stainless-steels[J].Wear,1982,81(2):311-327.

    • [124] ZHANG X F,FANG L.The effect of stacking fault energy on the cavitation erosion resistance of α-phase aluminum bronzes[J].Wear,2002,253(11-12):1105-1110.

    • [125] RAO B C S,BUCKLEY D H.Deformation and erosion of FCC metals and alloys under cavitation attack[J].Materials Science and Engineering,1984,67(1):55-67.

    • [126] LEE Y K,CHOI C S.Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2000,31(2):355-360.

    • [127] HATTORI S,ISHIKURA R.Revision of cavitation erosion database and analysis of stainless steel data[J].Wear,2010,268(1-2):109-116.

    • [128] SANTOS L L,CARDOSO R P,BRUNATTO S F.Direct correlation between martensitic transformation and incubation-acceleration transition in solution-treated AISI 304 austenitic stainless steel cavitation[J].Wear,2020,462:203522.

    • [129] ZHANG L M,LI Z X,HU J X,et al.Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion[J].Tribology International,2021,155:106752.

    • [130] PARK M C,KIM K N,SHIN G S,et al.Effects of strain induced martensitic transformation on the cavitation erosion resistance and incubation time of Fe-Cr-Ni-C alloys[J].Wear,2012,274:28-33.

    • [131] GAO G Y,ZHANG Z.Cavitation erosion behavior of 316L stainless steel[J].Tribology Letters,2019,67(4):112.

    • [132] PARK M C,KIM K N,SHIN G S,et al.Effects of Ni and Mn on the cavitation erosion resistance of Fe-Cr-C-Ni/Mn austenitic alloys[J].Tribology Letters,2013,52(3):477-484.

    • [133] PARK M C,SHIN G S,YUN J Y,et al.Damage mechanism of cavitation erosion in austenite→ martensite phase transformable Fe-Cr-C-Mn/Ni alloys[J].Wear,2014,310(1-2):27-32.

    • [134] WANG K Y,LO K H,KWOK C T,et al.The influences of martensitic transformations on cavitation-erosion damage initiation and pitting resistance of a lean austenitic stainless steel[J].Materials Research-IberoAmerican Journal of Materials,2016,19(6):1366-1371.

    • [135] LI Z X,ZHANG L M,UDOH I I,et al.Deformationinduced martensite in 304 stainless steel during cavitation erosion:effect on passive film stability and the interaction between cavitation erosion and corrosion[J].Tribology International,2022,167:107422.

    • [136] CAO B,WU C,WANG L,et al.Effect of residual stress and phase constituents on corrosion-cavitation erosion behavior of 304 stainless steel by iso-material manufacturing of laser surface melting[J].Journal of Materials Research and Technology,2023,26:6532-6551.

    • [137] KARIMI A.Cavitation erosion of a duplex stainless-steel[J].Materials Science and Engineering,1987,86:191-203.

    • [138] British Standard(BSI).Stainless steels Part 1:List of stainless steels:BS EN 10088-1:2014[S].London:BSI,2014.

    • [139] LIU W,ZHENG Y,LIU C,et al.Cavitation erosion behavior of Cr-Mn-N stainless steels in.comparison with 0Cr13Ni5Mo stainless steel[J].Wear,2003,254(7-8):713-722.

    • [140] 骆素珍,敬和民,郑玉贵,等.CrMnN 双相不锈钢的空泡腐蚀行为研究[J].中国腐蚀与防护学报,2003,23(5):276-281.LUO Suzhen,JING Hemin,ZHENG Yugui,et al.Cavitation-corrorrosion behavior of CrMnN duplex stainless steel[J].Journal of Chinese Society of Corrosion and Protection,2003,23(5):276-281.(in Chinese)

    • [141] GRUBB J F,DEBOLD T,FRITZ J D.Corrosion of wrought stainless steels[M]//CRAMER S D,COVINO B S.ASM handbook volume 13B:corrosion:materials.Amsterdam:ASM International,2005:54-77.

    • [142] KWOK C T,MAN H C,CHENG F T.Cavitation erosion of duplex and super duplex stainless steels[J].Scripta Materialia,1998,39(9):1229-1236.

    • [143] KIM S,HEO H S.Electrochemical and cavitation-erosion characteristics of duplex stainless steels in seawater environment[J].Corrosion Science and Technology(Korea),2021,20(6):466-474.

    • [144] AL-HASHEM A,RIAD W.The effect of duplex stainless steel microstructure on its cavitation morphology in seawater[J].Materials Characterization,2001,47(5):389-395.

    • [145] SARAVANAN S,RAGHUKANDAN K,SIVAGURUMANIKANDAN N.Pulsed Nd:YAG laser welding and subsequent post-weld heat treatment on super duplex stainless steel[J].Journal of Manufacturing Processes,2017,25:284-289.

    • [146] ZHANG Z Y,ZHAO H,ZHANG H Z,et al.Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment[J].Corrosion Science,2017,121:22-31.

    • [147] RICHARDSON I.Overview[M]//POWELL C.Guide to nickel aluminium bronze for engineers.New York:Copper Development Association,2016:6-9.

    • [148] British Standard(BSI).Copper and copper alloys.Wrought and unwrought forging stock:BS EN 12165:2016[S].London:BSI,2016.

    • [149] RICHARDSON I.Alloying elements and microstructural phases[M]//POWELL C.Guide to nickel aluminium bronze for engineers.New York:Copper Development Association,2016:21-25.

    • [150] RICHARDSON I.Guide to nickel aluminium bronze for engineers[M].New York:Copper Development Association,2016.

    • [151] CULPAN E A,ROSE G.Microstructural characterization of cast nickel aluminum bronze[J].Journal of Materials Science,1978,13(8):1647-1657.

    • [152] HASAN F,JAHANAFROOZ A,LORIMER G W,et al.The morphology,crystallography,and chemistry of phases in as-cast nickel-aluminum bronze[J].Metallurgical Transactions A:Physical Metallurgy and Materials Science,1982,13(8):1337-1345.

    • [153] HASAN F,IQBAL J,RIDLEY N.Microstructure of as-cast aluminium bronze containing iron[J].Materials Science and Technology,1985,1(4):312-315.

    • [154] LORIMER G W,HASAN F,IQBAL J,et al.Observation of microstructure and corrosion behaviour of some aluminium bronzes[J].British Corrosion Journal,1986,21(4):244-248.

    • [155] OAKLEY R S,GALSWORTHY J C,FOX G S,et al.Long-term and accelerated corrosion testing methods for cast nickel-aluminium bronzes in seawater[M]//FÉRON D.Corrosion behaviour and protection of copper and aluminium alloys in seawater.Woodhead Publishing.2007:119-127.

    • [156] AL-HASHEM A,CACERES P G,RIAD W T,et al.Cavitation corrosion behavior of cast nickel-aluminum bronze in seawater[J].Corrosion,1995,51(5):331-342.

    • [157] AL-HASHEM A,RIAD W.The role of microstructure of nickel-aluminium-bronze alloy on its cavitation corrosion behavior in natural seawater[J].Materials Characterization,2002,48(1):37-41.

    • [158] NAKHAIE D,DAVOODI A,IMANI A.The role of constituent phases on corrosion initiation of NiAl bronze in acidic media studied by SEM-EDS,AFM and SKPFM[J].Corrosion Science,2014,80:104-110.

    • [159] SONG Q,ZHENG Y,NI D,et al.Studies of the nobility of phases using scanning Kelvin probe microscopy and its relationship to corrosion behaviour of Ni-Al bronze in chloride media[J].Corrosion Science,2015,92:95-103.

    • [160] SONG Q N,XU N,BAO Y F,et al.Corrosion and cavitation erosion behaviors of two marine propeller materials in clean and sulfide-polluted 3.5% NaCl solutions[J].Acta Metallurgica Sinica(English Letters),2017,30(8):712-720.

    • [161] TUCK C D S,POWELL C A,NUTTALL J.Corrosion of copper and its alloys[M]//COTTIS B,GRAHAM M,LINDSAY R,et al.Shreir’s corrosion.Oxford:Elsevier,2010:1937-1973.

    • [162] ZHANG L,MA A,YU H,et al.Correlation of microstructure with cavitation erosion behaviour of a nickel-aluminum bronze in simulated seawater[J].Tribology International,2019,136:250-258.

    • [163] HUCINSKA J,GLOWACKA M.Cavitation erosion of copper and copper-based alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32(6):1325-1333.

    • [164] KARIMI A,MAAMOURI M,MARTIN J L.Cavitation-erosion-induced microstructures in copper single-crystals[J].Materials Science and Engineering:A,1989,113:287-296.

    • [165] QIN Z B,ZHANG Q Z,LUO Q,et al.Microstructure design to improve the corrosion and cavitation corrosion resistance of a nickel-aluminum bronze[J].Corrosion Science,2018,139:255-266.

    • [166] WU Z,CHENG Y,LIU L,et al.Effect of heat treatment on microstructure evolution and erosion-corrosion behavior of a nickel-aluminum bronze alloy in chloride solution[J].Corrosion Science,2015,98:260-270.

    • [167] SONG Q N,ZHENG Y G,JIANG S L,et al.Comparison of corrosion and cavitation erosion behaviors between the as-cast and friction-stir-processed nickel aluminum bronze[J].Corrosion,2013,69(11):1111-1121.

    • [168] LI Y,LIAN Y,SUN Y J.Cavitation erosion behavior of friction stir processed nickel aluminum bronze[J].Journal of Alloys and Compounds,2019,795:233-240.

    • [169] LI Y,LIAN Y,SUN Y J.Synergistic effect between cavitation erosion and corrosion for friction stir processed NiAl bronze in artificial seawater[J].Metals and Materials International,2021,27(12):5082-5094.

    • [170] LI Y,LIAN Y,SUN Y J.Comparison of cavitation erosion behaviors between the as-cast and friction stir processed Ni-Al bronze in distilled water and artificial seawater[J].Journal of Materials Research and Technology,2021,13:906-918.

    • [171] RIDDIHOUGH M.Stellite as a wear-resistant material[J].Tribology,1970,3(4):211-215.

    • [172] WOODFORD D A.Cavitation-erosion-induced phase transformations in alloys[J].Metallurgical Transactions,1972,3:1137-1145.

    • [173] HEATHCOCK C J,BALL A,PROTHEROE B E.Cavitation erosion of cobalt-based Stellite® alloys,cemented carbides and surface-treated low alloy steels[J].Wear,1981,74(1):11-26.

    • [174] FELLER H G,KHARRAZI Y.Cavitation erosion of metals and alloys[J].Wear,1984,93(3):249-260.

    • [175] SZALA M,CHOCYK D,SKIC A,et al.Effect of nitrogen ion implantation on the cavitation erosion resistance and cobalt-based solid solution phase transformations of HIPed Stellite 6[J].Materials,2021,14(9):2324.

    • [176] SHANKAR V,RAO K B S,MANNAN S L.Microstructure and mechanical properties of Inconel 625 superalloy[J].Journal of Nuclear Materials,2001,288(2-3):222-232.

    • [177] RAO G A,KUMAR M,SRINIVAS M,et al.Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718[J].Materials Science and Engineering:A,2003,355(1-2):114-125.

    • [178] HU H,ZHENG Y,QIN C.Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion[J].Nuclear Engineering and Design,2010,240(10):2721-2730.

    • [179] CHEN J H,WU W T.Cavitation erosion behavior of Inconel 690 alloy[J].Materials Science and Engineering:A,2008,489(1-2):451-456.

    • [180] LI Z,ZHOU J S,HAN J S,et al.Formation of cavitation-induced nanosize precipitates on the eroded surface for Inconel 718 alloy[J].Materials Letters,2016,164:267-269.

    • [181] 陈天骅,李珍,杜三明,等.Inconel 718 镍基超合金的空蚀行为研究[J].摩擦学学报,2020,40(4):415-423.CHEN Tianhua,LI Zhen,DU Sanming,et al.Investigation of the cavitation erosion behavior of Inconel 718 nickel-based superalloy[J].Tribology,2020,40(4):415-423.(in Chinese)

    • [182] MANSFELD F,LIU G,XIAO H,et al.The corrosion behavior of copper-alloys,stainless-steels and titanium in seawater[J].Corrosion Science,1994,36(12):2063-2095.

    • [183] YAN S K,SONG G L,LI Z,et al.A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments[J].Journal of Materials Science & Technology,2018,34(3):421-435.

    • [184] GAO Y K.Surface modification of TC4 titanium alloy by high current pulsed electron beam(HCPEB)with different pulsed energy densities[J].Journal of Alloys and Compounds,2013,572:180-185.

    • [185] KOVACIK J,EMMER S.Steels as materials for sonotrode tools[C]//Proceedings of the 14th Symposium on Experimental Stress Analysis and Materials Testing,May 23-25,2013,Timisoara,Romania.Durnten-Zurich:Trans Tech Publications Ltd.,2014,601:21-25.

    • [186] NEDELCU D,COJOCARU V,NEDELONI M,et al.Failure analysis of a Ti-6Al-4V ultrasonic horn used in cavitation erosion tests[J].Mechanika,2015,4:272-276.

    • [187] DIMIAN M E,MITELEA I,BORDEASU I,et al.Cavitation erosion behavior of heat treated Ti-6Al-4V alloy[C]//Proceedings of the 21st International Conference on Metallurgy and Materials,May 23-25,2012,Brno,Czech Republic.Slezska:Tanger Ltd.,2012:836-841.

    • [188] 李海斌,崔振铎,李朝阳,等.化学热处理改善 Ti-6Al-4V 钛合金耐空蚀性能的研究[J].功能材料,2014,45(7):7148-7152.LI Haibin,CUI Zhenduo,LI Zhaoyang,et al.Improving cavitation erosion resistance of Ti-6Al-4V alloy by thermochemical treatments[J].Journal of Functional Materials,2014,45(7):7148-7152.(in Chinese)

    • [189] WANG Y J,HAO E K,ZHAO X Q,et al.Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater[J].Journal of Materials Science & Technology,2022,100:169-181.

    • [190] ZHOU K S,HERMAN H.Cavitation erosion of titanium and Ti-6A1-4V:effects of nitriding[J].Wear,1982,80(1):101-113.

    • [191] ROBINSON J M,ANDERSON S,KNUTSEN R D,et al.Cavitation erosion of laser melted and laser nitrided Ti-6Al-4V[J].Materials Science and Technology,1995,11(6):611-618.

    • [192] KASPAR J,BRETSCHNEIDER J,JACOB S,et al.Microstructure,hardness and cavitation erosion behaviour of Ti-6Al-4V laser nitrided under different gas atmospheres[J].Surface Engineering,2007,23(2):99-106.

    • [193] LI H B,CUI Z D,LI Z Y,et al.Effect of gas nitriding treatment on cavitation erosion behavior of commercially pure Ti and Ti-6Al-4V alloy[J].Surface and Coatings Technology,2013,221:29-36.

    • [194] MITELEA I,DIMIAN E,BORDEASU I,et al.Ultrasonic cavitation erosion of gas nitrided Ti-6Al-4V alloys[J].Ultrasonics Sonochemistry,2014,21(4):1544-1548.

    • [195] MITELEA I,DIMIAN E,BORDEASU I,et al.Cavitation erosion of laser-nitrided Ti-6Al-4V alloys with the energy controlled by the pulse duration[J].Tribology Letters,2015,59:1-9.

    • [196] EGGELER G,HORNBOGEN E,YAWNY A,et al.Structural and functional fatigue of NiTi shape memory alloys[J].Materials Science and Engineering:A,2004,378(1-2):24-33.

    • [197] SHAW J A,KYRIAKIDES S.Thermomechanical aspects of NiTi[J].Journal of the Mechanics and Physics of Solids,1995,43(8):1243-1281.

    • [198] FRENZEL J,GEORGE E P,DLOUHY A,et al.Influence of Ni on martensitic phase transformations in NiTi shape memory alloys[J].Acta Materialia,2010,58(9):3444-3458.

    • [199] AURICCHIO F,TAYLOR R L,LUBLINER J.Shape-memory alloys:macromodelling and numerical simulations of the superelastic behavior[J].Computer Methods in Applied Mechanics and Engineering,1997,146(3-4):281-312.

    • [200] RICHMAN R H,RAO A S,HODGSON D E.Cavitation erosion of 2 NiTi alloys[J].Wear,1992,157(2):401-407.

    • [201] LIU W,ZHENG Y,LIU C,et al.Cavitation erosion characteristics of a NiTi alloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2004,35(1):356-362.

    • [202] CHENG F,SHI P,MAN H.Cavitation erosion resistance of heat-treated NiTi[J].Materials Science and Engineering:A,2003,339(1-2):312-317.

    • [203] ZHUANG D D,ZHANG S H,LIU H X,et al.Cavitation erosion behavior and anti-cavitation erosion mechanism of NiTi alloys impacted by water jet[J].Wear,2023,518:204631.

