en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王英杰,男,1998年出生。主要研究方向为生物基高分子材料。E-mail: wangyingjie@nimte.ac.cn

代金月,男,1987年出生,博士,副教授,硕士研究生导师。主要研究方向为功能型热固性树脂。E-mail: daijinyue@nimte.ac.cn

通讯作者:

代金月,男,1987年出生,博士,副教授,硕士研究生导师。主要研究方向为功能型热固性树脂。E-mail: daijinyue@nimte.ac.cn

中图分类号:TQ637

DOI:10.11933/j.issn.1007-9289.20240101001

参考文献 1
JIN H C,TIAN L M,BING W,et al.Bioinspired marine antifouling coatings:Status,prospects,and future[J].Progress in Materials Science,2022,124:100889.
参考文献 2
TESLER A B,PRADO L H,THIEVESSEN I,et al.Nontoxic liquid-infused slippery coating prepared on steel substrates inhibits corrosion and biofouling adhesion[J].ACS Appl Mater Interfaces,2022,14(25):29386-29397.
参考文献 3
JIN H C,WANG J F,TIAN L M,et al.Recent advances in emerging integrated antifouling and anticorrosion coatings[J].Materials & Design,2022,213:110307.
参考文献 4
ECKMAN J E,THISTLE D,BURNETT W C,et al.Performance of cages as large animal-exclusion devices in the deep sea[J].Journal of Marine Research,2001,59(1):79-95.
参考文献 5
SCHULTZ M P,BENDICK J A,HOLM E R,et al.Economic impact of biofouling on a naval surface ship[J].Biofouling,2011,27(1):87-98.
参考文献 6
POURHASHEM S,SEIF A,SABA F,et al.Antifouling nanocomposite polymer coatings for marine applications:A review on experiments,mechanisms,and theoretical studies[J].Journal of Materials Science & Technology,2022,118:73-113.
参考文献 7
BUSKENS P,WOUTERS M,RENTROP C,et al.A brief review of environmentally benign antifouling and foul-release coatings for marine applications[J].Journal of Coatings Technology and Research,2013,10(1):29-36.
参考文献 8
GU Y Q,YU S W,MOU J G,et al.Research progress on the collaborative drag reduction effect of polymers and surfactants[J].Materials,2020,13(2):444.
参考文献 9
LEJARS M,MARGAILLAN A,BRESSY C.Fouling release coatings:a nontoxic alternative to biocidal antifouling coatings[J].Chemical Reviews,2012,112(8):4347-4390.
参考文献 10
MIRALLES L,ARDURA A,ARIAS A,et al.Barcodes of marine invertebrates from north Iberian ports:Native diversity and resistance to biological invasions[J].Marine Pollution Bulletin,2016,112(1-2):183-188.
参考文献 11
KUMAR A,AL-JUMAILI A,BAZAKA O,et al.Functional nanomaterials,synergisms,and biomimicry for environmentally benign marine antifouling technology[J].Materials Horizons,2021,8(12):3201-3238.
参考文献 12
GU Y Q,YU L Z,MOU J G,et al.Research strategies to develop environmentally friendly marine antifouling coatings[J].Marine Drugs,2020,18(7):371.
参考文献 13
谢庆宜,马春风,张广照.海洋防污材料[J].科学,2017,69(1):27-31.XIE Qingyi,MA Chunfeng,ZHANG Guangzhou.Mariao antifouling materials[J].Science,2017,69(1):27-31.(in Chinese)
参考文献 14
CHEN R Z,ZHANG Y S,XIE Q Y,et al.Transparent Polymer-ceramic hybrid antifouling coating with superior mechanical properties[J].Advanced Functional Materials,2021,31(19):2011145.
参考文献 15
PARMENTIER KOEN F V,VERHAEGEN Y,DE WITT BAVO P,et al.Tributyltin:A Bottom-Up regulator of the crangon crangon Population[J].Frontiers in Marine Science,2019,6:633.
参考文献 16
YTREBERG E,BIGHIU M A,LUNDGREN L,et al.XRF measurements of tin,copper and zinc in antifouling paints coated on leisure boats[J].Environmental Pollution,2016,213:594-599.
参考文献 17
SHAM R C T,TAO L S R,MAK Y K Y,et al.Occurrence and trophic magnification profile of triphenyltin compounds in marine mammals and their corresponding food webs[J].Environment International,2020,137:105567.
参考文献 18
CLAISSE D,ALZIEU C.Copper contamination as a result of antifouling paint regulations[J].Marine Pollution Bulletin,1993,26(7):395-397.
参考文献 19
SOROLDONI S,DA S S V,CASTRO I B,et al.Antifouling paint particles cause toxicity to benthic organisms:Effects on two species with different feeding modes[J].Chemosphere,2020,238:124610.
参考文献 20
WANG X Q,LI S H,HUANG J Y,et al.A multifunctional and environmentally-friendly method to fabricate superhydrophilic and self-healing coatings for sustainable antifogging[J].Chemical Engineering Journal,2021,409:128228.
参考文献 21
MARECHAL J,HELLIO C.Challenges for the Development of new non-toxic antifouling solutions[J].International Journal of Molecular Sciences,2009,10(11):4623-4637.
参考文献 22
CASSE F,STAFSLIEN SHANE J,BAHR JAMES A,et al.Combinatorial materials research applied to the development of new surface coatings V.Application of a spinning water-jet for the semi-high throughput assessment of the attachment strength of marine fouling algae[J].Biofouling,2007,23(2):121-130.
参考文献 23
WANG Y K,HAO D Z,YANG M,et al.Polyurethane antifouling coatings with various antifouling strategies in the side chain[J].Progress in Organic Coatings,2022,173:107225.
参考文献 24
TONG Z,GUO H,DI Z,et al.Squid inspired elastomer marine coating with efficient antifouling strategies:Hydrophilized defensive surface and lower modulus[J].Colloids Surf B Biointerfaces,2022,213:112392.
参考文献 25
WU W T,ZHAO W J,WU Y H,et al.Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J].Applied Surface Science,2019,465:279-287.
参考文献 26
FENG K,NI C H,YU L M,et al.Synthesis and evaluation of acrylate resins suspending indole derivative structure in the side chain for marine antifouling[J].Colloids and Surfaces B-Biointerfaces,2019,184:110518.
参考文献 27
SHAO C L,XU R F,WANG C Y,et al.Potent Antifouling marine dihydroquinolin-2(1H)-one-containing alkaloids from the gorgonian coral-derived fungus scopulariopsis sp[J].Marine Biotechnology,2015,17(4):408-415.
参考文献 28
LIU H,CHEN S Y,GUO J Y,et al.Effective natural antifouling compounds from the plant Neriwn oleander and testing[J].International Biodeterioration & Biodegradation,2018,127:170-177.
参考文献 29
ZHANG J,LING W,YANG Z Q,et al.Isolation and structure-activity relationship of subergorgic acid and synthesis of its derivatives as antifouling agent[J].Marine Drugs,2019,17(2):101.
参考文献 30
WANG K L,XU Y,LU L,et al.Low-toxicity Diindol-3-ylmethanes as potent antifouling compounds[J].Marine Biotechnology,2015,17(5):624-632.
参考文献 31
NASROLLAHI N,ABER S,VATANPOUR V,et al.Development of hydrophilic microporous PES ultrafiltration membrane containing CuO nanoparticles with improved antifouling and separation performance[J].Materials Chemistry and Physics,2019,222:338-350.
参考文献 32
毛田野,陆刚,余红伟,等.聚乙二醇-氧化亚铜微胶囊防污涂料的制备及性能[J].高分子材料科学与工程,2019,35(9):8-13.MAO Tianye,LU Gang,YU Hongwei,et al.Preparation and properties of polyethylene Glycol-CuO2 microcapsule antifouling coating[J].Polymer Materials Science and Engineering,2019,35(9):8-13.(in Chinese)
参考文献 33
LI Y,ZHANG L Y,ZHANG C,et al.Bioinspired antifouling Fe-based amorphous coating via killing-resisting dual surface modifications[J].Sci Rep,2022,12(1):819.
参考文献 34
ALMEIDA JOANA R,VASCONCELOS V.Natural antifouling compounds:Effectiveness in preventing invertebrate settlement and adhesion[J].Biotechnology Advances,2015,33(3-4):343-357.
参考文献 35
CHEN Y,XIE X G,REN C G,et al.Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari[J].Bioresource Technology,2013,129:568-574.
参考文献 36
DOBRETSOV S,XIONG H,XU Y,et al.Novel antifoulants:Inhibition of larval attachment by proteases[J].Marine Biotechnology,2007,9(3):388-397.
参考文献 37
XIONG H R,SONG L S,XU Y,et al.Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases[J].Journal of Industrial Microbiology & Biotechnology,2007,34(1):63-71.
参考文献 38
TASSO M,PETTITT MICHALA E,CORDEIRO ANA L,et al.Antifouling potential of Subtilisin a immobilized onto maleic anhydride copolymer thin films[J].Biofouling,2009,25(6):505-516.
参考文献 39
LIU L L,WU C H,QIAN P Y.Marine natural products as antifouling molecules-a mini-review(2014-2020)[J].Biofouling,2020,36(10):1210-1226.
参考文献 40
XIE Q Y,PAN J S,MA C F,et al.Dynamic surface antifouling:mechanism and systems[J].Soft Matter,2019,15(6):1087-1107.
参考文献 41
PAVLOVIC D,LAFOND S,MARGAILLAN A,et al.Facile synthesis of graft copolymers of controlled architecture.Copolymerization of fluorinated and non-fluorinated poly(dimethylsiloxane)macromonomers with trialkylsilyl methacrylates using RAFT polymerization[J].Polymer Chemistry,2016,7(15):2652-2664.
参考文献 42
PAN J S,XIE Q Y,MA C F,et al.Preparation and performance of natural product-based copper-free self-polishing marine antifouling coatings[J].China Surface Engineering,2019,32(4):109-114.
参考文献 43
SHA J N,YU J,CHEN R R,et al.Eco-friendly self-polishing antifouling coating via eugenol ester hydrolysis[J].Progress in Organic Coatings,2022,172:107077.
参考文献 44
SHA J N,CHEN R R,YU J,et al.Dynamic multi-level microstructured antifouling surfaces by combining quaternary ammonium modified GO with self-polishing copolymers[J].Carbon,2023,201:1038-1047.
参考文献 45
ZHANG J B,LIU Y Z,WANG X W,et al.Self-polishing emulsion platforms:Eco-friendly surface engineering of coatings toward water borne marine antifouling[J].Progress in Organic Coatings,2020,149:105945.
参考文献 46
TAN L,XING J X,CAO F F,et al.Synthesis of double-hydrophilic double-grafted copolymers PMA-g-PEG/PDMA and their protein-resistant properties[J].Chinese Journal of Polymer Science,2013,31(4):691-701.
参考文献 47
WU J,WANG Z,LIN W F,et al.Investigation of the interaction between poly(ethylene glycol)and protein molecules using low field nuclear magnetic resonance[J].Acta Biomaterialia,2013,9(5):6414-6420.
参考文献 48
WU J,ZHAO C,HU R D,et al.Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers[J].Acta Biomaterialia,2014,10(2):751-760.
参考文献 49
LENG C,SUN S W,ZHANG K X,et al.Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ[J].Acta Biomaterialia,2016,40:6-15.
参考文献 50
BANERJEE I,PANGULE RAVINDRA C,KANE RAVI S.Antifouling coatings:recent developments in the design of surfaces that prevent fouling by proteins,bacteria,and marine organisms[J].Advanced Materials,2011,23(6):690-718.
参考文献 51
WANKA R,ALDRED N,FINLAY J A,et al.Antifouling properties of dendritic polyglycerols against marine macrofouling organisms[J].Langmuir,2019,35(50):16568-16575.