    • [204] LONG N,ZHU J.Cavitation erosion resistance of Fe-26Mn-6Si-7Cr-1Cu shapememory alloy[J].Materials Science and Technology,2003,19(12):1733-1736.

    • [205] WANG Z Y,ZHU J H.Effect of phase transformation on cavitation erosion resistance of some ferrous alloys[J].Materials Science and Engineering:A,2003,358(1-2):273-278.

    • [206] WANG Z Y,ZHU J H.Cavitation erosion of Fe-Mn-Si-Cr shape memory alloys[J].Wear,2004,256(1-2):66-72.

    • [207] POHL M,STELLA J,HESSING C.Comparative study on CuZnAl and CuMnZnAlNiFe shape memory alloys subjected to cavitation-erosion[J].Advanced Engineering Materials,2003,5(4):251-256.

    • [208] VOLKOV-HUSOVIC T,IVANIC I,KOZUH S,et al.Microstructural and cavitation erosion behavior of the CuAlNi shape memory alloy[J].Metals,2021,11(7):997.

    • [209] HOWARD R L,BALL A.The solid particle and cavitation erosion of titanium aluminide intermetallic alloys[J].Wear,1995,186(1):123-128.

    • [210] HOWARD R L L,BALL A.Mechanisms of cavitation erosion of TiAl-based titanium aluminide intermetallic alloys[J].Acta Materialia,1996,44:3157-3168.

    • [211] MAHDIPOOR M S,KIROLS H S,KEVORKOV D,et al.Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V[J].Scientific Reports,2015,5:14182.

    • [212] NAIR R B,ARORA H S,MUKHERJEE S,et al.Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy[J].Ultrasonics Sonochemistry,2018,41:252-260.

    • [213] NAIR R B,ARORA H S,GREWAL H S.Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy[J].International Journal of Minerals Metallurgy and Materials,2020,27(10):1353-1362.

    • [214] DROZDZ D,WUNDERLICH R K,FECHT H J.Cavitation erosion behaviour of Zr-based bulk metallic glasses[J].Wear,2007,262(1-2):176-183.

    • [215] ARORA H S,GREWAL H S,SINGH H,et al.Unusually high erosion resistance of zirconium-based bulk metallic glass[J].Journal of Materials Research,2013,28(22):3185-3189.

    • [216] JI X L,ZHAO J H,ZHANG X W,et al.Erosion-corrosion behavior of Zr-based bulk metallic glass in saline-sand slurry[J].Tribology International,2013,60:19-24.

    • [217] WANG W F,WANG M C,SUN F J,et al.Microstructure and cavitation erosion characteristics of Al-Si alloy coating prepared by electrospark deposition[J].Surface and Coatings Technology,2008,202(21):5116-5121.

    • [218] 刘诗汉,陈大融.双相钢空蚀破坏的力学机制[J].金属学报,2009,45(5):519-526.LIU Shihan,CHEN Darong.Mechanics mechanism of duplex steel cavitation damage[J].Acta Metallurgica Sinica,2009,45(5):519-526.(in Chinese)

    • [219] 马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)

    • [220] PAWLOWSKI L.Thermal spraying techniques[M].Hoboken:John Wiley & Sons.2008:67-113.

    • [221] KWOK C T,MAN H C,CHENG F T,et al.Developments in laser-based surface engineering processes:with particular reference to protection against cavitation erosion[J].Surface and Coatings Technology,2016,291:189-204.

    • [222] MENDEZ P F,BARNES N,BELL K,et al.Welding processes for wear resistant overlays[J].Journal of Manufacturing Processes,2014,16(1):4-25.

    • [223] SIMONEAU R.Austenitic stainless steel with high cavitation erosion resistance:US04751046A[P].1986-06-14.

    • [224] KOGA G Y,WOLF W,SCHULZ R,et al.Corrosion and wear properties of FeCrMnCoSi HVOF coatings[J].Surface and Coatings Technology,2019,357:993-1003.

    • [225] KUMAR A,BOY J,ZATORSKI R,et al.Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps:A technical note[J].Journal of Thermal Spray Technology,2005,14(2):177-182.

    • [226] WILL C R,CAPRA A R,PUKASIEWICZ A G M,et al.Comparative study of three austenitic alloy with cobalt resistant to cavitation deposited by plasma welding[J].Welding International,2012,26(2):96-103.

    • [227] RUDOLF P,JULIS M,KLAKURKOVA L,et al.Cavitation erosion testing of different cavitation-resistent materials and coatings using the cavitating jet method[C]//Proceedings of the 29th IAHR Symposium on Hydraulic Machinery and Systems(IAHR),September 16-21,2018,Kyoto,Japan.Bristol:IOP Publishing Ltd.,2019,240:062057.

    • [228] LAVIGNE S,POUGOUM F,SAVOIE S,et al.Cavitation erosion behavior of HVOF CaviTec coatings[J].Wear,2017,386-387:90-98.

    • [229] LEE M K,KIM W W,RHEE C K,et al.Investigation of liquid impact erosion for 12Cr steel and Stellite 6B[J].Journal of Nuclear Materials,1998,257(2):134-144.

    • [230] HATTORI S,MIKAMI N.Cavitation erosion resistance of stellite alloy weld overlays[J].Wear,2009,267(11):1954-1960.

    • [231] ROMO S A,SANTA J F,GIRALDO J E,et al.Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy[J].Tribology International,2012,47:16-24.

    • [232] SINGH R,KUMAR D,MISHRA S K,et al.Laser cladding of Stellite 6 on stainless steel to enhance solid particle erosion and cavitation resistance[J].Surface and Coatings Technology,2014,251:87-97.

    • [233] DING Y P,YAO J H,LIU R,et al.Effects of surface treatment on the cavitation erosion-corrosion performance of 17-4PH stainless steel in sodium chloride solution[J].Journal of Materials Engineering and Performance,2020,29(4):2687-2696.

    • [234] ZHANG Q L,WU L J,ZOU H S,et al.Correlation between microstructural characteristics and cavitation resistance of Stellite-6 coatings on 17-4 PH stainless steel prepared with supersonic laser deposition and laser cladding[J].Journal of Alloys and Compounds,2021,860:158417.

    • [235] DING Y P,LIU R,YAO J H,et al.Stellite alloy mixture hardfacing via laser cladding for control valve seat sealing surfaces[J].Surface and Coatings Technology,2017,329:97-108.

    • [236] SILVA H R,FERRARESI V A.Effect of cobalt alloy addition in erosive wear and cavitation of coatings welds[J].Wear,2019,426:302-313.

    • [237] SREEDHAR B K,ALBERT S K,PANDIT A B.Improving cavitation erosion resistance of austenitic stainless steel in liquid sodium by hardfacing-comparison of Ni and Co based deposits[J].Wear,2015,342:92-99.

    • [238] AL-FADHLI H Y,STOKES J,HASHMI M S J,et al.The erosion-corrosion behaviour of high velocity oxy-fuel(HVOF)thermally sprayed inconel-625 coatings on different metallic surfaces[J].Surface and Coatings Technology,2006,200(20-21):5782-5788.

    • [239] JIA Q B,GU D D.Selective laser melting additive manufacturing of Inconel 718 superalloy parts:densification,microstructure and properties[J].Journal of Alloys and Compounds,2014,585:713-721.

    • [240] ABIOYE T E,MCCARTNEY D G,CLARE A T.Laser cladding of Inconel 625 wire for corrosion protection[J].Journal of Materials Processing Technology,2015,217:232-240.

    • [241] SANDHU S S,SHAHI A S.Metallurgical,wear and fatigue performance of Inconel 625 weld claddings[J].Journal of Materials Processing Technology,2016,233:1-8.

    • [242] YUAN X J,QIU H F,ZENG F Q,et al.Microstructural evolution and mechanical properties of Inconel 625 superalloy fabricated by pulsed microplasma rapid additive manufacturing[J].Journal of Manufacturing Processes,2022,77:63-74.

    • [243] JIANG X J,OVERMAN N,SMITH C,et al.Microstructure,hardness and cavitation erosion resistance of different cold spray coatings on stainless steel 316 for hydropower applications[J].Materials Today Communications,2020,25:101305.

    • [244] KAZASIDIS M,YIN S,CASSIDY J,et al.Microstructure and cavitation erosion performance of nickel-Inconel 718 composite coatings produced with cold spray[J].Surface and Coatings Technology,2020,382:125195.

    • [245] TAILLON G,MIYAGAWA K.Cavitation erosion of Ni-based superalloys manufactured by forging and additive manufacturing[J].Journal of Failure Analysis and Prevention,2021,21(5):1902-1917.

    • [246] WANG B,WANG Y D,ZHANG Z H.WC-M coating to improve resistance of hydraulic turbines to cavitation erosion and abrasion[J].Transactions of Nonferrous Metals Society of China,2003,13(4):893-897.

    • [247] 高云涛,李翠林,郭维.高速火焰喷涂技术在刘家峡水电厂水轮机抗磨蚀方面的应用[J].陕西电力,2008,36(5):51-53.GAO Yuntao,LI Cuilin,GUO Wei.Application of HVOF technology in anti-abrasion for hydraulic turbine in Liujiaxia hydropower station[J].Shanxi Electric Power,2008,36(5):51-53.(in Chinese)

    • [248] 王者昌,陈静.水轮机抗空蚀磨损金属复层方法、材料和应用[J].焊接,2009,2:38-46.WANG Zhechang,CHEN Jing.Compound metal layer with cavitation erosion and abrasion resistance and its application in hydraulic turbine[J].Welding,2009,2:38-46.(in Chinese)

    • [249] KUMAR H,CHITTOSIYA C,SHUKLA V N.HVOF sprayed WC based cermet coating for mitigation of cavitation,erosion & abrasion in hydro turbine blade[C]//Proceedings of the 7th International Conference of Materials Processing and Characterization(ICMPC),March 17-19,2017,Gokaraju Rangaraju Inst Engn & Technol,Hyderabad,India.Amsterdam:Elsevier,2018,5(2):6413-6420.

    • [250] HONG S,WU Y P,WU J H,et al.Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines[J].Renewable Energy,2021,164:1089-1099.

    • [251] LIU J,CHEN T Z,YUAN C Q,et al.Performance analysis of cavitation erosion resistance and corrosion behavior of HVOF-sprayed WC-10Co-4Cr,WC-12Co,and Cr3C2-NiCr coatings[J].Journal of Thermal Spray Technology,2020,29(4):798-810.

    • [252] PIOLA R,ANG A S M,LEIGH M,et al.A comparison of the antifouling performance of air plasma spray(APS)ceramic and high velocity oxygen fuel(HVOF)coatings for use in marine hydraulic applications[J].Biofouling,2018,34(5):479-491.

    • [253] HONG S,WU Y P,ZHANG J F,et al.Cavitation erosion behavior and mechanism of HVOF sprayed WC-10Co-4Cr coating in 3.5wt.% NaCl solution[J].Transactions of the Indian Institute of Metals,2015,68(1):151-159.

    • [254] DING X,HUANG Y,YUAN C Q,et al.Deposition and cavitation erosion behavior of multimodal WC-10Co4Cr coatings sprayed by HVOF[J].Surface and Coatings Technology,2020,392:125757.

    • [255] LIU X B,KANG J J,YUE W,et al.Cavitation erosion behavior of HVOF sprayed WC-10Co4Cr cermet coatings in simulated sea water[J].Ocean Engineering,2019,190:106449.

    • [256] WU Y P,HONG S,ZHANG J F,et al.Microstructure and cavitation erosion behavior of WC-Co-Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying[J].International Journal of Refractory Metals & Hard Materials,2012,32:21-26.

    • [257] HONG S,WU Y P,ZHANG J F,et al.Ultrasonic cavitation erosion of high-velocity oxygen-fuel(HVOF)sprayed near-nanostructured WC-10Co-4Cr coating in NaCl solution[J].Ultrasonics Sonochemistry,2015,26:87-92.

    • [258] ZHANG H J,CHEN X Y,GONG Y F,et al.In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings[J].Ultrasonics Sonochemistry,2020,60:104760.

    • [259] LIN J R,HONG S,ZHENG Y,et al.Cavitation erosion resistance in NaCl medium of HVOF sprayed WC-based cermet coatings at various flow velocities:a comparative study on the effect of Ni and CoCr binder phases[J].International Journal of Refractory Metals & Hard Materials,2021,94:105407.

    • [260] LIMA M M,GODOY C,MODENESI P J,et al.Coating fracture toughness determined by Vickers indentation:an important parameter in cavitation erosion resistance of WC-Co thermally sprayed coatings[J].Surface and Coatings Technology,2004,177-178:489-496.

    • [261] VARIS T,SUHONEN T,GHABCHI A,et al.Formation mechanisms,structure,and properties of HVOF-sprayed WC-CoCr coatings:an approach toward process maps[J].Journal of Thermal Spray Technology,2014,23(6):1009-1018.

    • [262] DING X,CHENG X D,YUAN C Q,et al.Structure of micro-nano WC-10Co4Cr coating and cavitation erosion resistance in NaCl solution[J].Chinese Journal of Mechanical Engineering,2017,30(5):1239-1247.

    • [263] DING X,CHENG X D,YU X,et al.Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC-10Co4Cr coating[J].Transactions of Nonferrous Metals Society of China,2018,28(3):487-494.

    • [264] DING X,KE D,YUAN C Q,et al.Microstructure and cavitation erosion resistance of HVOF deposited WC-Co coatings with different sized WC[J].Coatings,2018,8(9):307.

    • [265] LAMANA M S,PUKASIEWICZ A G M,SAMPATH S.Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings[J].Wear,2018,398-399:209-219.

    • [266] KANNO A,TAKAGI K,ARAI M.Influence of chemical composition,grain size,and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings[J].Surface and Coatings Technology,2020,394:125881.

    • [267] WANG Q,TANG Z X,CHA L M.Cavitation and sand slurry erosion resistances of WC-10Co-4Cr coatings[J].Journal of Materials Engineering and Performance,2015,24(6):2435-2443.

    • [268] DU J,ZHANG J F,ZHANG C.Effect of heat treatment on the cavitation erosion performance of WC-12Co coatings[J].Coatings,2019,9(10):690.

    • [269] BECKER A,BERTOUL K,PUKASIEWICZ A G M,et al.Influence of fuel/oxygen ratio on coating properties and cavitation resistance of WC and Cr3C2 cermet coatings deposited by HVOF[C]//Thermal Spray 2021:Proceedings from the International Thermal Spray Conference,May 24-28,2021,Quebec City,Canada.Amsterdam:ASM International,2021:716-721.

    • [270] VARIS T,SUHONEN T,LAAKSO J,et al.Evaluation of residual stresses and their influence on cavitation erosion resistance of high kinetic HVOF and HVAF-sprayed WC-CoCr coatings[J].Journal of Thermal Spray Technology,2020,29(6):1365-1381.

    • [271] DING Z X,CHEN W,WANG Q.Resistance of cavitation erosion of multimodal WC-12Co coatings sprayed by HVOF[J].Transactions of Nonferrous Metals Society of China,2011,21(10):2231-2236.

    • [272] 丁彰雄,胡一鸣,赵辉.HVOF 制备的微纳米结构 WC-12Co 涂层组织结构与抗空蚀性能[J].摩擦学学报,2013,33(5):429-435.DING Zhangxiong,HU Yiming,ZHAO Hui.Structures and resistance of cavitation erosion micro-nanostructured WC-12Co cotings sprayed by HVOF[J].Tribology,2013,33(5):429-435.(in Chinese)

    • [273] HONG S,WU Y P,WU J H,et al.Effect of flow velocity on cavitation erosion behavior of HVOF sprayed WC-10Ni and WC-20Cr3C2-7Ni coatings[J].International Journal of Refractory Metals & Hard Materials,2020,92:105330.

    • [274] WANG H H,WU Y P,CHENG J B,et al.Effect of binder phases on the cavitation erosion behavior of HVOF sprayed WC-based coatings[J].Surface and Coatings Technology,2023,472:129887.

    • [275] WEI Z Y,SHI X L,CUI D D,et al.Effect of 3.5% NaCl solution with different Na2S concentrations on ultrasonic cavitation erosion behaviors of HVOF sprayed WC-Ni coatings[J].Ultrasonics Sonochemistry,2023,101:106707.

    • [276] KOROBOV Y,ALWAN H,SOBOLEVA N,et al.Cavitation resistance of WC-10Co4Cr and WC-20CrC-7Ni HVAF coatings[J].Journal of Thermal Spray Technology,2022,31:234-246.

    • [277] THAKUR L,ARORA N.A study of processing and slurry erosion behaviour of multi-walled carbon nanotubes modified HVOF sprayed nano-WC-10Co-4Cr coating[J].Surface and Coatings Technology,2017,309:860-871.

    • [278] TIAN Y,YANG R,GU Z,et al.Ultrahigh cavitation erosion resistant metal-matrix composites with biomimetic hierarchical structure[J].Composites Part B:Engineering,2022,234:109730.

    • [279] YANG R,HUANG N,TIAN Y,et al.Insights into the exceptional cavitation erosion resistance of laser surface melted Ni-WC composites:the effects of WC morphology and distribution[J].Surface and Coatings Technology,2022,444:128685.

    • [280] YANG R,TIAN Y,HUANG N L,et al.Effects of CeO2 addition on microstructure and cavitation erosion resistance of laser-processed Ni-WC composites[J].Materials Letters,2022,311:131583.

    • [281] CHENG F T,KWOK C T,MAN H C.Cavitation erosion resistance of stainless steel laser-clad with WC-reinforced MMC[J].Materials Letters,2002,57(4):969-974.

    • [282] LO K H,CHENG F T,MAN H C.Cavitation erosion mechanism of S31600 stainless steel laser surface-modified with unclad WC[J].Materials Science and Engineering:A,2003,357(1-2):168-180.

    • [283] LO K H,CHENG F T,KWOK C T,et al.Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder[J].Surface and Coatings Technology,2003,165(3):258-267.

    • [284] TAM K F,CHENG F T,MAN H C.Cavitation erosion behavior of laser-clad Ni-Cr-Fe-WC on brass[J].Materials Research Bulletin,2002,37(7):1341-1351.

    • [285] DURAISELVAM M,GALUN R,WESLING V,et al.Laser clad WC reinforced Ni-based intermetallic-matrix composites to improve cavitation erosion resistance[J].Journal of Laser Applications,2006,18(4):297-304.

    • [286] ZHANG X B,LIU C S,LIU X D,et al.Cavitation erosion behavior of WC coatings on CrNiMo stainless steel by laser alloying[J].International Journal of Minerals Metallurgy and Materials,2009,16(2):203-207.

    • [287] BAO Y F,GUO L P,ZHONG C H,et al.Effects of WC on the cavitation erosion resistance of FeCoCrNiB0.2 high entropy alloy coating prepared by laser cladding[J].Materials Today Communications,2021,26:102154.

    • [288] MA D,HARVEY T J,ZHUK Y N,et al.Cavitation erosion performance of CVD W/WC coatings[J].Wear,2020,452:203276.

    • [289] BABU A,ARORA H S,GREWAL H S.Development of cavitation erosion-resistant microwave processed WC-based cladding[J].Tribology Transactions,2021,64(6):1118-1126.

    • [290] HONG S,SHI X L,LIN J R,et al.Microstructure and cavitation-silt erosion behavior of two HVOF-sprayed hardfacing coatings for hydro-turbine applications[J].Alexandria Engineering Journal,2023,69:483-496.

    • [291] TAILLON G,POUGOUM F,LAVIGNE S,et al.Cavitation erosion mechanisms in stainless steels and in composite metal-ceramic HVOF coatings[J].Wear,2016,364:201-210.

    • [292] YANG X Y,ZHANG J F,LI G Y.Cavitation erosion behaviour and mechanism of HVOF-sprayed NiCrBSi-(Cr3C2-NiCr)composite coatings[J].Surface Engineering,2018,34(3):211-219.

    • [293] MATIKAINEN V,KOIVULUOTO H,VUORISTO P,et al.Effect of nozzle geometry on the microstructure and properties of HVAF-sprayed WC-10Co4Cr and Cr3C2-25NiCr coatings[J].Journal of Thermal Spray Technology,2018,27(4):680-694.

    • [294] MATIKAINEN V,KOIVULUOTO H,VUORISTO P.A study of Cr3C2-based HVOF-and HVAF-sprayed coatings:abrasion,dry particle erosion and cavitation erosion resistance[J].Wear,2020,446:203188.

    • [295] LUIZ L A,DE ANDRADE J,PESQUEIRA C M,et al.Corrosion behavior and galvanic corrosion resistance of WC and Cr3C2 cermet coatings in Madeira River water[J].Journal of Thermal Spray Technology,2021,30(1-2):205-221.

    • [296] HONG S,WU Y P,WANG Q,et al.Microstructure and cavitation-silt erosion behavior of high-velocity oxygen-fuel(HVOF)sprayed Cr3C2-NiCr coating[J].Surface and Coatings Technology,2013,225:85-91.

    • [297] STELLA J,POIRIER T,POHL M.Cavitation-erosion of 3Y-TZPs obtained at different sintering temperatures[J].Wear,2013,300(1-2):163-168.

    • [298] WANG Y,DARUT G,POIRIER T,et al.Cavitation erosion of plasma sprayed YSZ coatings produced by feedstocks with different initial sizes[J].Tribology International,2017,111:226-233.

    • [299] WANG Y,STELLA J,DARUT G,et al.APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion[J].Journal of Alloys and Compounds,2017,699:1095-1103.

    • [300] DENG W,AN Y L,HOU G L et al.Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings[J].Ultrasonics Sonochemistry,2018,46:1-9.

    • [301] WANG Y,LEBON B,TZANAKIS I,et al.Experimental and numerical investigation of cavitation-induced erosion in thermal sprayed single splats[J].Ultrasonics Sonochemistry,2019,52:336-343.

    • [302] YILMAZ S,IPEK M,CELEBI G F,et al.The effect of bond coat on mechanical properties of plasma-sprayed Al2O3 and Al2O3-13wt.% TiO2 coatings on AISI 316L stainless steel[J].Vacuum,2005,77(3):315-321.

    • [303] YILMAZ R,KURT A O,DEMIR A,et al.Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating[J].Journal of the European Ceramic Society,2007,27(2-3):1319-1323.

    • [304] PORTER J,SUHL L.Anti-fouling coating process:5080926[P].1992-01-14.

    • [305] GOSTEVA I,MORGALEV Y,MORGALEVA T,et al.Effect of Al2O3 and TiO2 nanoparticles on aquatic organisms[C]//Proceedings of the 3rd International Youth Conference on Interdisciplinary Problems of Nanotechnology,May 21-22,2015,Tambov,Russia.Bristol:IOP Publishing Ltd.,2015,98:012007.

    • [306] JAFARZADEH K,VALEFI Z,GHAVIDEL B.The effect of plasma spray parameters on the cavitation erosion of Al2O3-TiO2 coatings[J].Surface and Coatings Technology,2010,205(7):1850-1855.

    • [307] HU H,JIANG S,TAO Y,et al.Cavitation erosion and jet impingement erosion mechanism of cold sprayed Ni-Al2O3 coating[J].Nuclear Engineering and Design,2011,241(12):4929-4937.

    • [308] LATKA L,SZALA M,MICHALAK M,et al.Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3-13% TiO2 coatings[J].Acta Physica Polonica A,2019,136(2):342-347.

    • [309] SZALA M,LATKA L,WALCZAK M,et al.Comparative study on the cavitation erosion and sliding wear of cold-sprayed Al/Al2O3 and Cu/Al2O3 coatings,and stainless steel,aluminium alloy,copper and brass[J].Metals,2020,10(7):856.

    • [310] SZALA M,LATKA L,AWTONIUK M,et al.Neural modelling of APS thermal spray process parameters for optimizing the hardness,porosity and cavitation erosion resistance of Al2O3-13wt.% TiO2 Coatings[J].Processes,2020,8(12):1544.

    • [311] SZALA M,HEJWOWSKI T.Cavitation erosion resistance and wear mechanism model of flame-sprayed Al2O3-40% TiO2/NiMoAl cermet coatings[J].Coatings,2018,8(7):254.

    • [312] PANDEY S,BANSAL A,OMER A,et al.Effect of fuel pressure,feed rate,and spray distance on cavitation erosion of Rodojet sprayed Al2O3+50% TiO2 coated AISI410 steel[J].Surface and Coatings Technology,2021,410:126961.

    • [313] KIILAKOSKI J,PURANEN J,HEINONEN E,et al.Characterization of powder-precursor HVOF-sprayed Al2O3-YSZ/ZrO2 coatings[J].Journal of Thermal Spray Technology,2019,28(1-2):98-107.

    • [314] ARORA H S,RANI M,PERUMAL G,et al.Enhanced cavitation erosion-corrosion resistance of high-velocity oxy-fuel-sprayed Ni-Cr-Al2O3 coatings through stationary friction processing[J].Journal of Thermal Spray Technology,2020,29(5):1183-1194.

    • [315] CHENG F T,KWOK C T,MAN H C.Laser surfacing of S31603 stainless steel with engineering ceramics for cavitation erosion resistance[J].Surface and Coatings Technology,2001,139(1):14-24.

    • [316] WU H,WANG L,ZHANG S,et al.Corrosion and cavitation erosion behaviors of laser clad FeNiCoCr high-entropy alloy coatings with different types of TiC reinforcement[J].Surface and Coatings Technology,2023,471,15:129910.

    • [317] ZHANG H,WANG L,ZHANG S,et al.An investigation on wear and cavitation erosion-corrosion characteristics of the TiC modified Fe-based composite coating via laser cladding[J].Journal of Materials Research and Technology,2023,26:8440-8455.

    • [318] RAMPAL,SINGLA A K,BANSAL A,et al.Development,characterization,and cavitation erosion analysis of high velocity oxy-fuel(HVOF)sprayed TiC and(70Cu-30Ni)-Cr based composite coatings on SS316 steel[J].Tribology International,2023,186:108621.

    • [319] BAKHSHANDEH H R,ALLAHKARAM S R,ZABIHI A H.An investigation on cavitation-corrosion behavior of Ni/β-SiC nanocomposite coatings under ultrasonic field[J].Ultrasonics Sonochemistry,2019,56:229-239.

    • [320] GUO W M,WU Y P,ZHANG J F,et al.Fabrication and characterization of thermal-sprayed Fe-based amorphous/nanocrystalline composite coatings:An overview[J].Journal of Thermal Spray Technology,2014,23(7):1157-1180.

    • [321] SOUZA C A C,RIBEIRO D V,KIMINAMI C S.Corrosion resistance of Fe-Cr-based amorphous alloys:An overview[J].Journal of Non-Crystalline Solids,2016,442:56-66.

    • [322] HUANG B,ZHANG C,ZHANG G,et al.Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings:A review[J].Surface and Coatings Technology,2019,377:124896.

    • [323] VAZ R F,PUKASIEWICZ A G M,SIQUEIRA I B A F,et al.Thermal spraying of FeMnCrSi alloys:An overview[C]//Thermal Spray 2021:Proceedings from the International Thermal Spray Conference,May 24-28,2021,Quebec City,Canada.Amsterdam:ASM International,2021:431-439.

    • [324] HOU G L,ZHAO X Q,ZHOU H D,et al.Cavitation erosion of several oxy-fuel sprayed coatings tested in deionized water and artificial seawater[J].Wear,2014,311(1-2):81-92.

    • [325] WU Y P,LIN P H,CHU C L,et al.Cavitation erosion characteristics of a Fe-Cr-Si-B-Mn coating fabricated by high velocity oxy-fuel(HVOF)thermal spray[J].Materials Letters,2007,61(8-9):1867-1872.

    • [326] WANG Z H,ZHANG X,CHENG J B,et al.Cavitation erosion resistance of Fe-based amorphous/nanocrystal coatings prepared by high-velocity arc spraying[J].Journal of Thermal Spray Technology,2014,23(4):742-749.

    • [327] KIM Y J,JANG J W,LEE D W,YI S.Porosity effects of a Fe-based amorphous/nanocrystals coating prepared by a commercial high velocity oxy-fuel process on cavitation erosion behaviors[J].Metals and Materials International,2015,21(4):673-677.

    • [328] ZHENG Z B,ZHENG Y G,SUN W H,et al.Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution[J].Corrosion Science,2013,76:337-347.

    • [329] ZHENG Z B,ZHENG Y G,SUN W H,et al.Effect of applied potential on passivation and erosion-corrosion of a Fe-based amorphous metallic coating under slurry impingement[J].Corrosion Science,2014,82:115-124.

    • [330] ZHENG Z B,ZHENG Y G,SUN W H,et al.Effect of heat treatment on the structure,cavitation erosion and erosion-corrosion behavior of Fe-based amorphous coatings[J].Tribology International,2015,90:393-403.

    • [331] HUANG F,KANG J J,YUE W,et al.Effect of heat treatment on erosion-corrosion of Fe-based amorphous alloy coating under slurry impingement[J].Journal of Alloys and Compounds,2020,820:153132.

    • [332] LIU M M,WANG Z B,HU H X,et al.Effect of sealing treatments on erosion-corrosion of a Fe-based amorphous metallic coating in 3.5wt.% NaCl solution with 2wt.% sand[J].Metals,2022,12(4):680.

    • [333] LIN J R,WANG Z H,LIN P H,et al.Microstructure and cavitation erosion behavior of FeNiCrBSiNbW coating prepared by twin wires arc spraying process[J].Surface and Coatings Technology,2014,240:432-436.

    • [334] LIN J R,WANG Z H,LIN P H,et al.Effects of post annealing on the microstructure,mechanical properties and cavitation erosion behavior of arc-sprayed FeNiCrBSiNbW coatings[J].Materials & Design,2015,65:1035-1040.

    • [335] LIN J R,WANG Z H,CHENG J B,et al.Effect of initial surface roughness on cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings[J].Coatings,2017,7(11):200.

    • [336] LIN J R,WANG Z H,CHENG J B,et al.Evaluation of cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings in NaCl solution[J].Results in Physics,2019,12:597-602.

    • [337] WANG J W,YANG R,TIAN Y,et al.Effect of annealing on the cavitation erosion resistance of HVOF-sprayed Fe-based amorphous composite coatings[J].Journal of Thermal Spray Technology,2023,32(6):1758-1771.

    • [338] RICHMAN R H,RAO A S,KUNG D.Cavitation erosion of NiTi explosively welded to steel[J].Wear,1995,181:80-85.

    • [339] HIRAGA H,INOUE T,SHIMURA H,et al.Cavitation erosion mechanism of NiTi coatings made by laser plasma hybrid spraying[J].Wear,1999,231(2):272-278.

    • [340] CHENG F T,SHI P,MAN H C.Effect of electrolytic hydrogen pre-charging on the cavitation erosion resistance of NiTi:A preliminary study[J].Scripta Materialia,2002,47(2):89-94.

    • [341] CHENG F T,LO K H,MAN H C.NiTi cladding on stainless steel by TIG surfacing process Part I.Cavitation erosion behavior[J].Surface and Coatings Technology,2003,172(2-3):308-315.

    • [342] CHIU K Y,CHENG F T,MAN H C.Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi[J].Materials Science and Engineering:A,2005,392(1-2):348-358.

    • [343] CHIU K Y,CHENG F T,MAN H C.Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion[J].Materials Science and Engineering:A,2005,402(1-2):126-134.

    • [344] CHIU K Y,CHENG F T,MAN H C.Corrosion behavior of AISI 316L stainless steel surface-modified with NiTi[J].Surface and Coatings Technology,2006,200(20-21):6054-6061.

    • [345] CHIU K Y,CHENG F T,MAN H C.Hydrogen effect on the cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi[J].Materials Letters,2007,61(1):239-243.

    • [346] CHEN J,HE J,CHEN K,et al.Gas tungsten arc cladding of titanium-nickel overlays onto the carbon steel and stainless steel for cavitation erosion resistance[J].Key Engineering Materials,2010,479:81-89.

    • [347] SHI Z P,WANG Z B,WANG J Q,et al.Effect of Ni interlayer on cavitation erosion resistance of NiTi cladding by tungsten inert gas(TIG)surfacing process[J].Acta Metallurgica Sinica(English Letters),2020,33(3):415-424.

    • [348] SHI Z,WANG Z,CHEN F,et al.Cavitation erosion and corrosion behavior of NiTi cladding with Cu and Nb interlayers[J].Journal of Materials Engineering and Performance,2020,29(6):3840-3851.

    • [349] STELLA J,SCHULLER E,HESSING C,et al.Cavitation erosion of plasma-sprayed NiTi coatings[J].Wear,2006,260(9-10):1020-1027.

    • [350] BITZER M,RAUHUT N,MAUER G,et al.Cavitation-resistant NiTi coatings produced by low-pressure plasma spraying(LPPS)[J].Wear,2015,328:369-377.

    • [351] SHI Z P,WANG J Q,WANG Z B,et al.Cavitation erosion and jet impingement erosion behavior of the NiTi coating produced by air plasma spraying[J].Coatings,2018,8(10):346.

    • [352] WEI X L,BAN A L,ZHU W Y,et al.Cavitation erosion resistance of TiNi-based composite coating deposited by APS[J].Journal of Thermal Spray Technology,2021,30(4):937-945.

    • [353] WEI X L,ZHU W Y,BAN A L,et al.Effects of Co addition on microstructure and cavitation erosion resistance of plasma sprayed TiNi based coating[J].Surface and Coatings Technology,2021,409:126838.

    • [354] MAUER G,RAUWALD K H,SOHN Y J,et al.Cold gas spraying of nickel-titanium coatings for protection against cavitation[J].Journal of Thermal Spray Technology,2021,30(1-2):131-144.

    • [355] YANG L,TIEU A K,DUNNE D P,et al.Cavitation erosion resistance of NiTi thin films produced by Filtered Arc Deposition[J].Wear,2009,267(1-4):233-243.