参考文献 52
WANG R L C,KREUZER H J,GRUNZE M.The interaction of oligo(ethylene oxide)with water:a quantum mechanical study[J].Physical Chemistry Chemical Physics,2000,2(16):3613-3622.
参考文献 53
PERTSIN A J,GRUNZE M.Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers[J].Langmuir,2000,16(23):8829-8841.
参考文献 54
MA C F,ZHOU H,WU B,et al.Preparation of polyurethane with zwitterionic side chains and their protein resistance[J].Acs Applied Materials & Interfaces,2011,3(2):455-461.
参考文献 55
ZHANG Z,CHEN S F,CHANG Y,et al.Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings[J].Journal of Physical Chemistry B,2006,110(22):10799-10804.
参考文献 56
CHANG Y,CHEN S F,ZHANG Z,et al.Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines[J].Langmuir,2006,22(5):2222-2226.
参考文献 57
CHANG Y,CHEN S F,YU Q M,et al.Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance[J].Biomacromolecules,2007,8(1):122-127.
参考文献 58
WEI Q,ZHANG F L,LI J,et al.Oxidant-induced dopamine polymerization for multifunctional coatings[J].Polymer Chemistry,2010,1(9):1430-1433.
参考文献 59
CHEN S Q,SHI J S,ZHAO Y D,et al.Rapid fabrication of zwitterionic coating on 316L stainless steel surface for marine biofouling resistance[J].Progress in Organic Coatings,2021,161:106552.
参考文献 60
BRADY R F,SINGER I L.Mechanical factors favoring release from fouling release coatings[J].Biofouling,2000,15(1-3):73-81.
参考文献 61
YANG J P,XUE B,ZHOU Y Y,et al.Spray-painted hydrogel coating for marine antifouling[J].Advanced Materials Technologies,2021,6(3):2000911.
参考文献 62
YEBRA D M,KIIL S,DAM-JOHANSEN K,et al.Reaction rate estimation of controlled-release antifouling paint binders:Rosin-based systems[J].Progress in Organic Coatings,2005,53(4):256-275.
参考文献 63
谢松伯.聚硫氨酯基海洋防污涂料的制备及其性能研究[D].南宁:广西大学,2020.XIE Songbo.Studies on preparation and properties of polythiourethanebased parine coatings[D].Nanning:Guangxi university,2020.(in Chinese)
参考文献 64
GALHENAGE TELUKA P,HOFFMAN D,SILBERT S.,et al.Fouling-release performance of silicone oil-modified siloxane-polyurethane coatings[J].Acs Applied Materials & Interfaces,2016,8(42):29025-29036.
参考文献 65
CHEN Z G,CHISHOLM B,KIM J,et al.UV-curable,oxetane-toughened epoxy-siloxane coatings for marine fouling-release coating applications[J].Polymer International,2008,57(6):879-886.
参考文献 66
RATH S K,CHAVAN J G,SASANE S,et al.Two component silicone modified epoxy foul release coatings:Effect of modulus,surface energy and surface restructuring on pseudobarnacle and macrofouling behavior[J].Applied Surface Science,2010,256(8):2440-2446.
参考文献 67
SOMMER S,EKIN A,WEBSTER DEAN C,et al.A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane)(PDMS)macromers[J].Biofouling,2010,26(8):961-972.
参考文献 68
RAHMAN M M,CHUN H,PARK H.Waterborne polysiloxane-urethane-urea for potential marine coatings[J].Journal of Coatings Technology and Research,2011,8(3):389-399.
参考文献 69
LIU C,MA C F,XIE Q Y,et al.Self-repairing silicone coatings for marine anti-biofouling[J].Journal of Materials Chemistry A,2017,5(30):15855-15861.
参考文献 70
HU P,XIE R,XIE Q Y,et al.Simultaneous realization of antifouling,self-healing,and strong substrate adhesion via a bioinspired self-stratification strategy[J].Chemical Engineering Journal,2022,449:137875.
参考文献 71
QIU H Y,HOELKEN I,GAPEEVA A,et al.Development and characterization of mechanically durable silicone-polythiourethane composites modified with tetrapodal shaped ZnO particles for the potential application as fouling-release coating in the marine sector[J].Materials,2018,11(12):2413.
参考文献 72
SELIM MOHAMED S,EL-SAFTY SHERIF A,EL-SOCKARY MAHER A,et al.Tailored design of Cu2O nanocube/silicone composites as efficient foul-release coatings[J].Rsc Advances,2015,5(26):19933-19943.
参考文献 73
SELIM MOHAMED S.EL-SAFTY SHERIF A,AZZAM AHMED M,et al.Superhydrophobic silicone/TiO2-SiO2 nanorod-like composites for marine fouling release coatings[J].Chemistryselect,2019,4(12):3395-3407.
参考文献 74
SELIM MOHAMED S,YANG H EL-SAFTY SHERIF A,et al.Superhydrophobic coating of silicone/beta-MnO2 nanorod composite for marine antifouling[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2019,570:518-530.
参考文献 75
CHEN R Z,ZHANG Y S,XIE Q Y,et al.Transparent polymer-ceramic hybrid antifouling coating with superior mechanical properties[J].Advanced Functional Materials,2021,31(19):2011145.
参考文献 76
MOLINO PAUL J,CHILDS SAMANTHA,EASON HUBBARD MAEVE R,et al.Development of the primary bacterial microfouling layer on antifouling and fouling release coatings in temperate and tropical environments in Eastern Australia[J].Biofouling,2009,25(2):149-162.
参考文献 77
LIU C,YAN B H,SUN J W,et al.Cu@C core-shell nanoparticles modified polydimethylsiloxane-based coatings with improved static antifouling performance[J].Progress in Organic Coatings,2022,171:107026.
参考文献 78
GUO H S,YANG JING,ZHAO W Q,et al.Direct formation of amphiphilic crosslinked networks based on PVP as a marine anti-biofouling coating[J].Chemical Engineering Journal,2019,374:1353-1363.
参考文献 79
SOKOLOVA A,CILZ N,DANIELS J,et al.A comparison of the antifouling/foul-release characteristics of non-biocidal xerogel and commercial coatings toward micro-and macrofouling organisms[J].Biofouling,2012,28(5):511-523.
参考文献 80
GU Y J,ZHOU S X,LUO H L,et al.Temperature-dependent phase-segregation behavior and antifouling performance of UV-Curable methacrylated PDMS/PEG coatings[J].Journal of Polymer Science Part B-Polymer Physics,2016,54(16):1612-1623.
参考文献 81
ZHAO W Q,YANG J,GUO H S,et al.Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix[J].Chemical Engineering Science,2019,207:790-798.
参考文献 82
TIAN S,JIANG D Y,PU J B,et al.A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties[J].Chemical Engineering Journal,2019,370:1-9.
参考文献 83
田军,辜志俊,李克恭,等.低表面能材料上海洋生物附着的研究[J].涂料工业,1998(1):11-14.TIAN Jun,GU Zhijun,LI Kegong,et al.Study on the adhesion of halobios on low surface energy materials[J].Paint & Coatings Industry,1998(1):11-14.(in Chinese)
参考文献 84
MARABOTTI I,MORELLI A,ORSINI LORENZO M,et al.Fluorinated/siloxane copolymer blends for fouling release:chemical characterisation and biological evaluation with algae and barnacles[J].Biofouling,2009,25(6):481-493.
参考文献 85
YANG Z C,CHANG J F,HE X Y,et al.Construction of robust slippery lubricant-infused epoxy-nanocomposite coatings for marine antifouling application[J].Progress in Organic Coatings,2023,177.
参考文献 86
DENG R,SHEN T,CHEN H L,et al.Slippery liquid-infused porous surfaces(SLIPSs):a perfect solution to both marine fouling and corrosion[J].Journal of Materials Chemistry A,2020,8(16):7536-7547.
参考文献 87
TONG Z M,SONG L N,CHEN S F,et al.Hagfish-inspired smart SLIPS marine antifouling coating based on supramolecular:lubrication modes responsively switching and self-healing properties[J].Advanced Functional Materials,2022,32(27):2201290.
参考文献 88
CHEN Y X,ZHANG G L,ZHANG G Z,et al.Rapid curing and self-stratifying lacquer coating with antifouling and anticorrosive properties[J].Chemical Engineering Journal,2021,421:129755.
参考文献 89
WANG P,HE B L,WANG B W,et al.Durable self-polishing antifouling coating based on fluorine-containing pyrrolidone amphiphilic copolymer-functionalized nanosilica[J].Progress in Organic Coatings,2022,165:106706.
参考文献 90
LU G M,TIAN S,LI J Y,et al.Fabrication of bio-based amphiphilic hydrogel coating with excellent antifouling and mechanical properties[J].Chemical Engineering Journal,2021,409:128134.
参考文献 91
CHENG Z,ZHANG F,SUN X Y,et al.Preparation and properties of amphiphilic fluorinated silicone modified acrylic resin coatings containing PEG for anti-fouling application[J].Acta Polymerica Sinica,2016,15370(8):1112-1120.
参考文献 92
GUDIPATI C S,FINLAY J A,CALLOW J A,et al.The antifouling and fouling-release perfomance of hyperbranched fluoropolymer(HBFP)-poly(ethylene glycol)(PEG)composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva[J].Langmuir,2005,21(7):3044-3053.
参考文献 93
PAN J S,XIE Q Y,MA C F,et al.Progress in Biodegradable Polymer-based Marine Antifouling Materials[J].Surface Technology,2019,48(7):185-192.
参考文献 94
YAO J H,CHEN S S,MA C F,et al.Marine anti-biofouling system with poly(epsilon-caprolactone)/clay composite as carrier of organic antifoutant[J].Journal of Materials Chemistry B,2014,2(31):5100-5106.
参考文献 95
KYEI S K,DARKO G,AKARANTA O.Chemistry and application of emerging ecofriendly antifouling paints:a review[J].Journal of Coatings Technology and Research,2020,17(2):315-332.
参考文献 96
MA C F,XU L G,XU W T,et al.Degradable polyurethane for marine anti-biofouling[J].Journal of Materials Chemistry B,2013,1(24):3099-3106.
参考文献 97
AI X Q,XIE Q Y,MA C F,et al.Fouling release coating consisting of hyperbranched poly(epsilon-caprolactone)/siloxane elastomer[J].Acs Applied Polymer Materials,2020,2(4):1429-1437.
参考文献 98
YANG H J,CHANG H,ZHANG Q,et al.Highly branched copolymers with degradable bridges for antifouling coatings[J].Acs Applied Materials & Interfaces,2020,12(14):16849-16855.
参考文献 99
BOOTH A M,HANSEN B H,FRENZEL M,et al.Uptake and toxicity of methylmethacrylate-based nanoplastic particles in aquatic organisms[J].Environ Toxicol Chem,2016,35(7):1641-1649.
参考文献 100
CHEN S S,MA C F,ZHANG G Z.Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling[J].Progress in Organic Coatings,2017,104:58-63.
参考文献 101
PAN J S,XIE Q Y,CHIANG H Y,et al.“From the nature for the nature”:An eco-friendly antifouling coating consisting of poly(lactic acid)-based polyurethane and natural antifoulant[J].Acs Sustainable Chemistry & Engineering,2020,8(3):1671-1678.
参考文献 102
CHIANG H Y,PAN J S,MA C F,et al.Combining a bio-based polymer and a natural antifoulant into an eco-friendly antifouling coating[J].Biofouling,2020,36(2):200-209.
目录contents