    • [356] KUMAR G R,RAJYALAKSHMI G,SWAROOP S.A critical appraisal of laser peening and its impact on hydrogen embrittlement of titanium alloys[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2019,233(13):2371-2398.

    • [357] KWOK C T,CHENG F T,MAN H C.Laser surface modification of UNS S31603 stainless steel using NiCrSiB alloy for enhancing cavitation erosion resistance[J].Surface and Coatings Technology,1998,107(1):31-40.

    • [358] KWOK C T,CHENG F T,MAN H C.Laser surface modification of UNS S31603 stainless steel.Part II:cavitation erosion characteristics[J].Materials Science and Engineering:A,2000,290(1-2):74-88.

    • [359] KWOK C T,MAN H C,CHENG F T.Cavitation erosion-corrosion behaviour of laser surface alloyed AISI 1050 mild steel using NiCrSiB[J].Materials Science and Engineering:A,2001,303(1-2):250-261.

    • [360] MAN H,ZHANG S,YUE T,et al.Laser surface alloying of NiCrSiB on Al6061 aluminium alloy[J].Surface and Coatings Technology,2001,148(2-3):136-142.

    • [361] ZHANG X B,CHANG X,WEI T,et al.Microstructure and cavitation-erosion mechanism of laser cladding NiCrSiB coating on CrNiMo stainless steel[J].Advanced Materials Research,2010,154-155:1788-1791.

    • [362] ZHANG C H,WU C L,ZHANG S,et al.Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance[J].Rare Metals,2016,41:4257-4265.

    • [363] ZHANG S,WU C L,ZHANG C H,et al.Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance[J].Optics and Laser Technology,2016,84:23-31.

    • [364] WU C L,ZHANG S,ZHANG C H,et al.Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying[J].Journal of Alloys and Compounds,2017,698:761-770.

    • [365] WEI Z,WU Y P,HONG S,et al.Effect of WC-10Co on cavitation erosion behaviors of AlCoCrFeNi coatings prepared by HVOF spraying[J].Ceramics International,2021,47(11):15121-15128.

    • [366] WEI Z,WU Y P,HONG S,et al.Electrochemical properties and cavitation erosion behaviors of HVOF sprayed(AlCoCrFeNi)(1-x)(WC-10Co)(x) composite coatings in NaCl medium[J].Ceramics International,2021,47(20):29410-29422.

    • [367] 侯国梁,安宇龙,赵晓琴,等.Co-28Mo-8Cr-2Si 涂层在去离子水和人工海水中的气蚀性能[J].中国表面工程,2014,27(1):12-17.HOU Guoliang,AN Yulong,ZHAO Xiaoqin,et al.Cavitation erosion behavior of Co-28Mo-8Cr-2Si coating in deionized water and artificial seawater[J].China Surface Engineering,2014,27(1):12-17.(in Chinese)

    • [368] BOHM H,BETZ S,BALL A.The wear-resistance of polymers[J].Tribology International,1990,23(6):399-406.

    • [369] HATTORI S,ITOH T.Cavitation erosion resistance of plastics[J].Wear,2011,271(7-8):1103-1108.

    • [370] DEPLANCKE T,LAME O,CAVAILLE J Y,et al.Outstanding cavitation erosion resistance of ultra high molecular weight polyethylene(UHMWPE)coatings[J].Wear,2015,328:301-308.

    • [371] YANG H,ZHANG M L,CHEN R R,et al.Polyurethane coating with heterogeneity structure induced by microphase separation:a new combination of antifouling and cavitation erosion resistance[J].Progress in Organic Coatings,2021,151:106032.

    • [372] WANG Y,DARUT G,POIRIER T,et al.Ultrasonic cavitation erosion of as-sprayed and laser-remelted yttria stabilized zirconia coatings[J].Journal of the European Ceramic Society,2017,37(11):3623-3630.

    • [373] DENG W,HOU G L,LI S J,et al.A new methodology to prepare ceramic-organic composite coatings with good cavitation erosion resistance[J].Ultrasonics Sonochemistry,2018,44:115-119.

    • [374] DENG W,AN Y L,ZHAO X Q,et al.Cavitation erosion behavior of ceramic/organic coatings exposed to artificial seawater[J].Surface and Coatings Technology,2020,399:126133.

    • [375] TIAN Y,ZHANG H J,CHEN X Y,et al.Effect of cavitation on corrosion behavior of HVOF-sprayed WC-10Co4Cr coating with post-sealing in artificial seawater[J].Surface and Coatings Technology,2020,397:126012.

    • [376] QIU N,WANG L Q,WU S H,et al.Research on cavitation erosion and wear resistance performance of coatings[J].Engineering Failure Analysis,2015,55:208-223.

    • [377] MARLIN P,CHAHINE G L.Erosion and heating of polyurea under cavitating jets[J].Wear,2018,414:262-274.

    • [378] YANG R,CHEN X Y,TIAN Y,et al.An attempt to improve cavitation erosion resistance of UHMWPE coatings through enhancing thermal conductivity via the incorporation of copper frames[J].Surface and Coatings Technology,2021,425:127705.

  • 参考文献

    • [1] CHAHINE G L,FRANC J P,KARIMI A.Cavitation and cavitation erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:3-20.

    • [2] BRENNEN C E.Cavitation and bubble dynamics[M].Cambridge:Cambridge University Press,2013.

    • [3] FRANC J P,MICHEL J M.Fundamentals of Cavitation[M].Dordrecht:Springer,2005.

    • [4] 王雨豪,陈文刚,吴华杰,等.空化作用及气泡行为轨迹观测研究进展[J].中国表面工程,2023,36(1):12-29.WANG Yuhao,CHEN Wengang,WU Huajie,et al.Research progress of cavitation and bubble behavior trajectory observation[J].China Surface Engineering,2023,36(1):12-29.(in Chinese)

    • [5] University of Cambridge.The examinations for the degree of Bachelor of arts,Cambridge,January,1847[M].London:George Bell,1847.

    • [6] BESANT W H.A Treatise on hydrostatics and hydrodynamics[M].London:Bell and Daldy,1859.

    • [7] REYNOLDS O.Experiments showing the boiling of water in an open tube at ordinary temperatures[J].Scientific Papers on Mechanical and Physical Subject,1894,2:1900-1903.

    • [8] REYNOLDS O.Experiments showing the boiling of water in an open tube at ordinary temperatures[M].Cambridge:Cambridge University Press,1901:578-587.

    • [9] THORNYCROFT J I,BARNABY S W.Torpedo-boat destroyers[J].Minutes of Proceedings of the Institution of Civil Engineers,1895,122:51-69.

    • [10] CRAVOTTO G,CINTAS P.Introduction to sonochemistry:a historical and conceptual overview[M]//CHEN D,SHARMA S K,MUDHOO A.Handbook on applications of ultrasound:sonochemistry for sustainability.Boca Raton:CRC Press,2011:23-40.

    • [11] RAYLEIGH L.On the pressure developed in a liquid during the collapse of a spherical cavity[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1917,34(200):94-98.

    • [12] COOK S S.Erosion by water-hammer[C]//Proceedings of the Royal Society of London.Series A,Containing Papers of a Mathematical and Physical Character,May 10-July 2,1928.London:Royal Society,1928,119(783):481-488.

    • [13] HARRISON M.An experimental study of single bubble cavitation noise[J].Journal of the Acoustical Society of America,1952,24(6):776-782.

    • [14] GÜTH W.Zur Entstehung der Stoβwellen bet der Kavitation[J].Acta Acustica united with Acustica,1956,6(6):526-531.

    • [15] KORNFELD M,SUVOROV L.On the destructive action of cavitation[J].Journal of Applied Physics,1944,15(6):495-506.

    • [16] SHIPILOV S E,YAKUBOV V P.History of technical protection.60 years in science:to the jubilee of Prof.V.F.Minin[J].IOP Conference Series:Materials Science and Engineering,2018,363:012033.

    • [17] RATTRAY M.Perturbation effects in cavitation bubble dynamics[D].California:California Institute of Technology,1951.

    • [18] NAUDE C F,ELLIS A T.On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary[J].Journal of Basic Engineering,1961,83(4):648-656.

    • [19] GOHIL P P,SAINI R P.Coalesced effect of cavitation and silt erosion in hydro turbines-A review[J].Renewable and Sustainable Energy Reviews,2014,33:280-289.

    • [20] LIU X,LUO Y Y,WANG Z W.A review on fatigue damage mechanism in hydro turbines[J].Renewable and Sustainable Energy Reviews,2016,54:1-14.

    • [21] SREEDHAR B K,ALBERT S K,PANDIT A B.Cavitation damage:theory and measurements-A review[J].Wear,2017,372:177-196.

    • [22] NOON A A,KIM M H.Sediment and cavitation erosion in Francis turbines-review of latest experimental and numerical techniques[J].Energies,2021,14(6):1516.

    • [23] BENSOW R E.Numerical prediction of cavitation and related nuisances in marine propulsion systems[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and applications.New York:Academic Press,2021:111-132.

    • [24] BRIJKISHORE,KHARE R,PRASAD V.Prediction of cavitation and its mitigation techniques in hydraulic turbines-A review[J].Ocean Engineering,2021,221:108512.

    • [25] International Energy Agency.Hydropower special market report[R].Paris:International Energy Agency,2021.

    • [26] U.S.Energy Information Administration.International energy outlook 2016[R].Washington:U.S.Energy Information Administration,2016.

    • [27] International Maritime Organization.Third IMO GHG study 2014[R].London:International Maritime Organization,2015.

    • [28] HUANG S,SAMANDI M,BRANDT A.Abrasive wear performance and microstructure of laser clad WC/Ni layers[J].Wear,2004,256(11-12):1095-1105.

    • [29] IWABUCHI Y,SAWADA S.Metallurgical characteristics of a large hydraulic runner casting of type 13Cr-Ni stainless steel[M]//BEHAL V G,MELILLI A S.ASTM STP-756 stainless steel castings.Philadelphia:American Society for Testing and Materials,1982:332-354.

    • [30] KJØLLE A.Hydropower in Norway[R].Trondheim:Norwegian University of Science and Technology,2001.

    • [31] SINGH R,TIWARI S K,MISHRA S K.Cavitation erosion in hydraulic turbine components and mitigation by coatings:current status and future needs[J].Journal of Materials Engineering and Performance,2012,21(7):1539-1551.

    • [32] KUMAR R K,SEETHARAMU S,KAMARAJ M.Quantitative evaluation of 3D surface roughness parameters during cavitation exposure of 16Cr-5Ni hydro turbine steel[J].Wear,2014,320:16-24.

    • [33] WILLIAMS W L.Aluminum bronzes for marine applications[J].Journal of the American Society for Naval Engineers,1957,69(3):453-461.

    • [34] BRADLEY J N.Recent developments in copper-base alloys for naval marine applications[J].International Metallurgical Reviews,1972,17(1):81-99.

    • [35] YOSHIKAWA T,SCHNEIDER C.Anti-erosion materials for hydroturbine(a research report at the Three Gorges Dam hydropower plant)[J].Turbomachinery,2000,28(10):577-581.

    • [36] PRASHAR G,VASUDEV H,THAKUR L.Performance of different coating materials against slurry erosion failure in hydrodynamic turbines:A review[J].Engineering Failure Analysis,2020,115:104622.

    • [37] HONG S,WU Y P,ZHANG J F,et al.Synergistic effect of ultrasonic cavitation erosion and corrosion of WC-CoCr and FeCrSiBMn coatings prepared by HVOF spraying[J].Ultrasonics Sonochemistry,2016,31:563-569.

    • [38] QIAO L,WU Y P,HONG S,et al.Relationships between spray parameters,microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J].Ultrasonics Sonochemistry,2017,39:39-46.

    • [39] QIAO L,WU Y P,HONG S,et al.Ultrasonic cavitation erosion mechanism and mathematical model of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J].Ultrasonics Sonochemistry,2019,52:142-149.

    • [40] GlobleCore.Hydrodynamic cavitation and its application in the fuel industry[EB/OL].(2019)[2023-12-01].https://globecore.co.za/hydrodynamic-cavitation-and-its-a pplication-in-the-fuel-industry/.

    • [41] SUPPONEN O,KOBEL P,OBRESCHKOW D,et al.The inner world of a collapsing bubble[J].Physics of Fluids,2015,27(9):091113.

    • [42] SUPPONEN O,KOBEL P,FARHAT M.The inner world of a collapsing bubble[EB/OL].(2014)[2023-12-01].https://www.epfl.ch/research/facilities/hydraulic-machineplatform/wp-content/uploads/2019/03/APS-DFD_Suppon en_EPFL_2014.mp4.

    • [43] ZHANG A,CUI P,WANG Y.Experiments on bubble dynamics between a free surface and a rigid wall[J].Experiments in Fluids,2013,54(10):1602.

    • [44] STAVROPOULOS-VASILAKIS E,KYRIAZIS N,JADIDBONAB H,et al.Review of numerical methodologies for modeling cavitation[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and applications.New York:Academic Press,2021:1-35.

    • [45] AKHATOV I,LINDAU O,TOPOLNIKOV A,et al.Collapse and rebound of a laser-induced cavitation bubble[J].Physics of Fluids,2001,13(10):2805-2819.

    • [46] MASON T J,LORIMER J P.Applied Sonochemistry:uses of power ultrasound in chemistry and processing[M].Weinheim:Wiley-VCH,2002.

    • [47] SHAH Y T,PANDIT A B,MOHOLKAR V S.Sources and types of cavitation[M].Dordrecht:Springer.1999:1-14.

    • [48] MAHULKAR A V,BAPAT P S,PANDIT A B,et al.Steam bubble cavitation[J].AIChE Journal,2008,54(7):1711-1724.

    • [49] GRANT M M,LUSH P A.Liquid impact on a bilinear elastic-plastic solid and its role in cavitation erosion[J].Journal of Fluid Mechanics,1987,176:237-252.

    • [50] WOOD G M,KNUDSEN L K,HAMMITT F G.Cavitation damage studies with rotating disk in water[J].Journal of Basic Engineering,1967,89(1):98-109.

    • [51] CHEN H,WANG J,LI Y,et al.Effect of hydrodynamic pressures near solid surfaces in the incubation stage of cavitation erosion[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2008,222(4):523-531.

    • [52] TZANAKIS I,ESKIN D G,GEORGOULAS A,et al.Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble[J].Ultrasonics Sonochemistry,2014,21(2):866-878.

    • [53] REUTER F,OHL C D.Nonspherical collapse of single bubbles near noundaries and in confined spaces[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and applications.New York:Academic Press,2021:37-72.

    • [54] FLINT E B,SUSLICK K S.The temperature of cavitation[J].Science,1991,253(5026):1397-1399.

    • [55] CHEN H S,LI Y J,CHEN D R,et al.Experimental and numerical investigations on development of cavitation erosion pits on solid surface[J].Tribology Letters,2007,26(2):153-159.

    • [56] HEATH D,ŠIROK B,HOCEVAR M,et al.The use of the cavitation effect in the mitigation of CaCO3 deposits[J].2013,59(4):203-215.

    • [57] BRENNEN C E.Bubble dynamics,damage and noise[M].New York:Cambridge University Press,2011:78-88.

    • [58] AXDAHL E.Cavitation propeller damage[EB/OL].(2006)[2023-12-01].https://commons.wikimedia.org/w/index.php?title=File:Cavitation_Propeller_Damage.JPG&oldid= 491576019.

    • [59] PES solutions.PES-201:Boat propeller cavitation and repair[EB/OL].(2014)[2023-12-01].http://blog.pessolutions.com/boat-propeller-cavitation-and-repair-pes201/.

    • [60] UTTURKAR Y.Computational modeling of thermodynamic effects in cryogenic cavitation[D].Florida:University of Florida,2015.

    • [61] CASCIANI-WOOD J.An introduction to propeller cavitation[EB/OL].(2015)[2023-12-01].https://www.iims.org.uk/introduction-propeller-cavitation/.

    • [62] VAN TERWISGA T J C,VAN RIJSBERGEN M,VAN WIJNGAARDEN E,et al.Cavitation nuisance in ship propulsion:A review of developments[M]//KOUKOUVINIS P,GAVAISES M.Cavitation and bubble dynamics:fundamentals and Applications.New York:Academic Press,2021:73-109.

    • [63] BARK G,BENSOW R E.Hydrodynamic processes controlling cavitation erosion[M]//KIM K H,CHAHINE G,FRANC J P,KARIMI A.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:185-220.

    • [64] PELZ P F,KEIL T,LUDWIG G.On the kinematics of sheet and cloud cavitation and related erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:221-237.

    • [65] AMARENDRA H J,CHAUDHARI G P,NATH S K.Synergy of cavitation and slurry erosion in the slurry pot tester[J].Wear,2012,290:25-31.