    摘要

    海洋生物污损是指附着在各类设备表面的海洋生物,严重损害了包括航运、海产养殖等产业的经营。涂装海洋防污涂料能够高效地减少海洋生物污损在涉海装备上的附着,但传统型海洋防污涂料是通过释放重金属有毒物质实现对海洋生物污损的抑制,不可避免地危害海洋生态环境。为保护海洋生态环境、减少对重金属有毒物质的依赖,开发环保型防污涂料具有重要意义。概述了近年来环保型防污涂料的研究进展,系统地介绍了防污剂释放涂层、污损阻抗型防污涂层、污损脱附型防污涂层、两亲性聚合物以及生物降解高分子材料的防污涂层的技术进展和应用。重点从防污机理的角度对各种环保型防污涂料进行系统的阐述,总结出各种防污涂料的设计理念和发展现状,并强调环保防污涂层具有协同防污机制的显著优势。对近年来的环保型防污涂料的技术发展进行全面的罗列和总结,为海洋防污涂料的高效化、无毒化以及可降解化的发展指明了方向。

    Abstract

    Marine biofouling is an important phenomenon characterized by the deposition and proliferation of proteins, bacteria, algae, and other organisms on the surfaces of underwater equipment. This process adversely affects marine ecosystems and poses a serious threat to industries, such as shipping and mariculture, leading to significant economic losses and increased maintenance costs. Conventional antifouling technologies rely primarily on antifouling paints that inhibit biofouling by releasing heavy metals and other toxic substances. However, this approach can adversely affect the marine environment, leading to water pollution and health crises for marine organisms. Therefore, the development of environmentally friendly antifouling coatings is essential for the protection of marine ecosystems and the reduction of their dependence on hazardous substances. In recent years, environmentally friendly antifouling coatings have been extensively studied, and a large body of literature has been published. These studies provided new insights into the mechanisms of marine biofouling and laid the foundation for the development of new environmentally friendly antifouling materials. Reviewing and summarizing the research progress in this field is crucial to clarifying the current status of the field and future directions for development. This study focuses on various types of environmentally friendly antifouling coatings and systematically discusses and summarizes the technological advances and practical applications of different approaches, such as antifouling agent release coatings, antifouling impedance coatings, antifouling release coatings, amphiphilic polymers, and biodegradable polymeric materials. Antifouling agents release coatings by slowly releasing biocides or antifouling agents via the self-polishing of the coating and inhibit the attachment of marine organisms by killing various marine organisms via the release of antifouling agents. This method is effective and sustainable; however, the ecological safety of the released substances must be considered. In contrast, antifouling coatings reduce the likelihood of bioattachment by modifying the surface properties, typically by enhancing the hydrophobicity of the surface or reducing the roughness of the surface to discourage bioattachment. Antifouling desorption and fouling impedance coatings are innovative approaches that hinder biofouling through the surface physical properties of the coating. Fouling release coatings rely on their dynamic properties to allow for the easy separation of biofouling from the coating via the shear of seawater, which thereby reduces maintenance costs. Fouling-resistant coatings prevent fouling adhesion by introducing hydrophilic units and forming hydrated layers. In addition, amphoteric polymers are suitable for a variety of marine applications because of their unique structural properties that allow them to form stable films in underwater environments, effectively prevent biofouling, and confer biocompatibility. Biodegradable polymer materials have led to significant advancements in the development of environmentally friendly anti-fouling coatings. These materials not only effectively prevent biofouling but also degrade naturally after use, thus minimizing long-term environmental impacts. This paper summarizes the design concepts and current status of the development of different coatings as well as highlights future directions for improvement by systematically discussing the antifouling mechanisms, application prospects, advancements, and limitations of various environmentally friendly coatings. This study highlights the benefits of synergistic mechanisms for improving the overall performance of antifouling coatings. More effective results could be achieved by combining different antifouling technologies. For example, coatings that combine antifouling agent release with antifouling impedance can effectively inhibit bioattachment while mitigating environmental impacts. This synergistic approach not only improves the performance of the coating but also stimulates new research directions. Recent technological advances in environmentally friendly antifouling coatings have provided an important theoretical basis and practical guidance for the development of highly efficient, nontoxic, and biodegradable marine coatings. Through a comprehensive summary of existing research, this paper outlines the direction of future research and emphasizes the importance of promoting the sustainable development of the marine industry while protecting the marine ecosystem. Current research should focus on the innovation and application of eco-friendly antifouling coatings to achieve a broad, win-win situation in terms of both ecological protection and economic benefits. Such endeavors would enhance the competitiveness of the marine industry and contribute to the sustainable development of the global marine ecosystem.

  • 0 前言

  • 海洋生物(细菌、藻类、藤壶等)会在浸入海水的表面上吸附、生长和繁殖。这些附着在各类设备表面的海洋生物被称为海洋生物污损。近年来,随着对海洋开发利用越来越深入,海洋生物污损对人造设施的破坏日益严重,造成的经济损失也越来越大[1]。例如:各种海洋污损生物附着在海洋设备表面并分泌加速海洋设备腐蚀的各种化学物质,破坏了海洋设备的防腐层,缩短了海洋设备的使用寿命[2-3];在水产养殖中,污损生物在网箱上的附着阻碍水流的通过,从而影响水体之间的物质交换,污损生物在网箱上的大量累积还可能导致网箱变形[4]; 附着在船舶上的海洋污损生物以及其造成的船体腐蚀还会增加船体的表面粗糙度,降低航速,增加燃料消耗[5-6]。有研究表明,一艘水下面积为 40 000 平方米的无保护超大型油轮在海上不到 6 个月的时间内,每平方米可积聚 150 kg 的污垢,导致重量和油耗大幅增加[7]。一些附着在船体上的海洋污损生物还会造成生物入侵,影响海洋生态[8-10]。目前已鉴定出至少 4 000 种污染生物,这些生物体的范围从单细胞(例如细菌)到多细胞(例如海藻和藤壶)[11]

  • 海洋生物污损的产生通常包括调节膜的形成、生物膜的形成、小型生物附着和大型生物附着等过程[912-13],如图1 所示。通过物理吸附,蛋白质、多糖和糖蛋白等有机分子积累在物体表面,形成调节膜。这种吸附仅依赖于弱的非共价键力,具有可逆性。在调节膜形成后,受营养物质的吸引,细菌或其他微生物会通过分泌胞外聚合物粘附在调节膜上,这个过程是不可逆的。这些附着的细菌和藻类会进一步提高其与调节膜的固定能力,从而形成由各类有机物、细菌和其他微生物以及其分泌的代谢产物组成的生物膜。微生物膜的存在提供了足够的食物,为单细胞藻类以及大型藻类的孢子附着提供了条件,随着这些附着生物的生长繁殖形成黏液层。形成的黏液层使得材料的表面性质发生了巨大变化,发展成为了适宜藤壶、贝类等大型生物生长的环境,所以进一步引起藤壶等的附着,此类大型生物的附着加剧生物污垢的产生。

  • 图1 污损形成过程

  • Fig.1 Formation process of fouling

  • 整个污损的形成过程非常迅速,几十天就可以附着满未经处理的表面,但污损生物的附着顺序不是固定的,海洋微生物、大型生物沉降和生物膜形成可能同时发生。生物膜的形成是表面进一步被大型污损生物粘附的先决条件但不是必要条件。例如藻类 Ulva linza 的孢子和藤壶 Balanus amphitrite 的幼虫可以几分钟内沉降在干净的表面[9],但是通常来说生物膜的形成是表面被大型污损生物粘附的前兆。

  • 为减少海洋生物污损造成的巨大损失,研究人员提出了多种防污措施,其中涂敷防污涂料是防止海洋生物污染最有效、便捷的手段[14]。传统的防污涂料往往使用金属离子杀灭海洋污损生物,其主要防污成分是有机锡和氧化亚铜。20 世纪 70 年代基于三丁基锡的涂层开始广泛使用,含有有机锡的自抛光聚合物涂料水解出的有机锡基团具有高效的抗污作用,能有效地避免海洋生物污损,此外随着亲水性有机锡基团的水解,还会降低涂层表面的粗糙度,减少船舶航行时的摩擦力。因此有机锡聚合物曾是最佳选择。然而,具有高持久性和高毒性的有机锡会在鱼类、贝类和其他生物体体内积累引起生物变异和死亡,使贝类减产、影响渔业生产[15],危害海洋生态环境[16-17],所以有机锡涂层已在世界范围内被禁止使用。有机锡防污剂的禁止,促进了基于铜元素的防污剂的兴起,虽然氧化亚铜毒性较小,但随着其不断积累,对海洋生态的危害也会越来越大。CLAISSE 等[18]发现使用含铜的防污剂替代含锡的防污剂导致环境中的铜含量显著增加,牡蛎体内铜含量同样增加显著,即使铜含量的观测值其低于牡蛎致死浓度,但是仍需要着重关注沿海水域中的铜含量。SOROLDONI 等[19]发现自抛光涂层中释放的铜、锡、锌等元素会为底栖生物的物种行为带来巨大变化,如觅食、社会互动和运动,这些影响潜在的危害着种群的生存。尽管铜基防污剂可以有效防止生物污损,但由于对海洋生态系统产生不利影响的迹象越来越多,所以铜基防污剂的应用前景并不光明。因此,环保型海洋防污涂料被广泛研究,开发环保型海洋防污涂料不仅保护环境,也维护了人类的切身利益[20]

  • 目前开发环保的海洋防污涂料有两种思路,一是从自然界中提取开发无毒、环保的抗污剂来代替金属杀菌剂。二是改变涂层本身的性质,使涂层不易被污损生物黏附,或者使污损生物容易去除,利用材料本身的性能来抵抗污损。然而,海洋环境(温度、pH 值等)和涂料表面性质(如苔藓虫倾向于附着在低表面能基底、而藤壶倾向于附着在高表面能基底)对海洋生物表现出选择性[21-22],这会导致表面的污损生物优势种类或者污损程度产生差异。此外,各物种附着在基底表面的机理也不尽相同。因此,依赖单一防污机理的防污剂难以到达理想的防污效果,需要协同多种防污机理,研发具有广谱抗污效果的环保型防污剂。WANG 等[23]报道了一种由季铵盐和两性离子组成的聚氨酯涂层,通过调整侧链中不同防污基团的比例调整防污性能,以应对不同的海洋环境;TONG 等[24]向低表面能的聚二甲基硅氧烷基聚氨酯引入聚乙烯吡咯烷酮,形成了污损阻抗和污损脱附的协同功能。

  • 1 防污剂释放涂料

  • 1.1 防污剂

  • 防污剂释放涂料依靠树脂基体负载的抗污剂杀灭海洋污损生物,其主要由树脂基体、防污剂和其他助剂组成,树脂基体起着提供力学强度、包覆和控制防污剂释放的作用,防污剂则起到杀灭污损生物的作用。防污剂会随着时间推移或者树脂基体的水解而从树脂基体中缓慢释放。通常,防污剂对海洋生物污损具有高效的杀灭效果,一些典型的防污剂及其对海洋生物污损的杀灭效果被总结于表1[25-30]。然而,将防污剂添加于防污涂层之后,防污剂的防污能力却受到限制。此时基体的力学性能同样是影响防污涂层防污能力的重要因素。

  • 上述有机锡跟亚铜离子抗菌涂料可归结到此种防污涂料。因为严重的生物毒性,有机锡在 2008 年被全面禁止使用。虽然亚铜离子具有低毒、价廉等优点,基于氧化亚铜制备了一系列的防污涂层[2531],但是也存在易沉降、渗出率难以控制的问题,这不仅会造成浪费,还会污染环境。毛田野等[32]利用聚乙二醇包裹氧化亚铜形成微胶囊结构,这种缓控释微胶囊技术实现了氧化亚铜的调节释放,抑制了初期氧化亚铜的爆释。虽然金属防污剂控释技术取得一定的进步,但是不能根本上控制金属防污剂对自然界的影响。此外,有研究表明氧化亚铜涂层对藤壶等污垢的防护效果好,但是对藻类并没有特异的抵抗性能[33]。所以防污剂的发展趋势是开发替代金属化合物的无毒、环保的防污剂。许多海洋生物(如大型藻类、海绵和软珊瑚等) 可以分泌表面活性物质避免生物沉降,所以可以提取这些天然活性产物来抵抗生物附着。此外,从陆生生物(夹竹桃、胡椒等[34])提取的天然物质也具有抗污作用,因此把从动植物及微生物提取的天然物质如:萜烯类、生物碱、酚类等[26]作为抗污剂是一种可行的防污方法。

  • 表1 相关的防污剂以及参考文献

  • Table1 Relevant antifouling agents and related references

  • SHAO 等 [27] 从中国南海柳珊瑚源真菌 Scopulariopsis sp.中分离到一系列结构相似的海洋天然生物碱,其结构式如图2 所示。通过抗藤壶幼虫沉降的试验,除了 6 号外其余物质均检测出了防污活性。其中化合物 1 和 2 是最效的抗沉降物,特别地,化合物 1 是迄今为止自然界中最强的防污化合物,并且显示出了高效的活性,并且具有安全无毒的特征,是一种非常具有前途的防污先导化合物。

  • LIU 等[28]研究了从夹竹桃中分离出的四种内酯, Hodoroside A、 digitoxigenin、 oleandrin 和 odoroside H,其结构式如图3 所示。结果表明,所测试的这四种内酯都显示出对藤壶的强抑制活性,且对非靶向生物例如盐藻毒性较低。此外,将三种含有卡登内酯的夹竹桃提取物参入涂层中进行现场防污性能研究,结果表面复合涂层在 30 天内都具有显著的防污效果。这些结果表明这些来自夹竹桃的提取物具有作为天然防污剂的商业潜力。

  • 图2 Scopulariopsis sp.中提取的六种生物碱结构[27]

  • Fig.2 Six alkaloid structures from Scopulariopsis sp.

  • 图3 从夹竹桃中分离得到的四种内酯的化学结构[28]

  • Fig.3 Chemical structures of four lactones isolated from Oleander

  • 目前此类型防污剂的研究主要集中在天然产物的提取和优化上,但是大部分从天然产物提取的活性抗污剂来源受限、成本较高,导致在一定程度上仍难以商业化批量生产。有研究者便将目光转移到合成天然产物或者其衍生物。

  • ZHANG 等[29]从侧扁软柳珊瑚(Subergorgia suberosa)中提取了一种柳珊瑚酸 subergorgic acid(SA),证明其对纹藤壶(Balanus amphitrite)的沉降显著的抑制作用。为了进一步探索 SA 的生物活性官能团,并合成更有效的防污化合物,对 SA 的构效关系进行研究,研究结果首次表明,SA 的酮羰基和双键是其防污作用的基本基团。然后基于这些初步的构效关系,设计并合成了两组衍生物(一组是 SA 的苄酯,另一个是含有不同长度亚甲基链的 SA 衍生物)。防污试验结果表明,SA 的所有苄基酯的防污效果均与 SA 相当或更高,含有亚甲基链的 SA 衍生物的防污效果都不如 SA,而亚甲基链的长度对 SA 的防污效果的影响与亚甲基链对面官能团的大小有关。图4 给出了 SA 及其部分衍生物的结构式。

  • 图4 SA 及其部分衍生物

  • Fig.4 SA and some of its derivatives

  • FENG 等[26]通过傅克烷基化反应合成一系列的吲哚环三位上含有酰胺基的衍生物,并表现出良好的抑制活性。为了获得长期的抗菌效果,该团队有目的地合成含有一个碳碳双键和一个苯基的吲哚衍生物(图5)以此来接枝到聚丙烯酸酯树脂侧链上,克服了吲哚衍生物仅靠物理共混释放速率无法控制的缺点,增强了防污能力。此外也有研究者对吲哚衍生物的安全性和环保性进行研究,表明吲哚衍生物是低毒防污剂,并可被生物降解[3035]

  • 图5 吲哚衍生物[263035]

  • Fig.5 Indole derivative

  • 污损生物通过各种蛋白质类生物粘附剂粘附在船体上,这些生物粘附剂可以通过蛋白酶分解,所以自然界中的蛋白酶可以作为一种环境友好型抗污剂。有效的酶涂层系统应具有良好的酶活性、广谱抗污活性、不降低涂层性能等性质。DOBRETSOV 等[36]研究了多种蛋白酶的抗污活性,表明能够抑制藤壶和苔藓虫等生物的附着,且蛋白酶的临界浓度相对低于其他常见抗污剂,如 TBT 的抗污临界浓度约为蛋白酶临界浓度的六倍,但是酶在海水和涂料中的稳定性限制了酶作为防污剂的商业应用。 DOBRETSOV 等 [36] 的试验中表明从深海细菌 P.issachenkonii 中提取的蛋白酶的适宜温度和 pH 分别约为 30℃和 8,与热带区域海水条件类似, XIONG 等[37]证明此细菌可在丙酮和 2 m 深的海水中浸泡 14 天依旧保持活性。这表明可以开发蛋白酶作为环境友好型抗污剂。TASSO 等[38]制备了亲水性高溶胀性聚(乙烯-丙氨酸-马来酸酐)共聚物薄膜,并利用蛋白酶将这些薄膜进行表面功能化获得高酶活性。抗污结果表明,这些含酶涂层能够有效抑制两种主要海洋污染物绿藻和硅藻的沉降和附着。虽然蛋白酶有很好的抗污潜力,但蛋白酶涂层的所需聚合物的物理化学性质、酶在环境中的稳定性等将决定蛋白酶涂层能否普遍适用。

  • 虽然天然产品防污剂的有效性、安全性和毒性已经在实验室和现场进行了研究,但与铜等重金属相比,天然产品的来源受限、合成成本更高以及抗污广谱性不足。此外,天然产品防污剂的开发周期长,且缺乏相应的政策支持。因此,这些潜在的绿色涂料推向市场还有很长的路要走[39]

  • 1.2 树脂基体

  • 除了寻找低毒防污剂以外,对树脂基体的改进以确保防污剂可控释放也至关重要。此种防污剂根据基体释放防污剂的不同可将其分为基体不溶型涂料、基体可溶型涂料、扩散型涂料和自抛光型涂料。

  • 1.2.1 基体可溶型

  • 基体可溶型涂料通常以松香及其衍生物为基体,松香中含有羧基可以溶解于弱碱性的海水中,随着松香基体的溶解,填充在内部的防污剂也随之释放。但是因为这种防污剂初期基体的溶解以及防污剂的释放相对较快,后期迅速降低,所以有效性较短。

  • 1.2.2 基体不溶型

  • 基体不溶型防污涂料通常使用不溶于海水的树脂作为基体,如丙烯酸酯、氯化橡胶、乙烯树脂、环氧树脂等。这类基体力学性能好,可制备成较厚的涂层,可以复合较多的防污剂。这类涂料基体不溶而防污剂可溶,基体会在防污剂溶解以后形成蜂窝结构,海水内渗,深层的防污剂继续被溶解释放。但是海洋里的固体颗粒或者污损生物会堵塞孔洞,阻碍防污剂的释放,形成的蜂窝结构会增加船体表面的粗糙度,阻碍航行,此外还需要加入大量的抗污剂确保溶解后的孔洞连续。在基体中加入松香可以防止孔洞堵塞,减少防污剂用量。因为只要相对较低含量的抗污剂便可以与松香形成连续相,使得溶解后的孔洞保持通畅。

  • 1.2.3 自抛光型涂料

  • 因为毒性污染问题基于有机锡自抛光的防污涂料已被禁用,但是其自抛光的机理依旧值得借鉴,基于硅、铜、锌侧基的无锡自抛光涂料仍然是优秀的防污载体。在弱碱性的海水中,其侧基的聚丙烯酸硅烷脂、聚丙烯酸铜脂、聚丙烯酸锌脂基团可以水解或者通过离子交换产生亲水表面,不断溶解于海水,带动主链脱落,表层的自抛光效应,也会使附着在涂层表面的生物污损一同脱落。但是在没有较强外部剪切力的情况下,其表面更新不够快,而且与有机锡自抛光涂料相比无锡自抛光涂料水解抛光下来的侧基没有防污作用,所以仍需要添加防污剂,防污剂会与基体材料形成一个具有光滑表面的涂层,随着侧基溶解并带动主链的脱落,树脂基体内的防污剂得以释放,如图6 所示。由于此种涂料的自抛光作用其与基体可溶型和基体不溶型材料相比,防污剂释放速率更稳定,可以保持较长时间的有效期(3~5 年),是目前商业化产品中最有效的防污材料。

  • 图6 自抛光涂层抗污机理

  • Fig.6 Antifouling mechanism of self-polish coating

  • 但是自抛光涂层依旧会吸水溶胀而影响涂层的防污性能[40]。所以为了提高自抛光型涂料的性能, PAVLOVIC 等[41]通过可逆加成-断裂链转移(RAFT)聚合,开发了微观结构可控,具有更好的控制侵蚀率和防污效率的甲基丙烯酸甲酯和甲基丙烯酸甲酯二嵌段共聚物。PAN 等[42]对制备的三种主链降解性聚丙烯酸锌树脂的表面润湿性能和自抛光性能进行研究,其中 H100Z 型号具有优异的自抛光型能和较低的溶胀程度(吸水率为 12.3%),并且与天然产物防污剂 5-辛基-2-呋喃酮结合后具有良好的防污性能。SHA 等[43]基于生物基丁香酚合成一类自抛光涂层,水解生成的丁香酚还具有一定的防污能力,所以该涂层表现出良好的防污性能,基于此作者认为任何酚类都可以通过他们的方法生产自抛光树脂。

  • SHA 等[44]通过将改性氧化石墨烯与自抛光共聚物结合设计了动态多级微结构抗污表面,将聚甲基丙烯酸二甲基氨基乙酯接枝到氧化石墨烯上,再对产物进行季铵化得到具有协同抗污性能的改性氧化石墨烯,均匀分散在自抛光基体的改性氧化石墨烯通过基体的水解不断暴露在涂料表面,氧化石墨烯锋利的表面和具有正电荷的季铵盐长链会破坏细胞壁,同时不完全反应的叔胺会与脂键形成环状构象,自发地形成两性离子,从而起到污损阻抗的作用。

  • 此外为了避免自抛光涂料采用大量有挥发性和毒性的有机溶剂作为稀释剂。ZHANG 等[45]采用水性涂料的概念来解决这一问题,使得设计的涂层技术具有生态友好特性,其以三异丙基硅烷酯为自抛光基质,以铜离子络合物为主要防污剂,采用种子乳液聚合法制备了功能化的水性乳液。乳胶的柔顺性、热性能、机械稳定性和自抛光能力可以通过调整各种组分的摩尔比来控制。试验结果表明,所设计的完全无溶剂涂层能够调节抛光速率,对绿藻和硅藻的沉降具有良好的防污性能。然而,水基涂层的成膜是一个复杂的过程,如果成膜时环境温度过低或聚合物的玻璃化转变温度过高,聚合物颗粒无法在水中扩散良好,将导致涂层性能不佳。

  • 2 污损阻抗型防污涂层

  • 污损阻抗型材料是指可以抑制蛋白质、藻类和细菌等污损物质粘附到表面上的材料。其以聚乙二醇(PEG)、水凝胶和两亲性离子聚合物等亲水性聚合物为代表,不同的污损阻抗材料有不同的防污机理和优缺点,表2 简要地总结了不同污损阻抗型材料的特点[46-48]。一般认为两亲性离子聚合物的防污性能是由于其具有强的表面水化作用,紧密结合的水合层起着物理和能量屏障的作用,要想突破聚合物与水之间的水合层就需要消耗更多能量,所以生物分子或生物体很难取代这些界面水分子[49]。PEG 的防污能力是由于 PEG 链水化以后有较大的排除体积,当蛋白质分子靠近时,PEG 被压缩致使构象发生变化,进而会排斥靠近的蛋白质。

  • 表2 污损阻抗型涂层的优缺点

  • Table2 Advantages and Disadvantages of Fouling Resistant Coatings

  • 2.1 基于 PEG 的污损阻抗型防污涂料

  • 蛋白质和多糖对物体表面的吸附是生物污垢形成的初始阶段,所以限制蛋白质等大分子沉降的污损阻抗型涂料可以避免污损形成。PEG 具有高亲水性、无毒性和抗蛋白质的能力,因为长度和构象不同分子链与水的结合能力不同,所以其抗蛋白的能力与链长、接枝密度和构象有关[50]。JEON 等[51]证明在相同表面密度的情况下,PEG 分子链越长蛋白质抗性强。WANG 等[52]和 PERTSIN 等[53]报道了用甲氧基封端的低聚乙二醇自组装膜的蛋白质抗性取决于表面聚合物链的构象,螺旋构象不吸附蛋白质,反式构象会吸附蛋白质。作者认为螺旋构象与水的相互作用更大。

  • PEG 有良好的抗蛋白作用但是与底物的相互作用较弱,使得表面涂层困难,限制了其应用。而聚 N,N-二甲基丙烯酰胺(PDMA)在每个重复单元都有两个甲基,通过疏水作用,可以形成非常稳定的涂层,但会吸附蛋白质。基于以上两种均聚物的特点, TAN等[46]采用可逆加成-断裂链转移(RAFT)聚合和原子转移自由基聚合(ATRP)成功合成了以聚甲基丙烯酸酯(PMA)为骨架、聚乙二醇(PEG)和聚 N,N-二甲基丙烯酰胺(PDMA)为侧链的双亲水双接枝 PMA-g-PEG / PDMA 共聚物,其中 PEG 起到抗蛋白的作用,PDMA 作为表面吸附部分,并用毛细管电泳评价了该共聚物涂层的抗蛋白质性能。在 pH 值为 3.0 时,分子质量较高、PEG 与 DMA 摩尔比较高的共聚物对蛋白质吸附的抑制效果最好。

  • 2.2 基于两性离子聚合物的污损阻抗型防污涂料

  • 然而,PEG 的稳定性较差,PEG 大分子链在储存和处理过程中易于降解,两性离子聚合物的化学稳定性更高,因为它们通过离子相互作用与水结合,因此与 PEG 的基于氢键的相互作用相比,表现出静电诱导的水合作用。

  • 两性离子聚合物是指在其聚合物链上具有相同数量的阳离子和阴离子的材料。常见结构有磷酰胆碱(PC)、磺基甜菜碱(SB)和羧基甜菜碱(CB) 三种,因为含有大量的离子基团,所以具有超强的亲水性,被认为是前景广阔的防污涂料。WU 等[47-48] 证明两性离子聚合物相比 PEG 有更强的亲水能力,因此抵抗蛋白质吸附的能力也更强,但是两性离子聚合物本身也有缺点,例如其机械性能差不易锚定到基底,不能抵抗无机物等的吸附。