    • [66] LIAN J J,GOU W J,LI H P,et al.Effect of sediment size on damage caused by cavitation erosion and abrasive wear in sediment-water mixture[J].Wear,2018,398:201-208.

    • [67] BASUMATARY J,NIE M,WOOD R J K.The synergistic effects of cavitation erosion-corrosion in ship propeller materials[J].Journal of Bio-and Tribo-Corrosion,2015,1:1-12.

    • [68] BASUMATARY J,WOOD R J K.Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5% NaCl solution[J].Wear,2017,376-377:1286-1297.

    • [69] BASUMATARY J,WOOD R J K.Different methods of measuring synergy between cavitation erosion and corrosion for nickel aluminium bronze in 3.5% NaCl solution[J].Tribology International,2017,147:104843.

    • [70] RYL J,DAROWICKI K,SLEPSKI P.Evaluation of cavitation erosion-corrosion degradation of mild steel by means of dynamic impedance spectroscopy in galvanostatic mode[J].Corrosion Science,2011,53(5):1873-1879.

    • [71] GARCIA-GARCIA D M,GARCIA-ANTON J,IGUAL-MUNOZ A,et al.Effect of cavitation on the corrosion behaviour of welded and non-welded duplex stainless steel in aqueous LiBr solutions[J].Corrosion Science,2006,48(9):2380-2405.

    • [72] MAYER A R,BERTUOL K,SIQUEIRA I,et al.Evaluation of cavitation/corrosion synergy of the Cr3C2-25NiCr coating deposited by HVOF process[J].Ultrasonics Sonochemistry,2020,69:105271.

    • [73] SONG Q N,TONG Y,XU N,et al.Synergistic effect between cavitation erosion and corrosion for various copper alloys in sulphide-containing 3.5% NaCl solutions[J].Wear,2020,450-451:203258.

    • [74] YANG J,WANG Z B,QIAO Y X,et al.Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel[J].Corrosion Science,2022,199:110210.

    • [75] HONG S,WU Y P,ZHANG J F,et al.Effect of ultrasonic cavitation erosion on corrosion behavior of high-velocity oxygen-fuel(HVOF)sprayed near-nanostructured WC-10Co-4Cr coating[J].Ultrasonics Sonochemistry,2015,27:374-378.

    • [76] American Society for Testing and Materials International(ASTM).Standard test method for cavitation erosion using vibratory apparatus:ASTM G32-16(2021)e1[S].United States:ASTM,2021.

    • [77] American Society for Testing and Materials International(ASTM).Standard test method for liquid impingement erosion using rotating apparatus:ASTM G73-10(2017)[S].New York:ASTM,2017.

    • [78] American Society for Testing and Materials International(ASTM).Standard test method for erosion of solid materials by cavitating liquid jet:ASTM G134-17[S].United States:ASTM,2017.

    • [79] PLESSET M S.Temperature effects in cavitation damage[J].Journal of Basic Engineering,1972,94(3):559-563.

    • [80] HAMMITT F G,ROGERS D O.Effects of pressure and temperature variation in vibratory cavitation damage test[J].Journal of Mechanical Engineering Science,1970,12(6):432-439.

    • [81] KWOK C T,MAN H C,LEUNG L K.Effect of temperature,pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel[J].Wear,1997,211(1):84-93.

    • [82] LI Z,HAN J S,LU J J,et al.Vibratory cavitation erosion behavior of AISI 304 stainless steel in water at elevated temperatures[J].Wear,2014,321:33-37.

    • [83] COJOCARU V,CAMPIAN V C,FRUNZAVERDE D.A comparative analysis of the methods used for testing the cavitation erosion resistance on the vibratory devices[J].University Politehnica of Bucharest Scientific Bulletin:Series D,2015,77(4):257-262.

    • [84] MAGO J,BANSAL S,GUPTA D,et al.Investigation of erosion and pressure for direct and indirect acoustic cavitation testing[J].Journal of Emerging Technologies and Innovative Research,2019,6(5):468-476.

    • [85] DULAR M,MONTALVO G E B,HOČEVAR M,et al.Questioning the ASTM G32-16(stationary specimen)standard cavitation erosion test[J].Ultrasonics Sonochemistry,2024,107:106930.

    • [86] SOYAMA H,SHIMIZU S,HATTORI S,et al.Interlaboratory study on standard test method for erosion of solid materials by a cavitating jet[C]//Proceedings of the 10th International Symposium on Cavitation(CAV2018),May 14-16,2018,Baltimore,Maryland.New York:ASME Press,2018:581-584.

    • [87] HATTORI S,TAKINAMI M.Comparison of cavitation erosion rate with liquid impingement erosion rate[J].Wear,2010,269(3-4):310-316.

    • [88] BATCHELOR G K.Irrotational flow theory and its applications[M]//BATCHELOR G K.An introduction to fluid dynamics.Cambridge:Cambridge University Press,2000:378-506.

    • [89] HE J,HAMMITT F G.Velocity exponent and cavitation number for Venturi cavitation erosion of 1100-O aluminum and 1018 carbon-steel[J].Wear,1982,80(1):43-58.

    • [90] OKADA T,HAMMITT F G.Cavitation erosion in vibratory and Venturi facilities[J].Wear,1981,69(1):55-69.

    • [91] HE J,HAMMITT F G.Comparison of cavitation erosion test-results from Venturi and vibratory facilities[J].Wear,1982,76(3):269-292.

    • [92] HATTORI S,SUN B H,HAMMITT F G,et al.An application of bubble collapse pulse-height spectra to Venturi cavitation erosion of 1100-o aluminum[J].Wear,1985,103(2):119-131.

    • [93] IWAI Y,OKADA T,MORI H.A study of cavitation bubble collapse pressures and erosion part 3:the results in a Venturi facility[J].Wear,1991,150(1-2):367-378.

    • [94] CHAHINE G L,FRANC J P,KARIMI A.Laboratory testing methods of cavitation erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands.2014:21-35.

    • [95] STELLER J,GIREŃ B G.International cavitation erosion test final report[R].Warsaw:Institute of Fluid-Flow Machinery of the Polish Academy of Sciences,2015.

    • [96] FRANC J P.Incubation time and cavitation erosion rate of work-hardening materials[J].Journal of Fluids Engineering,2009,131(2):021303.

    • [97] 李豪,吴凤和,赵夙,等.超声波冲击技术对 AA6061-T6 空蚀行为的影响[J].中国表面工程,2021,34(3):83-89.LI Hao,WU Fenghe,ZHAO Su,et al.Effects of ultrasonic impact technology on cavitation erosion behavior of AA6061-T6[J].China Surface Engineering,2021,34(3):83-89.(in Chinese)

    • [98] 蔡世刚,刘鹏涛,赵秀娟,等.纯钛空化水喷丸表面强化及空蚀损伤[J].中国表面工程,2014,27(1):100-105.CAI Shigang,LIU Pengtao,ZHAO Xiujuan,et al.Water cavitation peening-induced surface hardening and cavitation damage of pure titanium[J].China Surface Engineering,2014,27(1):100-105.(in Chinese)

    • [99] 石加联,徐常亮,韩冰,等.空化水喷丸诱导45钢残余应力场的数值模拟与验证[J].中国表面工程,2013,26(3):15-20.SHI Jialian,XU Changliang,HAN Bing,et al.Experiment and numerical simulation of water-jet cavitation peening processing in 45 steel[J].China Surface Engineering,2013,26(3):15-20.(in Chinese)

    • [100] TIAN Y,ZHAO H,YANG R,et al.In-situ SEM investigation on stress-induced microstructure evolution of austenitic stainless steels subjected to cavitation erosion and cavitation erosion-corrosion[J].Materials & Design,2022,213:110314.

    • [101] SOYAMA H,CHIGHIZOLA C R,HILL M R.Effect of compressive residual stress introduced by cavitation peening and shot peening on the improvement of fatigue strength of stainless steel[J].Journal of Materials Processing Technology,2021,288:116877.

    • [102] SOYAMA H.Comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening,water jet peening,shot peening and laser peening[J].Journal of Materials Processing Technology,2019,269:65-78.

    • [103] TAKAHASHI K,OSEDO H,SUZUKI T,et al.Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening[J].Engineering Fracture Mechanics,2018,193:151-161.

    • [104] ODHIAMBO D,SOYAMA H.Cavitation shotless peening for improvement of fatigue strength of carbonized steel[J].International Journal of Fatigue,2003,25(9-11):1217-1222.

    • [105] PATELLA R F,REBOUD J L,ARCHER A.Cavitation damage measurement by 3D laser profilometry[J].Wear,2000,246(1-2):59-67.

    • [106] JAYAPRAKASH A,CHOI J K,CHAHINE G L,et al.Scaling study of cavitation pitting from cavitating jets and ultrasonic horns[J].Wear,2012,296(1-2):619-629.

    • [107] FRANC J P,RIONDET M,KARIMI A,et al.Material and velocity effects on cavitation erosion pitting[J].Wear,2012,274:248-259.

    • [108] CARNELLI D,KARIMI A,FRANC J P.Evaluation of the hydrodynamic pressure of cavitation impacts from stress-strain analysis and geometry of individual pits[J].Wear,2012,289:104-111.

    • [109] BELAHADJI B,FRANC J P,MICHEL J M.A statistical analysis of cavitation erosion pits[J].Journal of Fluids Engineering,Transactions of the ASME,1991,113(4):700-706.

    • [110] FATJO G G A,HADFIELD M,VIEILLARD C,et al.Early stage cavitation erosion within ceramics-An experimental investigation[J].Ceramics International,2009,35(8):3301-3312.

    • [111] AHMED S M,HOKKIRIGAWA K,ITO Y,et al.Scanning electron-microscopy observation on the incubation period of vibratory cavitation erosion[J].Wear,1991,142(2):303-314.

    • [112] FRANC J P,CHAHINE G L,KARIMI A.Pitting and Incubation Period[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:37-69.

    • [113] CHAHINE G L,FRANC J P,KARIMI A.Mass Loss and advanced periods of erosion[M]//KIM K H,CHAHINE G,FRANC J P,et al.Advanced experimental and numerical techniques for cavitation erosion prediction.Dordrecht:Springer Netherlands,2014:97-121.

    • [114] GARCIA R,HAMMITT F G.Cavitation damage and correlations with material and fluid properties[J].Journal of Basic Engineering,1967,89(4):753-763.

    • [115] RAO P V,MARTIN C S,RAO B C S,et al.Estimation of cavitation erosion with incubation periods and material properties[J].Journal of Testing and Evaluation,1981,9(3):189-197.

    • [116] THIRUVENGADAM A,WARING S.Mechanical properties of metals and their cavitation-damage resistance[J].Journal of Ship Research,1966,10(1):1-9.

    • [117] RICHMAN R H,MCNAUGHTON W P.Correlation of cavitation erosion behavior with mechanical-properties of metals[J].Wear,1990,140(1):63-82.

    • [118] WASHKO S D,AGGEN G.Wrought stainless steels[M]//ASM Handbook Committee.ASM handbook volume 1:properties and selection:irons,steels,and high-performance alloys.Amsterdam:ASM International.1990:841-907.

    • [119] KISHOR B,CHAUDHARI G P,NATH S K.Cavitation erosion of thermomechanically processed 13/4 martensitic stainless steel[J].Wear,2014,319(1-2):150-159.

    • [120] MOKHTABAD-AMREI M,VERREMAN Y,BRIDIER F,et al.Microstructure characterization of single and multipass 13Cr4Ni steel welded joints[J].Metallography,Microstructure,and Analysis,2015,4(3):207-218.

    • [121] VERMA S,DUBEY P,SELOKAR A W,et al.Cavitation erosion behavior of nitrogen ion implanted 13Cr4Ni steel[J].Transactions of the Indian Institute of Metals,2017,70(4):957-965.

    • [122] SONG Y Y,PING D H,YIN F X,et al.Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel[J].Materials Science and Engineering:A,2010,527(3):614-618.

    • [123] HEATHCOCK C J,PROTHEROE B E,BALL A.Cavitation erosion of stainless-steels[J].Wear,1982,81(2):311-327.

    • [124] ZHANG X F,FANG L.The effect of stacking fault energy on the cavitation erosion resistance of α-phase aluminum bronzes[J].Wear,2002,253(11-12):1105-1110.

    • [125] RAO B C S,BUCKLEY D H.Deformation and erosion of FCC metals and alloys under cavitation attack[J].Materials Science and Engineering,1984,67(1):55-67.

    • [126] LEE Y K,CHOI C S.Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2000,31(2):355-360.

    • [127] HATTORI S,ISHIKURA R.Revision of cavitation erosion database and analysis of stainless steel data[J].Wear,2010,268(1-2):109-116.

    • [128] SANTOS L L,CARDOSO R P,BRUNATTO S F.Direct correlation between martensitic transformation and incubation-acceleration transition in solution-treated AISI 304 austenitic stainless steel cavitation[J].Wear,2020,462:203522.

    • [129] ZHANG L M,LI Z X,HU J X,et al.Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion[J].Tribology International,2021,155:106752.

    • [130] PARK M C,KIM K N,SHIN G S,et al.Effects of strain induced martensitic transformation on the cavitation erosion resistance and incubation time of Fe-Cr-Ni-C alloys[J].Wear,2012,274:28-33.

    • [131] GAO G Y,ZHANG Z.Cavitation erosion behavior of 316L stainless steel[J].Tribology Letters,2019,67(4):112.

    • [132] PARK M C,KIM K N,SHIN G S,et al.Effects of Ni and Mn on the cavitation erosion resistance of Fe-Cr-C-Ni/Mn austenitic alloys[J].Tribology Letters,2013,52(3):477-484.

    • [133] PARK M C,SHIN G S,YUN J Y,et al.Damage mechanism of cavitation erosion in austenite→ martensite phase transformable Fe-Cr-C-Mn/Ni alloys[J].Wear,2014,310(1-2):27-32.

    • [134] WANG K Y,LO K H,KWOK C T,et al.The influences of martensitic transformations on cavitation-erosion damage initiation and pitting resistance of a lean austenitic stainless steel[J].Materials Research-IberoAmerican Journal of Materials,2016,19(6):1366-1371.

    • [135] LI Z X,ZHANG L M,UDOH I I,et al.Deformationinduced martensite in 304 stainless steel during cavitation erosion:effect on passive film stability and the interaction between cavitation erosion and corrosion[J].Tribology International,2022,167:107422.

    • [136] CAO B,WU C,WANG L,et al.Effect of residual stress and phase constituents on corrosion-cavitation erosion behavior of 304 stainless steel by iso-material manufacturing of laser surface melting[J].Journal of Materials Research and Technology,2023,26:6532-6551.

    • [137] KARIMI A.Cavitation erosion of a duplex stainless-steel[J].Materials Science and Engineering,1987,86:191-203.

    • [138] British Standard(BSI).Stainless steels Part 1:List of stainless steels:BS EN 10088-1:2014[S].London:BSI,2014.

    • [139] LIU W,ZHENG Y,LIU C,et al.Cavitation erosion behavior of Cr-Mn-N stainless steels in.comparison with 0Cr13Ni5Mo stainless steel[J].Wear,2003,254(7-8):713-722.

    • [140] 骆素珍,敬和民,郑玉贵,等.CrMnN 双相不锈钢的空泡腐蚀行为研究[J].中国腐蚀与防护学报,2003,23(5):276-281.LUO Suzhen,JING Hemin,ZHENG Yugui,et al.Cavitation-corrorrosion behavior of CrMnN duplex stainless steel[J].Journal of Chinese Society of Corrosion and Protection,2003,23(5):276-281.(in Chinese)

    • [141] GRUBB J F,DEBOLD T,FRITZ J D.Corrosion of wrought stainless steels[M]//CRAMER S D,COVINO B S.ASM handbook volume 13B:corrosion:materials.Amsterdam:ASM International,2005:54-77.

    • [142] KWOK C T,MAN H C,CHENG F T.Cavitation erosion of duplex and super duplex stainless steels[J].Scripta Materialia,1998,39(9):1229-1236.

    • [143] KIM S,HEO H S.Electrochemical and cavitation-erosion characteristics of duplex stainless steels in seawater environment[J].Corrosion Science and Technology(Korea),2021,20(6):466-474.

    • [144] AL-HASHEM A,RIAD W.The effect of duplex stainless steel microstructure on its cavitation morphology in seawater[J].Materials Characterization,2001,47(5):389-395.

    • [145] SARAVANAN S,RAGHUKANDAN K,SIVAGURUMANIKANDAN N.Pulsed Nd:YAG laser welding and subsequent post-weld heat treatment on super duplex stainless steel[J].Journal of Manufacturing Processes,2017,25:284-289.

    • [146] ZHANG Z Y,ZHAO H,ZHANG H Z,et al.Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment[J].Corrosion Science,2017,121:22-31.

    • [147] RICHARDSON I.Overview[M]//POWELL C.Guide to nickel aluminium bronze for engineers.New York:Copper Development Association,2016:6-9.

    • [148] British Standard(BSI).Copper and copper alloys.Wrought and unwrought forging stock:BS EN 12165:2016[S].London:BSI,2016.