  • 分段聚氨酯(PU)具有良好的黏接性和生物相容性。聚氨酯和两性离子的结合有望得到具有良好蛋白质抗性和抗粘附性能的抗污材料。但是由于二者互不相容,将高极性的两性离子引入相对疏水的聚氨酯链中并不容易。有研究者采取表面接枝、聚合物共混或互穿聚合物网络(IPN)等措施来改善聚氨酯与两性离子聚合物的生物相容性。MA 等[54] 通过表面接枝将磺基甜菜碱链接到聚氨酯上,反应步骤为:以 3-巯基-1,2-丙二醇为链转移剂合成了 PDEM(OH)2,再与二异氰酸酯聚合得到具有 PDEM 侧链的聚氨酯。最后用 1,3-丙磺内酯处理所得产物制备了侧链含有磺基甜菜碱的聚氨酯,反应过程如图7 所示。测试了纤维蛋白原、牛血清白蛋白和溶菌酶在此聚氨酯表面上的吸附,表明当两性离子侧链含量足够高时,此材料可以有效抵抗非特异性蛋白质吸附,并可通过改变两性离子侧链含量来调节材料的性能。

  • ZHANG等[55]和CHANG 等[56]通过原子转移自由基聚合(ATRP)和物理吸附的方法将聚甲基丙烯酸磺基甜菜碱(SBMA)接枝到金表面上形成了均匀的聚合物刷。这两种不同方法所制备材料表面的纤维蛋白原吸附量分别为 0.3 ng / cm−2 和 3 ng / cm−2。证明当表面堆积得到很好的控制时,由两性离子聚甲基丙烯酸磺基甜菜碱覆盖的表面可以高度抵抗非特异性蛋白质吸附。此外,CHANG 等[57]还采用交联 SBMA 聚合物对分段聚氨酯(SPU)进行改性,制备了互穿聚合物网络(IPN),SPU 用作基质成分以增强 IPN 膜的机械强度,而聚甲基丙烯酸磺基甜菜碱用于减少 IPN 膜的非特异性蛋白质吸附。该团队得到的互穿聚合物网络是由 SBMA 渗透到 SPU 膜中形成的具有优异力学性能的均相体系,酶联免疫吸附测定结果表明该薄膜能够有效抵抗非特异性蛋白质吸附。此外,作者还对控制互穿网络形成的参数进行了研究,其认为适当的溶剂极性和较长的孵育时间是制备互穿网络以实现极低蛋白质吸附的两个关键参数。

  • 图7 两性侧链聚氨酯的合成[54]

  • Fig.7 Synthesis of amphoteric side chain polyurethanes

  • 多巴胺与一种贻贝分泌粘附蛋白的性质类似,可以在弱碱性水介质中氧化和聚合形成聚多巴胺(PDA)[58]。PDA 涂层能够沉积在许多类型的有机和无机材料表面上,并作为二次改性的中间层。受此启发,CHEN 等[59]通过多巴胺和甲基丙烯酸磺基甜菜碱的一步同时聚合和共沉积制备了两性离子 PDA / PSB 涂层。通过检测蛋白质等有机分子的吸附以及细菌和硅藻的粘附,证明该涂层有良好的防污性能。

  • 水凝胶涂层由于超亲水性而表现出出色的防污能力,并且由于其相对较低的杨氏模量而表现出极大的污垢释放特性,而可以抑制海洋生物的附着[60]。尽管其前景广阔,但基板附着力弱和耐久性低大大阻碍了其实际应用。

  • YANG 等[61]设计了由丙烯酸封端的四臂聚乙二醇交联聚丙烯酰胺制成的可喷涂防污水凝胶。丙烯酸基团被设计成环氧固化剂可以通过环氧中间涂层结合到不同的基材上,然后光引发自由基聚合将中间涂层与水凝胶结合。其次聚丙烯酰胺在海水中是惰性的,而 PEG 通常可被海洋微生物降解。因此,调整惰性丙烯酰胺与 PEG 的相对比率可以调节水凝胶弹性模量、溶胀比和降解速度等性质。

  • 污损阻抗型防污涂料对蛋白质等有机物有较强的抵抗能力,但是对海泥、杂质等无机物抵抗能力较弱,无机物吸附后会改变涂层的表面性质,降低对蛋白质的抗吸附能力和机械性能,造成污损阻抗型材料失效。尽管在实验室的防污效果有比较好的表现,但是放到复杂的海洋环境后,使用效能便会迅速下降。图8 展示了污损阻抗型涂层防污的机理示意图。污损阻抗型涂层通过表面的亲水结果如 PEG 链或者两性离子更强烈地与水分子相互作用形成能够实现污损阻抗的水合层,从而实现对生物污损黏附的抵抗。

  • 图8 污损阻抗型涂层防污机理

  • Fig.8 Antifouling mechanism of fouling-resistant coatings

  • 3 污损脱附型涂层

  • 污损脱附涂料能够降低污损生物对海洋设备的附着力,并使海洋生物易于脱落,其不含抗污剂,依靠材料本身低粗糙度、低表面能和低弹性模量的性质来降低生物污损。低粗糙度意味着含有更少的适合污损生物的附着处,此特点还可降低船舶航行的阻力,节省燃料。材料低表面能和疏水的性质能够控制生物粘液在涂料上的润湿和铺展,进而降低生物与涂料界面结合的牢固程度。拜尔曲线(图9) 表明低表面能是实现低相对粘附力的最佳条件。一般来说,较低的表面能意味着与材料自发相互作用的能力较低,当表面能小于 25 mJ / m2,即涂层与液体的接触角大于 98°,可有效降低污垢生物的粘附性[62-63]。BRADY 等[60]研究表明,相对粘附力随弹性模量和临界表面自由能的平方根线性增加。这类材料一般由有机硅材料或有机氟材料组成,二者都具有较低的弹性模量,其固化后形成的涂层也有较低的表面能。

  • 图9 Baier 曲线[63]

  • Fig.9 Baier curve

  • 3.1 有机硅材料

  • 1961 年 LEJARS 等[9]首次将有机硅树脂用于防污涂料领域后,有机硅防污涂料迅速发展。多数商用的有机硅材料都是基于聚二甲基硅氧烷,其分子主链是交替的 Si-O 键,分子柔顺性好,有较高的热稳定性,较低的表面能和弹性模量赋予了其优异的抗粘附性能。硅油可以提高涂层表面的疏水性能,使涂层表面变得光滑,因为低表面能的硅油会倾向于移动到材料表面,而将材料包裹,所以通常会在有机硅涂层里添加硅油,来提升涂层的污损脱附能力。GALHENAGE 等[64]研究表明渗出的硅油还可以杀死亲油性的污损生物孢子,但是硅油对环境是否有危害也需要评估。

  • 但是有机硅涂料的力学性能较差,使得有机硅涂层易受到机械破坏,降低涂层的使用寿命。除此之外非极性的硅氧烷链使得有机硅涂膜的粘附强度较弱,不易附着在基材和底漆上。

  • 为了改善有机硅涂层的力学性能,人们利用聚硅氧烷链上的羟基将聚脲、环氧和聚氨酯等[65-67] 引入涂层中以提高涂层与基材的附着力。例如: SOMMER等[67]通过制备含30wt.%聚二甲基硅氧烷的硅氧烷-聚氨酯自分层混合涂料来解决涂层附着力差的问题。涂料中大量的聚氨酯提供了良好的力学性能和更好的基材附着力,在成膜过程中低表面能的聚二甲基硅氧烷会自发聚集到材料与空气的界面形成有机硅表面,保证了污垢脱附性能。 RAHMAN 等[68]通过预聚物工艺制备了比例不同的水性聚硅氧烷-聚氨酯-脲涂料,进一步探讨了不同组成的涂层的防污性能。表明聚二甲基硅氧烷的最佳含量为 15.76wt.%。但是聚氨酯、聚脲等极性结构通常会改变涂层表面性质,导致抗污效果变差[69]。 HU 等[70]报告了贻贝启发的自分层涂层,此涂层由含有多巴胺和硅烷基的聚氨酯以及侧链含有聚乙二醇和氟碳化合物的聚硅氧烷组成。低表面能的聚硅氧烷会自发的聚集在涂层表面,聚氨酯成为系统的基体,其上的氢键和硅烷基团则提供了对附着表面的粘附力。

  • 除了将聚二甲基硅氧烷(PDMS)与聚合物材料接枝等化学改性外,还可以通过添加无机填料来改善硅基污垢释放涂层的性能。QIU 等[71]用氧化锌微粒增强聚二甲基硅氧烷 / 聚硫氨酯,氧化锌的加入降低了涂层的疏水性,提高了机械稳定性。该复合材料表现出更高的机械耐久性和污损脱附性。 SELIM 等[72-74] 研究了基于 CuO2 纳米颗粒、 TiO2-SiO2 核壳纳米棒、MnO2 纳米棒、和碳化硅纳米线的污垢释放涂料。表明对于含有少量纳米颗粒的涂层,其疏水性和污垢释放性能会增加。超过约 5wt.%时,就会发生颗粒聚集的现象,使得污损释放性能下降。CHEN 等[75]利用端胺超支化聚硅氧烷、磺基甜菜碱和抗污环氧锆粒子合成了一种具有聚合物与陶瓷相结合的特性的涂料,其既具有较高的硬度(7~9 H)和对基材的附着力(≈3 MPa),又具有良好的柔韧性(弯曲直径≤10 mm)。

  • 尽管对有机硅涂料的改性取得了重大进展,但基于硅树脂的涂层无法抵抗海洋黏液层的附着,因为此类污垢生物更倾向于黏附在疏水表面[76],且表面起伏度低、黏附力强,一旦附着在物体表面不易被水流冲刷掉。LIU 等[77]开发了一种铜碳核壳结构改性二甲基硅氧烷防污涂层在静态下表现出了良好的防污性能,并且填料的引入增加了材料的力学性能。水凝胶由于具有高亲水性,可以抵抗蛋白质和细菌的粘附。所以水凝胶的加入可以有效增强有机硅污损释放涂层的防污性能。为了开发具有抗黏液性能的防污剂,一些团队将水凝胶、聚乙二醇、聚 (N-乙烯基吡咯烷酮)等亲水性聚合物[78-81]引入硅树脂基体中以形成两亲性涂层。但是由于亲水性水凝胶与有机硅基体不相混溶,常导致涂层表面发生相分离。TIAN 等[82]将基于巯基 / 乙酰硫酯基团和银纳米粒子螯合的纳米复合水凝胶与有机硅基体结合,研制出一种新型的防污复合涂料。该复合防污涂层不仅通过协同作用提高复合涂料的防污性,而且银纳米粒子作为交联剂,提高了水凝胶与 PDMS 基体的相容性。

  • 3.2 有机氟材料

  • 有机氟材料有良好的抗污性能,与有机硅相比,化学稳定性较高、表面张力低,但是弹性模量更高容易被剪切力破坏,此外某些有机氟材料的表面光滑程度也影响了其防污性能,如聚四氟乙烯表面能更低,但因为采用热熔成膜的加工方式,导致涂膜表面较为粗糙,粗糙的表面可以为污损生物提供附着点,虽然其表面能低,但是防污效果并不理想[83]。而且二者防污机理也不相同,与有机硅材料相比有机氟材料的表面能相对较低,弹性模量较高,污损不易吸附在有机氟材料、也相对难解吸附。污损生物一旦附着就不易被清除,特别是对石莼等藻类的积聚脱附性较差。

  • MARABOTTI 等[84]为了将 PDMS 的低模量特性与氟化聚合物的典型低表面张力相结合,用氟化硅氧烷共聚物与 PDMS 基质的混合物制备了防污涂层。表面张力较低的含氟组分会分离到空气-涂层界面,因此向 PDMS 中添加含氟共聚物可使其表面功能化,而不会影响基体的力学性能。试验表明,将氟化硅氧烷共聚物添加到 PDMS 基质中导致藤壶等的沉降量随浓度而减少。但是涂料是否具有长效性依旧需要进行海洋试验来进一步探究。

  • 3.3 含液光滑表面

  • 含液光滑表面(SLIPS)是由多孔基底和润滑液组成,润滑液对基底有强化学亲和力从而被基底固定在表面,但依旧保持一定的流动性,从而形成固定的光滑表面,具有低表面能、弹性模量和摩擦因数的特征。YANG 等[85]使用端羟基二甲基硅氧烷对环氧树脂改性,加入廉价具有生物相容性的纳米二氧化钛填料制备了疏水、耐磨环氧树脂复合材料,之后向其中注入不同浓度的硅油。防污试验表明其具有良好的抗污性能。

  • 虽然具有良好的抗污性能和低摩擦因数,但是润滑油力学强度较低、渗出往往不可控使得材料整体的耐久性不足[86]。TONG 等[87]将偶氮基和 α-环糊精引入到聚合物主链制备了可切换润滑模式的 SLIPS,顺式偶氮化合物在光照下可逆的转化为反式构象,反式构象会与 α-环糊精紧密结合,促使聚合物收缩将润滑液挤出。所以该智能 SLIPS 可以通过控制外部条件来调控润滑模式,进而减少了润滑剂的浪费,延长了涂层的使用寿命。海洋试验表明其至少可以保持 180 天的防污能力。综上所述,图10 给出了污损脱附型涂层防污的机理示意图。

  • 图10 污损脱附型涂层防污机理

  • Fig.10 Antifouling mechanism of fouling-release coatings

  • 4 两亲性聚合物

  • 抗蛋白材料或者污损释放材料在面对复杂的海洋环境时,防污能力下降明显。无论是具有低表面能污损脱附型抗污剂(有机氟、有机硅),还是具有蛋白质抗性的污损阻抗涂层(PEG、两性离子聚合物),都无法防止所有污损生物对疏水性和亲水性表面具有不同亲和力的污染。所以与具有单一作用模式的涂层相比,多功能涂层或许是一种更好的选择。一种思路是将具有污损阻抗能力的亲水性物质与有污损脱附能力的疏水性物质结合制备出两亲性聚合物。

  • 两亲性涂层由亚微米或纳米尺度上的疏水域和亲水域组成,其表面结合了亲、疏水成分,不仅具有亲水成分的蛋白质排斥特性,而且减少了表面与生物粘附剂的极性相互作用,使得污损生物更易脱落。此外不互溶聚合物共混物的动力学和热力学驱动相分离,会在纳米尺度上产生了成分异质性,产生了与分泌型生物粘附剂的尺寸相当的表面特征,能有效降低涂层表面污垢生物的粘附强度。两亲性聚合物涂层的抗污机理如图11 所示。两亲行聚合物涂层同时含有亲水和亲油分子链的两相亲结构,亲水部分能够有效直接地抵抗污损粘附,而亲油的部分是降低了表面能,使得粘附于表面的污损能够在外力(如海水冲刷)的作用下轻易地脱除。

  • 图11 两亲性聚合物涂层防污机理

  • Fig.11 Antifouling mechanism of amphiphilic polymer coatings

  • 生漆是从漆树中提取的天然树脂,具有优异的耐腐蚀性和环境友好性,但是干燥缓慢。CHEN 等[88]通过简单的溶胶-凝胶工艺,使用生漆与多胺封端的超支化聚硅氧烷(HPSi)和硅烷封端的两亲性调聚物(S-FP)偶联制备涂层。HPSi 的引入大大缩短了自然漆膜的干燥时间,提高了其力学性能。随着 HPSi 含量的增加,涂层的干燥速度和表面硬度增加。因为具有低表面能氟碳链段的两亲性调聚物 S-FP 与生漆不相容,在涂层形成过程中 S-FP 可以在表面上自动富集,使其具有优异的防污性能。且随着 S-FP 含量的增加,涂层的柔韧性和防污能力显著提高。

  • WANG 等[89]通过原子转移自由基聚合将具有亲水链段的聚(N-乙烯基吡咯烷酮)和疏水链段的甲基丙烯酸三氟甲酯的两亲性聚合物接枝到纳米二氧化硅表面,将改性二氧化硅与自抛光基体复合,改性纳米二氧化硅均匀的分散在基体中,自抛光纳米复合结构的水解还可以生成微纳米结构,进一步增强了涂层的防污性能。

  • TIAN 等[82]从纳米银颗粒和接枝聚合物链组成的纳米复合水凝胶中开发了一种具有亲水水凝胶、功能性纳米颗粒和污损释放的多重防污特性的两亲性硅基防污涂层。但是该涂料的力学性能仍然较差,并且需要化石资源。为解决上述情况,该课题组 LU 等[90]又通过原位形成疏水性和亲水性互穿聚合物网络,制备一种具有优良防污和力学性能的生物基两亲性水凝胶涂层。以生物资源丁香酚为原料,合成了含硅氧烷链的生物基环氧单体,并与异戊二胺交联,得到疏水的生物基环氧网络。同时,还合成了巯基亲水聚合物(PNIPAM-SH),并与三氟甲烷磺酸银盐混合形成亲水纳米银(AgNPs)水凝胶网络, AgNPs 渗透到生物基环氧网络中,生成具有互穿聚合物网络的两亲水凝胶涂层。

  • CHENG 等[91]利用含聚乙二醇的羟基丙烯酸预聚物(BOH)、α,ω-三乙氧基硅烷封端的聚二甲基硅烷低聚物(TSU)和 α,ω-三乙氧基硅烷封端的全氟聚醚低聚物(PFU)通过缩合反应制得同时含有全氟聚醚和 PDMS 疏水链段以及 PEG 亲水链段的双亲聚合物网络涂层,力求涂层兼具有机氟的低表面能性、有机硅的低弹性模量、PEG 的亲水抗蛋白吸附等优点。试验表明随着 PFU 和 TSU 含量增加,涂层表面能和弹性模量降低,涂层防污性能提高。抗细菌和硅藻附着试验证实,含 PEG 链段的样品比不含 PEG 链段的样品防污性能更好,且远好于商品化有机硅 DC3140。

  • GUDIPATI等[92]通过不同重量百分比的超支化氟聚合物(HBFP)和 PEG 交联,合成了在组成和形貌方面具有最佳纳米级异质性的两亲性共聚物。由于 HBFP 和 PEG 域的特征相分离,交联 HBFP-PEG 网络的涂层表现出复杂的形貌和拓扑结构。改变涂层厚度以及 PEG 的相对组成可以实现纳微尺度的形态异质性。对照试验表明,此涂层有一定的抗蛋白吸附的能力。本文认为成分和形态异质性是实现能够防止生物污染的表面的关键。

  • 5 生物降解高分子基防污材料

  • 生物降解聚合物是指在一定时间内,可在微生物的作用下,通过光降解、氧化、水解产生二氧化碳、水、和其他天然物质的聚合物。脂肪族聚酯是典型的生物可降解聚合物,主链可以在微生物的作用下降解,随着主链的断裂形成不断更新的表面,从而防止生物污染[93]。与自抛光涂料相比,其主链的断裂受微生物的影响,与船速无关,该系统在静态和动态海洋环境中均表现出良好的抗生物污染能力。

  • 此外普通自抛光防污涂料聚合物侧链脱落后,不会在短时间内主链完全降解,造成一定程度的海水“塑料垃圾污染”。而生物可降解聚合物的大分子链可以被分解成低聚物或小分子,经过一定时间后最终转化为二氧化碳和水。但是传统的聚酯,如聚己内酯(PCL)、聚丁二酸丁二酯(PBS)和聚乳酸 (PLA)由于结晶度高、成膜性能差、与基材的粘附强度低,不能直接用作防污涂料[94]。此外结晶度高也会导致降解速度慢而影响防污效果。可以通过与聚合物共混或改性来降低结晶度、增强黏附能力以及控制防污剂释放速率。

  • 化学成分、物理机械特性和形态等性质都会影响这些聚合物分解[95]。聚己内酯(PCL)能够在海洋环境中生物降解,形成动态表面以抑制海洋生物污垢的粘附。MA 等[96]采用开环聚合和缩合反应相结合的方法,制备了一系列以己内酯(CL)和和乙交酯(GA)共聚酯低聚物为软段的可降解聚氨酯 (PU)。共聚会破坏聚合物链的规则性,阻碍软段的结晶,所以 GA 的引入可以降低结晶度,与聚己内酯软段相比,这种聚氨酯表现出更快的降解。试验表明己内酯和乙交酯的共聚可以降低聚氨酯的结晶度和球晶尺寸,在不含抗污剂的情况下,该系列防污效果最好的涂料可在三个月内保持良好的抗污性能。添加了环境友好的防污剂后防污能力可以延长到五个月。证明可降解聚合物可依靠主链的断裂形成自我更新的表面而抛光附着的生物,而且越高的降解速率会导致越快地进行自抛光,所以抗生物污损能力会随着降解速率的提高而提高。

  • 文献[96]的马春风课题组在此基础上提出了动态表面防污的概念,动态表面是指在海水中通过自身降解不断更新的表面。如之前污损生物的形成过程所述,附着在物体表面的生物污垢不是瞬时形成的。这包括微生物的降落、生物粘合剂的分泌和生长过程。他们认为聚合物的降解形成一个不断变化的动态表面,动态表面可以缩短生物体与表面之间的接触时间,从而降低与污染生物体的相互作用力而避免沉降[40]。基于这一策略,他们开发了一系列可降解聚合物基动态表面。

  • PCL 是一种典型的可生物降解聚酯,即使在静态条件下,PCL 基涂料也表现出良好的防污性能。与线性 PCL 相比,超支化聚己内酯(h-PCL)通常具有高溶解度、低结晶度、低熔体粘度和高官能团密度等优点。AI 等[97]通过酯化反应和缩合制备了基于 h-PCL 和硅氧烷的可生物降解网络。同时,低结晶度和化学交联使网络产生弹性表面。硅氧烷的存在降低了弹性体的表面粗糙度并降低了表面能, h-PCL 的可降解性又避免静态条件下生物的附着。由 h-PCL 和硅氧烷组成的网络具有相对较高的弹性和较低的表面能,因此表现出污垢释放性能。

  • YANG[98]也以己内酯为原料设计了一种可生物降解、高度支化的共聚防污涂料。其中主链聚甲基丙烯酸甲酯(PMMA)片段组成,并以 PCL 片段相连。共聚后的 PCL 结晶能力受到抑制,使得 PCL 片段可以降解形成动态表面起到防污作用。PMMA 片段虽然不可降解,但是这些片段毒性低,易于代谢,不会对环境造成危害[99]。对降解能力的分析表明,共聚物的质量损失几乎与时间呈线性关系,表明降解速率恒定并随着己内酯含量的增加而增加。

  • 除了聚己内酯以外,其他聚酯也有所应用。 CHEN 等[100]制备由聚己二酸乙烯酯(PEA)、聚己二酸丁二醇酯(PBA)或聚己二酸六亚甲基酯(PHA) 组成的可降解聚酯段聚氨酯,并将其用作有机防污剂的释放系统。该系统对基材具有良好的附着力。降解速率可以通过改变可降解段含量和酯基密度来调节。防污剂以恒定速率释放,可通过降解速率控制。PAN 等[101]报道了一种具有可水解的丙烯酸三异丙基硅酯(TSA)侧基的生物源聚乳酸基聚氨酯和天然防污剂组成的环保防污涂料,这种聚合物具有较高的黏附强度(约 2.0 MPa)并可以过改变其软段和 TSA 含量调节的受控降解速率。海洋现场试验表明,该涂料具有良好的防污能力,持续 3 个月以上。

  • 虽然降解速度足够快,聚合物本身将具有良好的防污性能。但是可降解涂层的厚度有限,高降解率不可避免地导致使用寿命短。此外酯键密度增加会增加结晶度、降低成膜能力使得材料力学性能会下降。所以通过在可降解聚合物中添加环保型防污剂,使得防污剂随着主链的脱落逐步释放来杀灭污损生物是一个延长材料使用寿命、增加抗污能力的有效手段[93]

  • CHIANG 等[102]以可生物降解聚乳酸基聚氨酯为基体,向其中添加无毒防污化合物(丁烯内酯),开发了防污涂层。并根据现场试验估测了该防污剂的使用寿命为 18 个月,不含防污剂的涂料也显示出了一定的防污活性,防污有效期约为两个月,所以丁烯内酯防污剂的加入大大增加了此聚合物的防污能力。由于材料的防污能力与所添加的防污剂密切相关,因此本文还研究了影响丁烯内酯释放速率的因素。试验表明释放速率随涂层中初始丁烯内酯的浓度、海水温度和添加到聚合物中的松香量而变化。由于松香可以通过提高聚合物的自抛光速率促进丁烯内酯的后期释放,因此可以通过控制松香的添加量来控制丁烯内酯的释放速率。