    • [149] RICHARDSON I.Alloying elements and microstructural phases[M]//POWELL C.Guide to nickel aluminium bronze for engineers.New York:Copper Development Association,2016:21-25.

    • [150] RICHARDSON I.Guide to nickel aluminium bronze for engineers[M].New York:Copper Development Association,2016.

    • [151] CULPAN E A,ROSE G.Microstructural characterization of cast nickel aluminum bronze[J].Journal of Materials Science,1978,13(8):1647-1657.

    • [152] HASAN F,JAHANAFROOZ A,LORIMER G W,et al.The morphology,crystallography,and chemistry of phases in as-cast nickel-aluminum bronze[J].Metallurgical Transactions A:Physical Metallurgy and Materials Science,1982,13(8):1337-1345.

    • [153] HASAN F,IQBAL J,RIDLEY N.Microstructure of as-cast aluminium bronze containing iron[J].Materials Science and Technology,1985,1(4):312-315.

    • [154] LORIMER G W,HASAN F,IQBAL J,et al.Observation of microstructure and corrosion behaviour of some aluminium bronzes[J].British Corrosion Journal,1986,21(4):244-248.

    • [155] OAKLEY R S,GALSWORTHY J C,FOX G S,et al.Long-term and accelerated corrosion testing methods for cast nickel-aluminium bronzes in seawater[M]//FÉRON D.Corrosion behaviour and protection of copper and aluminium alloys in seawater.Woodhead Publishing.2007:119-127.

    • [156] AL-HASHEM A,CACERES P G,RIAD W T,et al.Cavitation corrosion behavior of cast nickel-aluminum bronze in seawater[J].Corrosion,1995,51(5):331-342.

    • [157] AL-HASHEM A,RIAD W.The role of microstructure of nickel-aluminium-bronze alloy on its cavitation corrosion behavior in natural seawater[J].Materials Characterization,2002,48(1):37-41.

    • [158] NAKHAIE D,DAVOODI A,IMANI A.The role of constituent phases on corrosion initiation of NiAl bronze in acidic media studied by SEM-EDS,AFM and SKPFM[J].Corrosion Science,2014,80:104-110.

    • [159] SONG Q,ZHENG Y,NI D,et al.Studies of the nobility of phases using scanning Kelvin probe microscopy and its relationship to corrosion behaviour of Ni-Al bronze in chloride media[J].Corrosion Science,2015,92:95-103.

    • [160] SONG Q N,XU N,BAO Y F,et al.Corrosion and cavitation erosion behaviors of two marine propeller materials in clean and sulfide-polluted 3.5% NaCl solutions[J].Acta Metallurgica Sinica(English Letters),2017,30(8):712-720.

    • [161] TUCK C D S,POWELL C A,NUTTALL J.Corrosion of copper and its alloys[M]//COTTIS B,GRAHAM M,LINDSAY R,et al.Shreir’s corrosion.Oxford:Elsevier,2010:1937-1973.

    • [162] ZHANG L,MA A,YU H,et al.Correlation of microstructure with cavitation erosion behaviour of a nickel-aluminum bronze in simulated seawater[J].Tribology International,2019,136:250-258.

    • [163] HUCINSKA J,GLOWACKA M.Cavitation erosion of copper and copper-based alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32(6):1325-1333.

    • [164] KARIMI A,MAAMOURI M,MARTIN J L.Cavitation-erosion-induced microstructures in copper single-crystals[J].Materials Science and Engineering:A,1989,113:287-296.

    • [165] QIN Z B,ZHANG Q Z,LUO Q,et al.Microstructure design to improve the corrosion and cavitation corrosion resistance of a nickel-aluminum bronze[J].Corrosion Science,2018,139:255-266.

    • [166] WU Z,CHENG Y,LIU L,et al.Effect of heat treatment on microstructure evolution and erosion-corrosion behavior of a nickel-aluminum bronze alloy in chloride solution[J].Corrosion Science,2015,98:260-270.

    • [167] SONG Q N,ZHENG Y G,JIANG S L,et al.Comparison of corrosion and cavitation erosion behaviors between the as-cast and friction-stir-processed nickel aluminum bronze[J].Corrosion,2013,69(11):1111-1121.

    • [168] LI Y,LIAN Y,SUN Y J.Cavitation erosion behavior of friction stir processed nickel aluminum bronze[J].Journal of Alloys and Compounds,2019,795:233-240.

    • [169] LI Y,LIAN Y,SUN Y J.Synergistic effect between cavitation erosion and corrosion for friction stir processed NiAl bronze in artificial seawater[J].Metals and Materials International,2021,27(12):5082-5094.

    • [170] LI Y,LIAN Y,SUN Y J.Comparison of cavitation erosion behaviors between the as-cast and friction stir processed Ni-Al bronze in distilled water and artificial seawater[J].Journal of Materials Research and Technology,2021,13:906-918.

    • [171] RIDDIHOUGH M.Stellite as a wear-resistant material[J].Tribology,1970,3(4):211-215.

    • [172] WOODFORD D A.Cavitation-erosion-induced phase transformations in alloys[J].Metallurgical Transactions,1972,3:1137-1145.

    • [173] HEATHCOCK C J,BALL A,PROTHEROE B E.Cavitation erosion of cobalt-based Stellite® alloys,cemented carbides and surface-treated low alloy steels[J].Wear,1981,74(1):11-26.

    • [174] FELLER H G,KHARRAZI Y.Cavitation erosion of metals and alloys[J].Wear,1984,93(3):249-260.

    • [175] SZALA M,CHOCYK D,SKIC A,et al.Effect of nitrogen ion implantation on the cavitation erosion resistance and cobalt-based solid solution phase transformations of HIPed Stellite 6[J].Materials,2021,14(9):2324.

    • [176] SHANKAR V,RAO K B S,MANNAN S L.Microstructure and mechanical properties of Inconel 625 superalloy[J].Journal of Nuclear Materials,2001,288(2-3):222-232.

    • [177] RAO G A,KUMAR M,SRINIVAS M,et al.Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718[J].Materials Science and Engineering:A,2003,355(1-2):114-125.

    • [178] HU H,ZHENG Y,QIN C.Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion[J].Nuclear Engineering and Design,2010,240(10):2721-2730.

    • [179] CHEN J H,WU W T.Cavitation erosion behavior of Inconel 690 alloy[J].Materials Science and Engineering:A,2008,489(1-2):451-456.

    • [180] LI Z,ZHOU J S,HAN J S,et al.Formation of cavitation-induced nanosize precipitates on the eroded surface for Inconel 718 alloy[J].Materials Letters,2016,164:267-269.

    • [181] 陈天骅,李珍,杜三明,等.Inconel 718 镍基超合金的空蚀行为研究[J].摩擦学学报,2020,40(4):415-423.CHEN Tianhua,LI Zhen,DU Sanming,et al.Investigation of the cavitation erosion behavior of Inconel 718 nickel-based superalloy[J].Tribology,2020,40(4):415-423.(in Chinese)

    • [182] MANSFELD F,LIU G,XIAO H,et al.The corrosion behavior of copper-alloys,stainless-steels and titanium in seawater[J].Corrosion Science,1994,36(12):2063-2095.

    • [183] YAN S K,SONG G L,LI Z,et al.A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments[J].Journal of Materials Science & Technology,2018,34(3):421-435.

    • [184] GAO Y K.Surface modification of TC4 titanium alloy by high current pulsed electron beam(HCPEB)with different pulsed energy densities[J].Journal of Alloys and Compounds,2013,572:180-185.

    • [185] KOVACIK J,EMMER S.Steels as materials for sonotrode tools[C]//Proceedings of the 14th Symposium on Experimental Stress Analysis and Materials Testing,May 23-25,2013,Timisoara,Romania.Durnten-Zurich:Trans Tech Publications Ltd.,2014,601:21-25.

    • [186] NEDELCU D,COJOCARU V,NEDELONI M,et al.Failure analysis of a Ti-6Al-4V ultrasonic horn used in cavitation erosion tests[J].Mechanika,2015,4:272-276.

    • [187] DIMIAN M E,MITELEA I,BORDEASU I,et al.Cavitation erosion behavior of heat treated Ti-6Al-4V alloy[C]//Proceedings of the 21st International Conference on Metallurgy and Materials,May 23-25,2012,Brno,Czech Republic.Slezska:Tanger Ltd.,2012:836-841.

    • [188] 李海斌,崔振铎,李朝阳,等.化学热处理改善 Ti-6Al-4V 钛合金耐空蚀性能的研究[J].功能材料,2014,45(7):7148-7152.LI Haibin,CUI Zhenduo,LI Zhaoyang,et al.Improving cavitation erosion resistance of Ti-6Al-4V alloy by thermochemical treatments[J].Journal of Functional Materials,2014,45(7):7148-7152.(in Chinese)

    • [189] WANG Y J,HAO E K,ZHAO X Q,et al.Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater[J].Journal of Materials Science & Technology,2022,100:169-181.

    • [190] ZHOU K S,HERMAN H.Cavitation erosion of titanium and Ti-6A1-4V:effects of nitriding[J].Wear,1982,80(1):101-113.

    • [191] ROBINSON J M,ANDERSON S,KNUTSEN R D,et al.Cavitation erosion of laser melted and laser nitrided Ti-6Al-4V[J].Materials Science and Technology,1995,11(6):611-618.

    • [192] KASPAR J,BRETSCHNEIDER J,JACOB S,et al.Microstructure,hardness and cavitation erosion behaviour of Ti-6Al-4V laser nitrided under different gas atmospheres[J].Surface Engineering,2007,23(2):99-106.

    • [193] LI H B,CUI Z D,LI Z Y,et al.Effect of gas nitriding treatment on cavitation erosion behavior of commercially pure Ti and Ti-6Al-4V alloy[J].Surface and Coatings Technology,2013,221:29-36.

    • [194] MITELEA I,DIMIAN E,BORDEASU I,et al.Ultrasonic cavitation erosion of gas nitrided Ti-6Al-4V alloys[J].Ultrasonics Sonochemistry,2014,21(4):1544-1548.

    • [195] MITELEA I,DIMIAN E,BORDEASU I,et al.Cavitation erosion of laser-nitrided Ti-6Al-4V alloys with the energy controlled by the pulse duration[J].Tribology Letters,2015,59:1-9.

    • [196] EGGELER G,HORNBOGEN E,YAWNY A,et al.Structural and functional fatigue of NiTi shape memory alloys[J].Materials Science and Engineering:A,2004,378(1-2):24-33.

    • [197] SHAW J A,KYRIAKIDES S.Thermomechanical aspects of NiTi[J].Journal of the Mechanics and Physics of Solids,1995,43(8):1243-1281.

    • [198] FRENZEL J,GEORGE E P,DLOUHY A,et al.Influence of Ni on martensitic phase transformations in NiTi shape memory alloys[J].Acta Materialia,2010,58(9):3444-3458.

    • [199] AURICCHIO F,TAYLOR R L,LUBLINER J.Shape-memory alloys:macromodelling and numerical simulations of the superelastic behavior[J].Computer Methods in Applied Mechanics and Engineering,1997,146(3-4):281-312.

    • [200] RICHMAN R H,RAO A S,HODGSON D E.Cavitation erosion of 2 NiTi alloys[J].Wear,1992,157(2):401-407.

    • [201] LIU W,ZHENG Y,LIU C,et al.Cavitation erosion characteristics of a NiTi alloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2004,35(1):356-362.

    • [202] CHENG F,SHI P,MAN H.Cavitation erosion resistance of heat-treated NiTi[J].Materials Science and Engineering:A,2003,339(1-2):312-317.

    • [203] ZHUANG D D,ZHANG S H,LIU H X,et al.Cavitation erosion behavior and anti-cavitation erosion mechanism of NiTi alloys impacted by water jet[J].Wear,2023,518:204631.

    • [204] LONG N,ZHU J.Cavitation erosion resistance of Fe-26Mn-6Si-7Cr-1Cu shapememory alloy[J].Materials Science and Technology,2003,19(12):1733-1736.

    • [205] WANG Z Y,ZHU J H.Effect of phase transformation on cavitation erosion resistance of some ferrous alloys[J].Materials Science and Engineering:A,2003,358(1-2):273-278.

    • [206] WANG Z Y,ZHU J H.Cavitation erosion of Fe-Mn-Si-Cr shape memory alloys[J].Wear,2004,256(1-2):66-72.

    • [207] POHL M,STELLA J,HESSING C.Comparative study on CuZnAl and CuMnZnAlNiFe shape memory alloys subjected to cavitation-erosion[J].Advanced Engineering Materials,2003,5(4):251-256.

    • [208] VOLKOV-HUSOVIC T,IVANIC I,KOZUH S,et al.Microstructural and cavitation erosion behavior of the CuAlNi shape memory alloy[J].Metals,2021,11(7):997.

    • [209] HOWARD R L,BALL A.The solid particle and cavitation erosion of titanium aluminide intermetallic alloys[J].Wear,1995,186(1):123-128.

    • [210] HOWARD R L L,BALL A.Mechanisms of cavitation erosion of TiAl-based titanium aluminide intermetallic alloys[J].Acta Materialia,1996,44:3157-3168.

    • [211] MAHDIPOOR M S,KIROLS H S,KEVORKOV D,et al.Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V[J].Scientific Reports,2015,5:14182.

    • [212] NAIR R B,ARORA H S,MUKHERJEE S,et al.Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy[J].Ultrasonics Sonochemistry,2018,41:252-260.

    • [213] NAIR R B,ARORA H S,GREWAL H S.Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy[J].International Journal of Minerals Metallurgy and Materials,2020,27(10):1353-1362.

    • [214] DROZDZ D,WUNDERLICH R K,FECHT H J.Cavitation erosion behaviour of Zr-based bulk metallic glasses[J].Wear,2007,262(1-2):176-183.

    • [215] ARORA H S,GREWAL H S,SINGH H,et al.Unusually high erosion resistance of zirconium-based bulk metallic glass[J].Journal of Materials Research,2013,28(22):3185-3189.

    • [216] JI X L,ZHAO J H,ZHANG X W,et al.Erosion-corrosion behavior of Zr-based bulk metallic glass in saline-sand slurry[J].Tribology International,2013,60:19-24.

    • [217] WANG W F,WANG M C,SUN F J,et al.Microstructure and cavitation erosion characteristics of Al-Si alloy coating prepared by electrospark deposition[J].Surface and Coatings Technology,2008,202(21):5116-5121.

    • [218] 刘诗汉,陈大融.双相钢空蚀破坏的力学机制[J].金属学报,2009,45(5):519-526.LIU Shihan,CHEN Darong.Mechanics mechanism of duplex steel cavitation damage[J].Acta Metallurgica Sinica,2009,45(5):519-526.(in Chinese)

    • [219] 马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)

    • [220] PAWLOWSKI L.Thermal spraying techniques[M].Hoboken:John Wiley & Sons.2008:67-113.

    • [221] KWOK C T,MAN H C,CHENG F T,et al.Developments in laser-based surface engineering processes:with particular reference to protection against cavitation erosion[J].Surface and Coatings Technology,2016,291:189-204.

    • [222] MENDEZ P F,BARNES N,BELL K,et al.Welding processes for wear resistant overlays[J].Journal of Manufacturing Processes,2014,16(1):4-25.

    • [223] SIMONEAU R.Austenitic stainless steel with high cavitation erosion resistance:US04751046A[P].1986-06-14.

    • [224] KOGA G Y,WOLF W,SCHULZ R,et al.Corrosion and wear properties of FeCrMnCoSi HVOF coatings[J].Surface and Coatings Technology,2019,357:993-1003.

    • [225] KUMAR A,BOY J,ZATORSKI R,et al.Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps:A technical note[J].Journal of Thermal Spray Technology,2005,14(2):177-182.

    • [226] WILL C R,CAPRA A R,PUKASIEWICZ A G M,et al.Comparative study of three austenitic alloy with cobalt resistant to cavitation deposited by plasma welding[J].Welding International,2012,26(2):96-103.

    • [227] RUDOLF P,JULIS M,KLAKURKOVA L,et al.Cavitation erosion testing of different cavitation-resistent materials and coatings using the cavitating jet method[C]//Proceedings of the 29th IAHR Symposium on Hydraulic Machinery and Systems(IAHR),September 16-21,2018,Kyoto,Japan.Bristol:IOP Publishing Ltd.,2019,240:062057.

    • [228] LAVIGNE S,POUGOUM F,SAVOIE S,et al.Cavitation erosion behavior of HVOF CaviTec coatings[J].Wear,2017,386-387:90-98.

    • [229] LEE M K,KIM W W,RHEE C K,et al.Investigation of liquid impact erosion for 12Cr steel and Stellite 6B[J].Journal of Nuclear Materials,1998,257(2):134-144.

    • [230] HATTORI S,MIKAMI N.Cavitation erosion resistance of stellite alloy weld overlays[J].Wear,2009,267(11):1954-1960.