  • 6 总结与展望

  • 随着人力在海洋生产和海洋运输获得的增加,海洋污损生物每年都会造成巨大的经济损失将不可忽视。防污涂料是目前最直接有效的预防手段,目前,海洋防污涂料的研究和应用正朝着高效、无毒、无污染、可降解的方向发展。本文总结了过去的二十年里研究者在防污涂料的设计和改进方面付出了巨大的努力。防污剂逐渐从高毒性的含锡化合物转换为低毒性含铜化合物再到天然产物来源的无毒化合物,基体从不可降解转为易降解,防污涂料从不环保转为环保。然而,目前环保型防污涂料在使用期限、毒性没有取得很好的突破,此外较高的成本也阻碍了其商业化的推广应用,因此开发更具优势的防污涂层仍然是学术界和工业界需要努力探索的方向。

  • 面对复杂的海洋环境,未来的防污涂层需要考虑更多现实的制约。一方面,不同海域优势物种,各类污损生物附着机理不尽相同,依靠单一防污机理的涂料无法达到预期的防污效果,未来防污剂的发展趋势将需要整合多种防污方法;另一方面,静态防污和动态防污效果应当被有机地结合从而适应真实的海洋服役场景。最后,未来的涂层应具备更高效的防污效果、更高的环境友好型、更长的服役时常,这些特定为新型的防污涂层设计提出了更高的要求。在此,本文提出了一种基于刺激响应的长效防污涂料,其防污原理如图12 所示,当涂层保持清洁时,涂层的化学性质保持稳定;当涂层表面被细菌粘附时,细菌的代谢活动产生的酸性微环境刺激涂层从而诱导涂层发挥防污效果。这种理想的涂层能够对环境的 pH 的变化响应,从而由稳定状态转变为可自抛光型涂层以实现自清洁效果。自抛光之后涂层周围的环境恢复正常时又转变成稳定状态从而实现防污剂的控释,达到长期高效的防污效果。实现这种设想需要对涂层的结构与性能进行精心地设计,但同时也是一种有前途的方向,在海洋防污领域可能产生令人惊讶的效果。

  • 图12 基于刺激响应的防污剂控释涂层机理

  • Fig.12 Mechanism of antifouling agent controlled release coating based on stimulus responseand

  • 参考文献

    • [1] JIN H C,TIAN L M,BING W,et al.Bioinspired marine antifouling coatings:Status,prospects,and future[J].Progress in Materials Science,2022,124:100889.

    • [2] TESLER A B,PRADO L H,THIEVESSEN I,et al.Nontoxic liquid-infused slippery coating prepared on steel substrates inhibits corrosion and biofouling adhesion[J].ACS Appl Mater Interfaces,2022,14(25):29386-29397.

    • [3] JIN H C,WANG J F,TIAN L M,et al.Recent advances in emerging integrated antifouling and anticorrosion coatings[J].Materials & Design,2022,213:110307.

    • [4] ECKMAN J E,THISTLE D,BURNETT W C,et al.Performance of cages as large animal-exclusion devices in the deep sea[J].Journal of Marine Research,2001,59(1):79-95.

    • [5] SCHULTZ M P,BENDICK J A,HOLM E R,et al.Economic impact of biofouling on a naval surface ship[J].Biofouling,2011,27(1):87-98.

    • [6] POURHASHEM S,SEIF A,SABA F,et al.Antifouling nanocomposite polymer coatings for marine applications:A review on experiments,mechanisms,and theoretical studies[J].Journal of Materials Science & Technology,2022,118:73-113.

    • [7] BUSKENS P,WOUTERS M,RENTROP C,et al.A brief review of environmentally benign antifouling and foul-release coatings for marine applications[J].Journal of Coatings Technology and Research,2013,10(1):29-36.

    • [8] GU Y Q,YU S W,MOU J G,et al.Research progress on the collaborative drag reduction effect of polymers and surfactants[J].Materials,2020,13(2):444.

    • [9] LEJARS M,MARGAILLAN A,BRESSY C.Fouling release coatings:a nontoxic alternative to biocidal antifouling coatings[J].Chemical Reviews,2012,112(8):4347-4390.

    • [10] MIRALLES L,ARDURA A,ARIAS A,et al.Barcodes of marine invertebrates from north Iberian ports:Native diversity and resistance to biological invasions[J].Marine Pollution Bulletin,2016,112(1-2):183-188.

    • [11] KUMAR A,AL-JUMAILI A,BAZAKA O,et al.Functional nanomaterials,synergisms,and biomimicry for environmentally benign marine antifouling technology[J].Materials Horizons,2021,8(12):3201-3238.

    • [12] GU Y Q,YU L Z,MOU J G,et al.Research strategies to develop environmentally friendly marine antifouling coatings[J].Marine Drugs,2020,18(7):371.

    • [13] 谢庆宜,马春风,张广照.海洋防污材料[J].科学,2017,69(1):27-31.XIE Qingyi,MA Chunfeng,ZHANG Guangzhou.Mariao antifouling materials[J].Science,2017,69(1):27-31.(in Chinese)

    • [14] CHEN R Z,ZHANG Y S,XIE Q Y,et al.Transparent Polymer-ceramic hybrid antifouling coating with superior mechanical properties[J].Advanced Functional Materials,2021,31(19):2011145.

    • [15] PARMENTIER KOEN F V,VERHAEGEN Y,DE WITT BAVO P,et al.Tributyltin:A Bottom-Up regulator of the crangon crangon Population[J].Frontiers in Marine Science,2019,6:633.

    • [16] YTREBERG E,BIGHIU M A,LUNDGREN L,et al.XRF measurements of tin,copper and zinc in antifouling paints coated on leisure boats[J].Environmental Pollution,2016,213:594-599.

    • [17] SHAM R C T,TAO L S R,MAK Y K Y,et al.Occurrence and trophic magnification profile of triphenyltin compounds in marine mammals and their corresponding food webs[J].Environment International,2020,137:105567.

    • [18] CLAISSE D,ALZIEU C.Copper contamination as a result of antifouling paint regulations[J].Marine Pollution Bulletin,1993,26(7):395-397.

    • [19] SOROLDONI S,DA S S V,CASTRO I B,et al.Antifouling paint particles cause toxicity to benthic organisms:Effects on two species with different feeding modes[J].Chemosphere,2020,238:124610.

    • [20] WANG X Q,LI S H,HUANG J Y,et al.A multifunctional and environmentally-friendly method to fabricate superhydrophilic and self-healing coatings for sustainable antifogging[J].Chemical Engineering Journal,2021,409:128228.

    • [21] MARECHAL J,HELLIO C.Challenges for the Development of new non-toxic antifouling solutions[J].International Journal of Molecular Sciences,2009,10(11):4623-4637.

    • [22] CASSE F,STAFSLIEN SHANE J,BAHR JAMES A,et al.Combinatorial materials research applied to the development of new surface coatings V.Application of a spinning water-jet for the semi-high throughput assessment of the attachment strength of marine fouling algae[J].Biofouling,2007,23(2):121-130.

    • [23] WANG Y K,HAO D Z,YANG M,et al.Polyurethane antifouling coatings with various antifouling strategies in the side chain[J].Progress in Organic Coatings,2022,173:107225.

    • [24] TONG Z,GUO H,DI Z,et al.Squid inspired elastomer marine coating with efficient antifouling strategies:Hydrophilized defensive surface and lower modulus[J].Colloids Surf B Biointerfaces,2022,213:112392.

    • [25] WU W T,ZHAO W J,WU Y H,et al.Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J].Applied Surface Science,2019,465:279-287.

    • [26] FENG K,NI C H,YU L M,et al.Synthesis and evaluation of acrylate resins suspending indole derivative structure in the side chain for marine antifouling[J].Colloids and Surfaces B-Biointerfaces,2019,184:110518.

    • [27] SHAO C L,XU R F,WANG C Y,et al.Potent Antifouling marine dihydroquinolin-2(1H)-one-containing alkaloids from the gorgonian coral-derived fungus scopulariopsis sp[J].Marine Biotechnology,2015,17(4):408-415.

    • [28] LIU H,CHEN S Y,GUO J Y,et al.Effective natural antifouling compounds from the plant Neriwn oleander and testing[J].International Biodeterioration & Biodegradation,2018,127:170-177.

    • [29] ZHANG J,LING W,YANG Z Q,et al.Isolation and structure-activity relationship of subergorgic acid and synthesis of its derivatives as antifouling agent[J].Marine Drugs,2019,17(2):101.

    • [30] WANG K L,XU Y,LU L,et al.Low-toxicity Diindol-3-ylmethanes as potent antifouling compounds[J].Marine Biotechnology,2015,17(5):624-632.

    • [31] NASROLLAHI N,ABER S,VATANPOUR V,et al.Development of hydrophilic microporous PES ultrafiltration membrane containing CuO nanoparticles with improved antifouling and separation performance[J].Materials Chemistry and Physics,2019,222:338-350.

    • [32] 毛田野,陆刚,余红伟,等.聚乙二醇-氧化亚铜微胶囊防污涂料的制备及性能[J].高分子材料科学与工程,2019,35(9):8-13.MAO Tianye,LU Gang,YU Hongwei,et al.Preparation and properties of polyethylene Glycol-CuO2 microcapsule antifouling coating[J].Polymer Materials Science and Engineering,2019,35(9):8-13.(in Chinese)

    • [33] LI Y,ZHANG L Y,ZHANG C,et al.Bioinspired antifouling Fe-based amorphous coating via killing-resisting dual surface modifications[J].Sci Rep,2022,12(1):819.

    • [34] ALMEIDA JOANA R,VASCONCELOS V.Natural antifouling compounds:Effectiveness in preventing invertebrate settlement and adhesion[J].Biotechnology Advances,2015,33(3-4):343-357.

    • [35] CHEN Y,XIE X G,REN C G,et al.Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari[J].Bioresource Technology,2013,129:568-574.

    • [36] DOBRETSOV S,XIONG H,XU Y,et al.Novel antifoulants:Inhibition of larval attachment by proteases[J].Marine Biotechnology,2007,9(3):388-397.

    • [37] XIONG H R,SONG L S,XU Y,et al.Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases[J].Journal of Industrial Microbiology & Biotechnology,2007,34(1):63-71.

    • [38] TASSO M,PETTITT MICHALA E,CORDEIRO ANA L,et al.Antifouling potential of Subtilisin a immobilized onto maleic anhydride copolymer thin films[J].Biofouling,2009,25(6):505-516.

    • [39] LIU L L,WU C H,QIAN P Y.Marine natural products as antifouling molecules-a mini-review(2014-2020)[J].Biofouling,2020,36(10):1210-1226.

    • [40] XIE Q Y,PAN J S,MA C F,et al.Dynamic surface antifouling:mechanism and systems[J].Soft Matter,2019,15(6):1087-1107.

    • [41] PAVLOVIC D,LAFOND S,MARGAILLAN A,et al.Facile synthesis of graft copolymers of controlled architecture.Copolymerization of fluorinated and non-fluorinated poly(dimethylsiloxane)macromonomers with trialkylsilyl methacrylates using RAFT polymerization[J].Polymer Chemistry,2016,7(15):2652-2664.

    • [42] PAN J S,XIE Q Y,MA C F,et al.Preparation and performance of natural product-based copper-free self-polishing marine antifouling coatings[J].China Surface Engineering,2019,32(4):109-114.

    • [43] SHA J N,YU J,CHEN R R,et al.Eco-friendly self-polishing antifouling coating via eugenol ester hydrolysis[J].Progress in Organic Coatings,2022,172:107077.

    • [44] SHA J N,CHEN R R,YU J,et al.Dynamic multi-level microstructured antifouling surfaces by combining quaternary ammonium modified GO with self-polishing copolymers[J].Carbon,2023,201:1038-1047.

    • [45] ZHANG J B,LIU Y Z,WANG X W,et al.Self-polishing emulsion platforms:Eco-friendly surface engineering of coatings toward water borne marine antifouling[J].Progress in Organic Coatings,2020,149:105945.

    • [46] TAN L,XING J X,CAO F F,et al.Synthesis of double-hydrophilic double-grafted copolymers PMA-g-PEG/PDMA and their protein-resistant properties[J].Chinese Journal of Polymer Science,2013,31(4):691-701.

    • [47] WU J,WANG Z,LIN W F,et al.Investigation of the interaction between poly(ethylene glycol)and protein molecules using low field nuclear magnetic resonance[J].Acta Biomaterialia,2013,9(5):6414-6420.

    • [48] WU J,ZHAO C,HU R D,et al.Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers[J].Acta Biomaterialia,2014,10(2):751-760.