    • [231] ROMO S A,SANTA J F,GIRALDO J E,et al.Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy[J].Tribology International,2012,47:16-24.

    • [232] SINGH R,KUMAR D,MISHRA S K,et al.Laser cladding of Stellite 6 on stainless steel to enhance solid particle erosion and cavitation resistance[J].Surface and Coatings Technology,2014,251:87-97.

    • [233] DING Y P,YAO J H,LIU R,et al.Effects of surface treatment on the cavitation erosion-corrosion performance of 17-4PH stainless steel in sodium chloride solution[J].Journal of Materials Engineering and Performance,2020,29(4):2687-2696.

    • [234] ZHANG Q L,WU L J,ZOU H S,et al.Correlation between microstructural characteristics and cavitation resistance of Stellite-6 coatings on 17-4 PH stainless steel prepared with supersonic laser deposition and laser cladding[J].Journal of Alloys and Compounds,2021,860:158417.

    • [235] DING Y P,LIU R,YAO J H,et al.Stellite alloy mixture hardfacing via laser cladding for control valve seat sealing surfaces[J].Surface and Coatings Technology,2017,329:97-108.

    • [236] SILVA H R,FERRARESI V A.Effect of cobalt alloy addition in erosive wear and cavitation of coatings welds[J].Wear,2019,426:302-313.

    • [237] SREEDHAR B K,ALBERT S K,PANDIT A B.Improving cavitation erosion resistance of austenitic stainless steel in liquid sodium by hardfacing-comparison of Ni and Co based deposits[J].Wear,2015,342:92-99.

    • [238] AL-FADHLI H Y,STOKES J,HASHMI M S J,et al.The erosion-corrosion behaviour of high velocity oxy-fuel(HVOF)thermally sprayed inconel-625 coatings on different metallic surfaces[J].Surface and Coatings Technology,2006,200(20-21):5782-5788.

    • [239] JIA Q B,GU D D.Selective laser melting additive manufacturing of Inconel 718 superalloy parts:densification,microstructure and properties[J].Journal of Alloys and Compounds,2014,585:713-721.

    • [240] ABIOYE T E,MCCARTNEY D G,CLARE A T.Laser cladding of Inconel 625 wire for corrosion protection[J].Journal of Materials Processing Technology,2015,217:232-240.

    • [241] SANDHU S S,SHAHI A S.Metallurgical,wear and fatigue performance of Inconel 625 weld claddings[J].Journal of Materials Processing Technology,2016,233:1-8.

    • [242] YUAN X J,QIU H F,ZENG F Q,et al.Microstructural evolution and mechanical properties of Inconel 625 superalloy fabricated by pulsed microplasma rapid additive manufacturing[J].Journal of Manufacturing Processes,2022,77:63-74.

    • [243] JIANG X J,OVERMAN N,SMITH C,et al.Microstructure,hardness and cavitation erosion resistance of different cold spray coatings on stainless steel 316 for hydropower applications[J].Materials Today Communications,2020,25:101305.

    • [244] KAZASIDIS M,YIN S,CASSIDY J,et al.Microstructure and cavitation erosion performance of nickel-Inconel 718 composite coatings produced with cold spray[J].Surface and Coatings Technology,2020,382:125195.

    • [245] TAILLON G,MIYAGAWA K.Cavitation erosion of Ni-based superalloys manufactured by forging and additive manufacturing[J].Journal of Failure Analysis and Prevention,2021,21(5):1902-1917.

    • [246] WANG B,WANG Y D,ZHANG Z H.WC-M coating to improve resistance of hydraulic turbines to cavitation erosion and abrasion[J].Transactions of Nonferrous Metals Society of China,2003,13(4):893-897.

    • [247] 高云涛,李翠林,郭维.高速火焰喷涂技术在刘家峡水电厂水轮机抗磨蚀方面的应用[J].陕西电力,2008,36(5):51-53.GAO Yuntao,LI Cuilin,GUO Wei.Application of HVOF technology in anti-abrasion for hydraulic turbine in Liujiaxia hydropower station[J].Shanxi Electric Power,2008,36(5):51-53.(in Chinese)

    • [248] 王者昌,陈静.水轮机抗空蚀磨损金属复层方法、材料和应用[J].焊接,2009,2:38-46.WANG Zhechang,CHEN Jing.Compound metal layer with cavitation erosion and abrasion resistance and its application in hydraulic turbine[J].Welding,2009,2:38-46.(in Chinese)

    • [249] KUMAR H,CHITTOSIYA C,SHUKLA V N.HVOF sprayed WC based cermet coating for mitigation of cavitation,erosion & abrasion in hydro turbine blade[C]//Proceedings of the 7th International Conference of Materials Processing and Characterization(ICMPC),March 17-19,2017,Gokaraju Rangaraju Inst Engn & Technol,Hyderabad,India.Amsterdam:Elsevier,2018,5(2):6413-6420.

    • [250] HONG S,WU Y P,WU J H,et al.Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines[J].Renewable Energy,2021,164:1089-1099.

    • [251] LIU J,CHEN T Z,YUAN C Q,et al.Performance analysis of cavitation erosion resistance and corrosion behavior of HVOF-sprayed WC-10Co-4Cr,WC-12Co,and Cr3C2-NiCr coatings[J].Journal of Thermal Spray Technology,2020,29(4):798-810.

    • [252] PIOLA R,ANG A S M,LEIGH M,et al.A comparison of the antifouling performance of air plasma spray(APS)ceramic and high velocity oxygen fuel(HVOF)coatings for use in marine hydraulic applications[J].Biofouling,2018,34(5):479-491.

    • [253] HONG S,WU Y P,ZHANG J F,et al.Cavitation erosion behavior and mechanism of HVOF sprayed WC-10Co-4Cr coating in 3.5wt.% NaCl solution[J].Transactions of the Indian Institute of Metals,2015,68(1):151-159.

    • [254] DING X,HUANG Y,YUAN C Q,et al.Deposition and cavitation erosion behavior of multimodal WC-10Co4Cr coatings sprayed by HVOF[J].Surface and Coatings Technology,2020,392:125757.

    • [255] LIU X B,KANG J J,YUE W,et al.Cavitation erosion behavior of HVOF sprayed WC-10Co4Cr cermet coatings in simulated sea water[J].Ocean Engineering,2019,190:106449.

    • [256] WU Y P,HONG S,ZHANG J F,et al.Microstructure and cavitation erosion behavior of WC-Co-Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying[J].International Journal of Refractory Metals & Hard Materials,2012,32:21-26.

    • [257] HONG S,WU Y P,ZHANG J F,et al.Ultrasonic cavitation erosion of high-velocity oxygen-fuel(HVOF)sprayed near-nanostructured WC-10Co-4Cr coating in NaCl solution[J].Ultrasonics Sonochemistry,2015,26:87-92.

    • [258] ZHANG H J,CHEN X Y,GONG Y F,et al.In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings[J].Ultrasonics Sonochemistry,2020,60:104760.

    • [259] LIN J R,HONG S,ZHENG Y,et al.Cavitation erosion resistance in NaCl medium of HVOF sprayed WC-based cermet coatings at various flow velocities:a comparative study on the effect of Ni and CoCr binder phases[J].International Journal of Refractory Metals & Hard Materials,2021,94:105407.

    • [260] LIMA M M,GODOY C,MODENESI P J,et al.Coating fracture toughness determined by Vickers indentation:an important parameter in cavitation erosion resistance of WC-Co thermally sprayed coatings[J].Surface and Coatings Technology,2004,177-178:489-496.

    • [261] VARIS T,SUHONEN T,GHABCHI A,et al.Formation mechanisms,structure,and properties of HVOF-sprayed WC-CoCr coatings:an approach toward process maps[J].Journal of Thermal Spray Technology,2014,23(6):1009-1018.

    • [262] DING X,CHENG X D,YUAN C Q,et al.Structure of micro-nano WC-10Co4Cr coating and cavitation erosion resistance in NaCl solution[J].Chinese Journal of Mechanical Engineering,2017,30(5):1239-1247.

    • [263] DING X,CHENG X D,YU X,et al.Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC-10Co4Cr coating[J].Transactions of Nonferrous Metals Society of China,2018,28(3):487-494.

    • [264] DING X,KE D,YUAN C Q,et al.Microstructure and cavitation erosion resistance of HVOF deposited WC-Co coatings with different sized WC[J].Coatings,2018,8(9):307.

    • [265] LAMANA M S,PUKASIEWICZ A G M,SAMPATH S.Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings[J].Wear,2018,398-399:209-219.

    • [266] KANNO A,TAKAGI K,ARAI M.Influence of chemical composition,grain size,and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings[J].Surface and Coatings Technology,2020,394:125881.

    • [267] WANG Q,TANG Z X,CHA L M.Cavitation and sand slurry erosion resistances of WC-10Co-4Cr coatings[J].Journal of Materials Engineering and Performance,2015,24(6):2435-2443.

    • [268] DU J,ZHANG J F,ZHANG C.Effect of heat treatment on the cavitation erosion performance of WC-12Co coatings[J].Coatings,2019,9(10):690.

    • [269] BECKER A,BERTOUL K,PUKASIEWICZ A G M,et al.Influence of fuel/oxygen ratio on coating properties and cavitation resistance of WC and Cr3C2 cermet coatings deposited by HVOF[C]//Thermal Spray 2021:Proceedings from the International Thermal Spray Conference,May 24-28,2021,Quebec City,Canada.Amsterdam:ASM International,2021:716-721.

    • [270] VARIS T,SUHONEN T,LAAKSO J,et al.Evaluation of residual stresses and their influence on cavitation erosion resistance of high kinetic HVOF and HVAF-sprayed WC-CoCr coatings[J].Journal of Thermal Spray Technology,2020,29(6):1365-1381.

    • [271] DING Z X,CHEN W,WANG Q.Resistance of cavitation erosion of multimodal WC-12Co coatings sprayed by HVOF[J].Transactions of Nonferrous Metals Society of China,2011,21(10):2231-2236.

    • [272] 丁彰雄,胡一鸣,赵辉.HVOF 制备的微纳米结构 WC-12Co 涂层组织结构与抗空蚀性能[J].摩擦学学报,2013,33(5):429-435.DING Zhangxiong,HU Yiming,ZHAO Hui.Structures and resistance of cavitation erosion micro-nanostructured WC-12Co cotings sprayed by HVOF[J].Tribology,2013,33(5):429-435.(in Chinese)

    • [273] HONG S,WU Y P,WU J H,et al.Effect of flow velocity on cavitation erosion behavior of HVOF sprayed WC-10Ni and WC-20Cr3C2-7Ni coatings[J].International Journal of Refractory Metals & Hard Materials,2020,92:105330.

    • [274] WANG H H,WU Y P,CHENG J B,et al.Effect of binder phases on the cavitation erosion behavior of HVOF sprayed WC-based coatings[J].Surface and Coatings Technology,2023,472:129887.

    • [275] WEI Z Y,SHI X L,CUI D D,et al.Effect of 3.5% NaCl solution with different Na2S concentrations on ultrasonic cavitation erosion behaviors of HVOF sprayed WC-Ni coatings[J].Ultrasonics Sonochemistry,2023,101:106707.

    • [276] KOROBOV Y,ALWAN H,SOBOLEVA N,et al.Cavitation resistance of WC-10Co4Cr and WC-20CrC-7Ni HVAF coatings[J].Journal of Thermal Spray Technology,2022,31:234-246.

    • [277] THAKUR L,ARORA N.A study of processing and slurry erosion behaviour of multi-walled carbon nanotubes modified HVOF sprayed nano-WC-10Co-4Cr coating[J].Surface and Coatings Technology,2017,309:860-871.

    • [278] TIAN Y,YANG R,GU Z,et al.Ultrahigh cavitation erosion resistant metal-matrix composites with biomimetic hierarchical structure[J].Composites Part B:Engineering,2022,234:109730.

    • [279] YANG R,HUANG N,TIAN Y,et al.Insights into the exceptional cavitation erosion resistance of laser surface melted Ni-WC composites:the effects of WC morphology and distribution[J].Surface and Coatings Technology,2022,444:128685.

    • [280] YANG R,TIAN Y,HUANG N L,et al.Effects of CeO2 addition on microstructure and cavitation erosion resistance of laser-processed Ni-WC composites[J].Materials Letters,2022,311:131583.

    • [281] CHENG F T,KWOK C T,MAN H C.Cavitation erosion resistance of stainless steel laser-clad with WC-reinforced MMC[J].Materials Letters,2002,57(4):969-974.

    • [282] LO K H,CHENG F T,MAN H C.Cavitation erosion mechanism of S31600 stainless steel laser surface-modified with unclad WC[J].Materials Science and Engineering:A,2003,357(1-2):168-180.

    • [283] LO K H,CHENG F T,KWOK C T,et al.Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder[J].Surface and Coatings Technology,2003,165(3):258-267.

    • [284] TAM K F,CHENG F T,MAN H C.Cavitation erosion behavior of laser-clad Ni-Cr-Fe-WC on brass[J].Materials Research Bulletin,2002,37(7):1341-1351.

    • [285] DURAISELVAM M,GALUN R,WESLING V,et al.Laser clad WC reinforced Ni-based intermetallic-matrix composites to improve cavitation erosion resistance[J].Journal of Laser Applications,2006,18(4):297-304.

    • [286] ZHANG X B,LIU C S,LIU X D,et al.Cavitation erosion behavior of WC coatings on CrNiMo stainless steel by laser alloying[J].International Journal of Minerals Metallurgy and Materials,2009,16(2):203-207.

    • [287] BAO Y F,GUO L P,ZHONG C H,et al.Effects of WC on the cavitation erosion resistance of FeCoCrNiB0.2 high entropy alloy coating prepared by laser cladding[J].Materials Today Communications,2021,26:102154.

    • [288] MA D,HARVEY T J,ZHUK Y N,et al.Cavitation erosion performance of CVD W/WC coatings[J].Wear,2020,452:203276.

    • [289] BABU A,ARORA H S,GREWAL H S.Development of cavitation erosion-resistant microwave processed WC-based cladding[J].Tribology Transactions,2021,64(6):1118-1126.

    • [290] HONG S,SHI X L,LIN J R,et al.Microstructure and cavitation-silt erosion behavior of two HVOF-sprayed hardfacing coatings for hydro-turbine applications[J].Alexandria Engineering Journal,2023,69:483-496.

    • [291] TAILLON G,POUGOUM F,LAVIGNE S,et al.Cavitation erosion mechanisms in stainless steels and in composite metal-ceramic HVOF coatings[J].Wear,2016,364:201-210.

    • [292] YANG X Y,ZHANG J F,LI G Y.Cavitation erosion behaviour and mechanism of HVOF-sprayed NiCrBSi-(Cr3C2-NiCr)composite coatings[J].Surface Engineering,2018,34(3):211-219.

    • [293] MATIKAINEN V,KOIVULUOTO H,VUORISTO P,et al.Effect of nozzle geometry on the microstructure and properties of HVAF-sprayed WC-10Co4Cr and Cr3C2-25NiCr coatings[J].Journal of Thermal Spray Technology,2018,27(4):680-694.

    • [294] MATIKAINEN V,KOIVULUOTO H,VUORISTO P.A study of Cr3C2-based HVOF-and HVAF-sprayed coatings:abrasion,dry particle erosion and cavitation erosion resistance[J].Wear,2020,446:203188.

    • [295] LUIZ L A,DE ANDRADE J,PESQUEIRA C M,et al.Corrosion behavior and galvanic corrosion resistance of WC and Cr3C2 cermet coatings in Madeira River water[J].Journal of Thermal Spray Technology,2021,30(1-2):205-221.

    • [296] HONG S,WU Y P,WANG Q,et al.Microstructure and cavitation-silt erosion behavior of high-velocity oxygen-fuel(HVOF)sprayed Cr3C2-NiCr coating[J].Surface and Coatings Technology,2013,225:85-91.

    • [297] STELLA J,POIRIER T,POHL M.Cavitation-erosion of 3Y-TZPs obtained at different sintering temperatures[J].Wear,2013,300(1-2):163-168.

    • [298] WANG Y,DARUT G,POIRIER T,et al.Cavitation erosion of plasma sprayed YSZ coatings produced by feedstocks with different initial sizes[J].Tribology International,2017,111:226-233.

    • [299] WANG Y,STELLA J,DARUT G,et al.APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion[J].Journal of Alloys and Compounds,2017,699:1095-1103.

    • [300] DENG W,AN Y L,HOU G L et al.Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings[J].Ultrasonics Sonochemistry,2018,46:1-9.

    • [301] WANG Y,LEBON B,TZANAKIS I,et al.Experimental and numerical investigation of cavitation-induced erosion in thermal sprayed single splats[J].Ultrasonics Sonochemistry,2019,52:336-343.

    • [302] YILMAZ S,IPEK M,CELEBI G F,et al.The effect of bond coat on mechanical properties of plasma-sprayed Al2O3 and Al2O3-13wt.% TiO2 coatings on AISI 316L stainless steel[J].Vacuum,2005,77(3):315-321.

    • [303] YILMAZ R,KURT A O,DEMIR A,et al.Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating[J].Journal of the European Ceramic Society,2007,27(2-3):1319-1323.

    • [304] PORTER J,SUHL L.Anti-fouling coating process:5080926[P].1992-01-14.

    • [305] GOSTEVA I,MORGALEV Y,MORGALEVA T,et al.Effect of Al2O3 and TiO2 nanoparticles on aquatic organisms[C]//Proceedings of the 3rd International Youth Conference on Interdisciplinary Problems of Nanotechnology,May 21-22,2015,Tambov,Russia.Bristol:IOP Publishing Ltd.,2015,98:012007.

    • [306] JAFARZADEH K,VALEFI Z,GHAVIDEL B.The effect of plasma spray parameters on the cavitation erosion of Al2O3-TiO2 coatings[J].Surface and Coatings Technology,2010,205(7):1850-1855.

    • [307] HU H,JIANG S,TAO Y,et al.Cavitation erosion and jet impingement erosion mechanism of cold sprayed Ni-Al2O3 coating[J].Nuclear Engineering and Design,2011,241(12):4929-4937.

    • [308] LATKA L,SZALA M,MICHALAK M,et al.Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3-13% TiO2 coatings[J].Acta Physica Polonica A,2019,136(2):342-347.

    • [309] SZALA M,LATKA L,WALCZAK M,et al.Comparative study on the cavitation erosion and sliding wear of cold-sprayed Al/Al2O3 and Cu/Al2O3 coatings,and stainless steel,aluminium alloy,copper and brass[J].Metals,2020,10(7):856.

    • [310] SZALA M,LATKA L,AWTONIUK M,et al.Neural modelling of APS thermal spray process parameters for optimizing the hardness,porosity and cavitation erosion resistance of Al2O3-13wt.% TiO2 Coatings[J].Processes,2020,8(12):1544.

    • [311] SZALA M,HEJWOWSKI T.Cavitation erosion resistance and wear mechanism model of flame-sprayed Al2O3-40% TiO2/NiMoAl cermet coatings[J].Coatings,2018,8(7):254.

    • [312] PANDEY S,BANSAL A,OMER A,et al.Effect of fuel pressure,feed rate,and spray distance on cavitation erosion of Rodojet sprayed Al2O3+50% TiO2 coated AISI410 steel[J].Surface and Coatings Technology,2021,410:126961.

    • [313] KIILAKOSKI J,PURANEN J,HEINONEN E,et al.Characterization of powder-precursor HVOF-sprayed Al2O3-YSZ/ZrO2 coatings[J].Journal of Thermal Spray Technology,2019,28(1-2):98-107.

    • [314] ARORA H S,RANI M,PERUMAL G,et al.Enhanced cavitation erosion-corrosion resistance of high-velocity oxy-fuel-sprayed Ni-Cr-Al2O3 coatings through stationary friction processing[J].Journal of Thermal Spray Technology,2020,29(5):1183-1194.

    • [315] CHENG F T,KWOK C T,MAN H C.Laser surfacing of S31603 stainless steel with engineering ceramics for cavitation erosion resistance[J].Surface and Coatings Technology,2001,139(1):14-24.

    • [316] WU H,WANG L,ZHANG S,et al.Corrosion and cavitation erosion behaviors of laser clad FeNiCoCr high-entropy alloy coatings with different types of TiC reinforcement[J].Surface and Coatings Technology,2023,471,15:129910.

    • [317] ZHANG H,WANG L,ZHANG S,et al.An investigation on wear and cavitation erosion-corrosion characteristics of the TiC modified Fe-based composite coating via laser cladding[J].Journal of Materials Research and Technology,2023,26:8440-8455.

    • [318] RAMPAL,SINGLA A K,BANSAL A,et al.Development,characterization,and cavitation erosion analysis of high velocity oxy-fuel(HVOF)sprayed TiC and(70Cu-30Ni)-Cr based composite coatings on SS316 steel[J].Tribology International,2023,186:108621.

    • [319] BAKHSHANDEH H R,ALLAHKARAM S R,ZABIHI A H.An investigation on cavitation-corrosion behavior of Ni/β-SiC nanocomposite coatings under ultrasonic field[J].Ultrasonics Sonochemistry,2019,56:229-239.

    • [320] GUO W M,WU Y P,ZHANG J F,et al.Fabrication and characterization of thermal-sprayed Fe-based amorphous/nanocrystalline composite coatings:An overview[J].Journal of Thermal Spray Technology,2014,23(7):1157-1180.

    • [321] SOUZA C A C,RIBEIRO D V,KIMINAMI C S.Corrosion resistance of Fe-Cr-based amorphous alloys:An overview[J].Journal of Non-Crystalline Solids,2016,442:56-66.

    • [322] HUANG B,ZHANG C,ZHANG G,et al.Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings:A review[J].Surface and Coatings Technology,2019,377:124896.

    • [323] VAZ R F,PUKASIEWICZ A G M,SIQUEIRA I B A F,et al.Thermal spraying of FeMnCrSi alloys:An overview[C]//Thermal Spray 2021:Proceedings from the International Thermal Spray Conference,May 24-28,2021,Quebec City,Canada.Amsterdam:ASM International,2021:431-439.

    • [324] HOU G L,ZHAO X Q,ZHOU H D,et al.Cavitation erosion of several oxy-fuel sprayed coatings tested in deionized water and artificial seawater[J].Wear,2014,311(1-2):81-92.

    • [325] WU Y P,LIN P H,CHU C L,et al.Cavitation erosion characteristics of a Fe-Cr-Si-B-Mn coating fabricated by high velocity oxy-fuel(HVOF)thermal spray[J].Materials Letters,2007,61(8-9):1867-1872.

    • [326] WANG Z H,ZHANG X,CHENG J B,et al.Cavitation erosion resistance of Fe-based amorphous/nanocrystal coatings prepared by high-velocity arc spraying[J].Journal of Thermal Spray Technology,2014,23(4):742-749.

    • [327] KIM Y J,JANG J W,LEE D W,YI S.Porosity effects of a Fe-based amorphous/nanocrystals coating prepared by a commercial high velocity oxy-fuel process on cavitation erosion behaviors[J].Metals and Materials International,2015,21(4):673-677.

    • [328] ZHENG Z B,ZHENG Y G,SUN W H,et al.Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution[J].Corrosion Science,2013,76:337-347.

    • [329] ZHENG Z B,ZHENG Y G,SUN W H,et al.Effect of applied potential on passivation and erosion-corrosion of a Fe-based amorphous metallic coating under slurry impingement[J].Corrosion Science,2014,82:115-124.

    • [330] ZHENG Z B,ZHENG Y G,SUN W H,et al.Effect of heat treatment on the structure,cavitation erosion and erosion-corrosion behavior of Fe-based amorphous coatings[J].Tribology International,2015,90:393-403.

    • [331] HUANG F,KANG J J,YUE W,et al.Effect of heat treatment on erosion-corrosion of Fe-based amorphous alloy coating under slurry impingement[J].Journal of Alloys and Compounds,2020,820:153132.

    • [332] LIU M M,WANG Z B,HU H X,et al.Effect of sealing treatments on erosion-corrosion of a Fe-based amorphous metallic coating in 3.5wt.% NaCl solution with 2wt.% sand[J].Metals,2022,12(4):680.

    • [333] LIN J R,WANG Z H,LIN P H,et al.Microstructure and cavitation erosion behavior of FeNiCrBSiNbW coating prepared by twin wires arc spraying process[J].Surface and Coatings Technology,2014,240:432-436.

    • [334] LIN J R,WANG Z H,LIN P H,et al.Effects of post annealing on the microstructure,mechanical properties and cavitation erosion behavior of arc-sprayed FeNiCrBSiNbW coatings[J].Materials & Design,2015,65:1035-1040.

    • [335] LIN J R,WANG Z H,CHENG J B,et al.Effect of initial surface roughness on cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings[J].Coatings,2017,7(11):200.

    • [336] LIN J R,WANG Z H,CHENG J B,et al.Evaluation of cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings in NaCl solution[J].Results in Physics,2019,12:597-602.

    • [337] WANG J W,YANG R,TIAN Y,et al.Effect of annealing on the cavitation erosion resistance of HVOF-sprayed Fe-based amorphous composite coatings[J].Journal of Thermal Spray Technology,2023,32(6):1758-1771.

    • [338] RICHMAN R H,RAO A S,KUNG D.Cavitation erosion of NiTi explosively welded to steel[J].Wear,1995,181:80-85.

    • [339] HIRAGA H,INOUE T,SHIMURA H,et al.Cavitation erosion mechanism of NiTi coatings made by laser plasma hybrid spraying[J].Wear,1999,231(2):272-278.

    • [340] CHENG F T,SHI P,MAN H C.Effect of electrolytic hydrogen pre-charging on the cavitation erosion resistance of NiTi:A preliminary study[J].Scripta Materialia,2002,47(2):89-94.

    • [341] CHENG F T,LO K H,MAN H C.NiTi cladding on stainless steel by TIG surfacing process Part I.Cavitation erosion behavior[J].Surface and Coatings Technology,2003,172(2-3):308-315.

    • [342] CHIU K Y,CHENG F T,MAN H C.Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi[J].Materials Science and Engineering:A,2005,392(1-2):348-358.

    • [343] CHIU K Y,CHENG F T,MAN H C.Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion[J].Materials Science and Engineering:A,2005,402(1-2):126-134.

    • [344] CHIU K Y,CHENG F T,MAN H C.Corrosion behavior of AISI 316L stainless steel surface-modified with NiTi[J].Surface and Coatings Technology,2006,200(20-21):6054-6061.

    • [345] CHIU K Y,CHENG F T,MAN H C.Hydrogen effect on the cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi[J].Materials Letters,2007,61(1):239-243.

    • [346] CHEN J,HE J,CHEN K,et al.Gas tungsten arc cladding of titanium-nickel overlays onto the carbon steel and stainless steel for cavitation erosion resistance[J].Key Engineering Materials,2010,479:81-89.

    • [347] SHI Z P,WANG Z B,WANG J Q,et al.Effect of Ni interlayer on cavitation erosion resistance of NiTi cladding by tungsten inert gas(TIG)surfacing process[J].Acta Metallurgica Sinica(English Letters),2020,33(3):415-424.

    • [348] SHI Z,WANG Z,CHEN F,et al.Cavitation erosion and corrosion behavior of NiTi cladding with Cu and Nb interlayers[J].Journal of Materials Engineering and Performance,2020,29(6):3840-3851.

    • [349] STELLA J,SCHULLER E,HESSING C,et al.Cavitation erosion of plasma-sprayed NiTi coatings[J].Wear,2006,260(9-10):1020-1027.

    • [350] BITZER M,RAUHUT N,MAUER G,et al.Cavitation-resistant NiTi coatings produced by low-pressure plasma spraying(LPPS)[J].Wear,2015,328:369-377.

    • [351] SHI Z P,WANG J Q,WANG Z B,et al.Cavitation erosion and jet impingement erosion behavior of the NiTi coating produced by air plasma spraying[J].Coatings,2018,8(10):346.

    • [352] WEI X L,BAN A L,ZHU W Y,et al.Cavitation erosion resistance of TiNi-based composite coating deposited by APS[J].Journal of Thermal Spray Technology,2021,30(4):937-945.

    • [353] WEI X L,ZHU W Y,BAN A L,et al.Effects of Co addition on microstructure and cavitation erosion resistance of plasma sprayed TiNi based coating[J].Surface and Coatings Technology,2021,409:126838.

    • [354] MAUER G,RAUWALD K H,SOHN Y J,et al.Cold gas spraying of nickel-titanium coatings for protection against cavitation[J].Journal of Thermal Spray Technology,2021,30(1-2):131-144.

    • [355] YANG L,TIEU A K,DUNNE D P,et al.Cavitation erosion resistance of NiTi thin films produced by Filtered Arc Deposition[J].Wear,2009,267(1-4):233-243.

    • [356] KUMAR G R,RAJYALAKSHMI G,SWAROOP S.A critical appraisal of laser peening and its impact on hydrogen embrittlement of titanium alloys[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2019,233(13):2371-2398.

    • [357] KWOK C T,CHENG F T,MAN H C.Laser surface modification of UNS S31603 stainless steel using NiCrSiB alloy for enhancing cavitation erosion resistance[J].Surface and Coatings Technology,1998,107(1):31-40.

    • [358] KWOK C T,CHENG F T,MAN H C.Laser surface modification of UNS S31603 stainless steel.Part II:cavitation erosion characteristics[J].Materials Science and Engineering:A,2000,290(1-2):74-88.

    • [359] KWOK C T,MAN H C,CHENG F T.Cavitation erosion-corrosion behaviour of laser surface alloyed AISI 1050 mild steel using NiCrSiB[J].Materials Science and Engineering:A,2001,303(1-2):250-261.

    • [360] MAN H,ZHANG S,YUE T,et al.Laser surface alloying of NiCrSiB on Al6061 aluminium alloy[J].Surface and Coatings Technology,2001,148(2-3):136-142.

    • [361] ZHANG X B,CHANG X,WEI T,et al.Microstructure and cavitation-erosion mechanism of laser cladding NiCrSiB coating on CrNiMo stainless steel[J].Advanced Materials Research,2010,154-155:1788-1791.

    • [362] ZHANG C H,WU C L,ZHANG S,et al.Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance[J].Rare Metals,2016,41:4257-4265.

    • [363] ZHANG S,WU C L,ZHANG C H,et al.Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance[J].Optics and Laser Technology,2016,84:23-31.

    • [364] WU C L,ZHANG S,ZHANG C H,et al.Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying[J].Journal of Alloys and Compounds,2017,698:761-770.

    • [365] WEI Z,WU Y P,HONG S,et al.Effect of WC-10Co on cavitation erosion behaviors of AlCoCrFeNi coatings prepared by HVOF spraying[J].Ceramics International,2021,47(11):15121-15128.

    • [366] WEI Z,WU Y P,HONG S,et al.Electrochemical properties and cavitation erosion behaviors of HVOF sprayed(AlCoCrFeNi)(1-x)(WC-10Co)(x) composite coatings in NaCl medium[J].Ceramics International,2021,47(20):29410-29422.

    • [367] 侯国梁,安宇龙,赵晓琴,等.Co-28Mo-8Cr-2Si 涂层在去离子水和人工海水中的气蚀性能[J].中国表面工程,2014,27(1):12-17.HOU Guoliang,AN Yulong,ZHAO Xiaoqin,et al.Cavitation erosion behavior of Co-28Mo-8Cr-2Si coating in deionized water and artificial seawater[J].China Surface Engineering,2014,27(1):12-17.(in Chinese)

    • [368] BOHM H,BETZ S,BALL A.The wear-resistance of polymers[J].Tribology International,1990,23(6):399-406.

    • [369] HATTORI S,ITOH T.Cavitation erosion resistance of plastics[J].Wear,2011,271(7-8):1103-1108.

    • [370] DEPLANCKE T,LAME O,CAVAILLE J Y,et al.Outstanding cavitation erosion resistance of ultra high molecular weight polyethylene(UHMWPE)coatings[J].Wear,2015,328:301-308.

    • [371] YANG H,ZHANG M L,CHEN R R,et al.Polyurethane coating with heterogeneity structure induced by microphase separation:a new combination of antifouling and cavitation erosion resistance[J].Progress in Organic Coatings,2021,151:106032.

    • [372] WANG Y,DARUT G,POIRIER T,et al.Ultrasonic cavitation erosion of as-sprayed and laser-remelted yttria stabilized zirconia coatings[J].Journal of the European Ceramic Society,2017,37(11):3623-3630.

    • [373] DENG W,HOU G L,LI S J,et al.A new methodology to prepare ceramic-organic composite coatings with good cavitation erosion resistance[J].Ultrasonics Sonochemistry,2018,44:115-119.

    • [374] DENG W,AN Y L,ZHAO X Q,et al.Cavitation erosion behavior of ceramic/organic coatings exposed to artificial seawater[J].Surface and Coatings Technology,2020,399:126133.

    • [375] TIAN Y,ZHANG H J,CHEN X Y,et al.Effect of cavitation on corrosion behavior of HVOF-sprayed WC-10Co4Cr coating with post-sealing in artificial seawater[J].Surface and Coatings Technology,2020,397:126012.

    • [376] QIU N,WANG L Q,WU S H,et al.Research on cavitation erosion and wear resistance performance of coatings[J].Engineering Failure Analysis,2015,55:208-223.

    • [377] MARLIN P,CHAHINE G L.Erosion and heating of polyurea under cavitating jets[J].Wear,2018,414:262-274.

    • [378] YANG R,CHEN X Y,TIAN Y,et al.An attempt to improve cavitation erosion resistance of UHMWPE coatings through enhancing thermal conductivity via the incorporation of copper frames[J].Surface and Coatings Technology,2021,425:127705.

  • 手机扫一扫看