    • [49] LENG C,SUN S W,ZHANG K X,et al.Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ[J].Acta Biomaterialia,2016,40:6-15.

    • [50] BANERJEE I,PANGULE RAVINDRA C,KANE RAVI S.Antifouling coatings:recent developments in the design of surfaces that prevent fouling by proteins,bacteria,and marine organisms[J].Advanced Materials,2011,23(6):690-718.

    • [51] WANKA R,ALDRED N,FINLAY J A,et al.Antifouling properties of dendritic polyglycerols against marine macrofouling organisms[J].Langmuir,2019,35(50):16568-16575.

    • [52] WANG R L C,KREUZER H J,GRUNZE M.The interaction of oligo(ethylene oxide)with water:a quantum mechanical study[J].Physical Chemistry Chemical Physics,2000,2(16):3613-3622.

    • [53] PERTSIN A J,GRUNZE M.Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers[J].Langmuir,2000,16(23):8829-8841.

    • [54] MA C F,ZHOU H,WU B,et al.Preparation of polyurethane with zwitterionic side chains and their protein resistance[J].Acs Applied Materials & Interfaces,2011,3(2):455-461.

    • [55] ZHANG Z,CHEN S F,CHANG Y,et al.Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings[J].Journal of Physical Chemistry B,2006,110(22):10799-10804.

    • [56] CHANG Y,CHEN S F,ZHANG Z,et al.Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines[J].Langmuir,2006,22(5):2222-2226.

    • [57] CHANG Y,CHEN S F,YU Q M,et al.Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance[J].Biomacromolecules,2007,8(1):122-127.

    • [58] WEI Q,ZHANG F L,LI J,et al.Oxidant-induced dopamine polymerization for multifunctional coatings[J].Polymer Chemistry,2010,1(9):1430-1433.

    • [59] CHEN S Q,SHI J S,ZHAO Y D,et al.Rapid fabrication of zwitterionic coating on 316L stainless steel surface for marine biofouling resistance[J].Progress in Organic Coatings,2021,161:106552.

    • [60] BRADY R F,SINGER I L.Mechanical factors favoring release from fouling release coatings[J].Biofouling,2000,15(1-3):73-81.

    • [61] YANG J P,XUE B,ZHOU Y Y,et al.Spray-painted hydrogel coating for marine antifouling[J].Advanced Materials Technologies,2021,6(3):2000911.

    • [62] YEBRA D M,KIIL S,DAM-JOHANSEN K,et al.Reaction rate estimation of controlled-release antifouling paint binders:Rosin-based systems[J].Progress in Organic Coatings,2005,53(4):256-275.

    • [63] 谢松伯.聚硫氨酯基海洋防污涂料的制备及其性能研究[D].南宁:广西大学,2020.XIE Songbo.Studies on preparation and properties of polythiourethanebased parine coatings[D].Nanning:Guangxi university,2020.(in Chinese)

    • [64] GALHENAGE TELUKA P,HOFFMAN D,SILBERT S.,et al.Fouling-release performance of silicone oil-modified siloxane-polyurethane coatings[J].Acs Applied Materials & Interfaces,2016,8(42):29025-29036.

    • [65] CHEN Z G,CHISHOLM B,KIM J,et al.UV-curable,oxetane-toughened epoxy-siloxane coatings for marine fouling-release coating applications[J].Polymer International,2008,57(6):879-886.

    • [66] RATH S K,CHAVAN J G,SASANE S,et al.Two component silicone modified epoxy foul release coatings:Effect of modulus,surface energy and surface restructuring on pseudobarnacle and macrofouling behavior[J].Applied Surface Science,2010,256(8):2440-2446.

    • [67] SOMMER S,EKIN A,WEBSTER DEAN C,et al.A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane)(PDMS)macromers[J].Biofouling,2010,26(8):961-972.

    • [68] RAHMAN M M,CHUN H,PARK H.Waterborne polysiloxane-urethane-urea for potential marine coatings[J].Journal of Coatings Technology and Research,2011,8(3):389-399.

    • [69] LIU C,MA C F,XIE Q Y,et al.Self-repairing silicone coatings for marine anti-biofouling[J].Journal of Materials Chemistry A,2017,5(30):15855-15861.

    • [70] HU P,XIE R,XIE Q Y,et al.Simultaneous realization of antifouling,self-healing,and strong substrate adhesion via a bioinspired self-stratification strategy[J].Chemical Engineering Journal,2022,449:137875.

    • [71] QIU H Y,HOELKEN I,GAPEEVA A,et al.Development and characterization of mechanically durable silicone-polythiourethane composites modified with tetrapodal shaped ZnO particles for the potential application as fouling-release coating in the marine sector[J].Materials,2018,11(12):2413.

    • [72] SELIM MOHAMED S,EL-SAFTY SHERIF A,EL-SOCKARY MAHER A,et al.Tailored design of Cu2O nanocube/silicone composites as efficient foul-release coatings[J].Rsc Advances,2015,5(26):19933-19943.

    • [73] SELIM MOHAMED S.EL-SAFTY SHERIF A,AZZAM AHMED M,et al.Superhydrophobic silicone/TiO2-SiO2 nanorod-like composites for marine fouling release coatings[J].Chemistryselect,2019,4(12):3395-3407.

    • [74] SELIM MOHAMED S,YANG H EL-SAFTY SHERIF A,et al.Superhydrophobic coating of silicone/beta-MnO2 nanorod composite for marine antifouling[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2019,570:518-530.

    • [75] CHEN R Z,ZHANG Y S,XIE Q Y,et al.Transparent polymer-ceramic hybrid antifouling coating with superior mechanical properties[J].Advanced Functional Materials,2021,31(19):2011145.

    • [76] MOLINO PAUL J,CHILDS SAMANTHA,EASON HUBBARD MAEVE R,et al.Development of the primary bacterial microfouling layer on antifouling and fouling release coatings in temperate and tropical environments in Eastern Australia[J].Biofouling,2009,25(2):149-162.

    • [77] LIU C,YAN B H,SUN J W,et al.Cu@C core-shell nanoparticles modified polydimethylsiloxane-based coatings with improved static antifouling performance[J].Progress in Organic Coatings,2022,171:107026.

    • [78] GUO H S,YANG JING,ZHAO W Q,et al.Direct formation of amphiphilic crosslinked networks based on PVP as a marine anti-biofouling coating[J].Chemical Engineering Journal,2019,374:1353-1363.

    • [79] SOKOLOVA A,CILZ N,DANIELS J,et al.A comparison of the antifouling/foul-release characteristics of non-biocidal xerogel and commercial coatings toward micro-and macrofouling organisms[J].Biofouling,2012,28(5):511-523.

    • [80] GU Y J,ZHOU S X,LUO H L,et al.Temperature-dependent phase-segregation behavior and antifouling performance of UV-Curable methacrylated PDMS/PEG coatings[J].Journal of Polymer Science Part B-Polymer Physics,2016,54(16):1612-1623.

    • [81] ZHAO W Q,YANG J,GUO H S,et al.Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix[J].Chemical Engineering Science,2019,207:790-798.

    • [82] TIAN S,JIANG D Y,PU J B,et al.A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties[J].Chemical Engineering Journal,2019,370:1-9.

    • [83] 田军,辜志俊,李克恭,等.低表面能材料上海洋生物附着的研究[J].涂料工业,1998(1):11-14.TIAN Jun,GU Zhijun,LI Kegong,et al.Study on the adhesion of halobios on low surface energy materials[J].Paint & Coatings Industry,1998(1):11-14.(in Chinese)

    • [84] MARABOTTI I,MORELLI A,ORSINI LORENZO M,et al.Fluorinated/siloxane copolymer blends for fouling release:chemical characterisation and biological evaluation with algae and barnacles[J].Biofouling,2009,25(6):481-493.

    • [85] YANG Z C,CHANG J F,HE X Y,et al.Construction of robust slippery lubricant-infused epoxy-nanocomposite coatings for marine antifouling application[J].Progress in Organic Coatings,2023,177.

    • [86] DENG R,SHEN T,CHEN H L,et al.Slippery liquid-infused porous surfaces(SLIPSs):a perfect solution to both marine fouling and corrosion[J].Journal of Materials Chemistry A,2020,8(16):7536-7547.

    • [87] TONG Z M,SONG L N,CHEN S F,et al.Hagfish-inspired smart SLIPS marine antifouling coating based on supramolecular:lubrication modes responsively switching and self-healing properties[J].Advanced Functional Materials,2022,32(27):2201290.

    • [88] CHEN Y X,ZHANG G L,ZHANG G Z,et al.Rapid curing and self-stratifying lacquer coating with antifouling and anticorrosive properties[J].Chemical Engineering Journal,2021,421:129755.

    • [89] WANG P,HE B L,WANG B W,et al.Durable self-polishing antifouling coating based on fluorine-containing pyrrolidone amphiphilic copolymer-functionalized nanosilica[J].Progress in Organic Coatings,2022,165:106706.

    • [90] LU G M,TIAN S,LI J Y,et al.Fabrication of bio-based amphiphilic hydrogel coating with excellent antifouling and mechanical properties[J].Chemical Engineering Journal,2021,409:128134.

    • [91] CHENG Z,ZHANG F,SUN X Y,et al.Preparation and properties of amphiphilic fluorinated silicone modified acrylic resin coatings containing PEG for anti-fouling application[J].Acta Polymerica Sinica,2016,15370(8):1112-1120.

    • [92] GUDIPATI C S,FINLAY J A,CALLOW J A,et al.The antifouling and fouling-release perfomance of hyperbranched fluoropolymer(HBFP)-poly(ethylene glycol)(PEG)composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva[J].Langmuir,2005,21(7):3044-3053.

    • [93] PAN J S,XIE Q Y,MA C F,et al.Progress in Biodegradable Polymer-based Marine Antifouling Materials[J].Surface Technology,2019,48(7):185-192.

    • [94] YAO J H,CHEN S S,MA C F,et al.Marine anti-biofouling system with poly(epsilon-caprolactone)/clay composite as carrier of organic antifoutant[J].Journal of Materials Chemistry B,2014,2(31):5100-5106.

    • [95] KYEI S K,DARKO G,AKARANTA O.Chemistry and application of emerging ecofriendly antifouling paints:a review[J].Journal of Coatings Technology and Research,2020,17(2):315-332.

    • [96] MA C F,XU L G,XU W T,et al.Degradable polyurethane for marine anti-biofouling[J].Journal of Materials Chemistry B,2013,1(24):3099-3106.

    • [97] AI X Q,XIE Q Y,MA C F,et al.Fouling release coating consisting of hyperbranched poly(epsilon-caprolactone)/siloxane elastomer[J].Acs Applied Polymer Materials,2020,2(4):1429-1437.

    • [98] YANG H J,CHANG H,ZHANG Q,et al.Highly branched copolymers with degradable bridges for antifouling coatings[J].Acs Applied Materials & Interfaces,2020,12(14):16849-16855.

    • [99] BOOTH A M,HANSEN B H,FRENZEL M,et al.Uptake and toxicity of methylmethacrylate-based nanoplastic particles in aquatic organisms[J].Environ Toxicol Chem,2016,35(7):1641-1649.

    • [100] CHEN S S,MA C F,ZHANG G Z.Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling[J].Progress in Organic Coatings,2017,104:58-63.

    • [101] PAN J S,XIE Q Y,CHIANG H Y,et al.“From the nature for the nature”:An eco-friendly antifouling coating consisting of poly(lactic acid)-based polyurethane and natural antifoulant[J].Acs Sustainable Chemistry & Engineering,2020,8(3):1671-1678.

    • [102] CHIANG H Y,PAN J S,MA C F,et al.Combining a bio-based polymer and a natural antifoulant into an eco-friendly antifouling coating[J].Biofouling,2020,36(2):200-209.

  • 参考文献

    • [1] JIN H C,TIAN L M,BING W,et al.Bioinspired marine antifouling coatings:Status,prospects,and future[J].Progress in Materials Science,2022,124:100889.

    • [2] TESLER A B,PRADO L H,THIEVESSEN I,et al.Nontoxic liquid-infused slippery coating prepared on steel substrates inhibits corrosion and biofouling adhesion[J].ACS Appl Mater Interfaces,2022,14(25):29386-29397.

    • [3] JIN H C,WANG J F,TIAN L M,et al.Recent advances in emerging integrated antifouling and anticorrosion coatings[J].Materials & Design,2022,213:110307.

    • [4] ECKMAN J E,THISTLE D,BURNETT W C,et al.Performance of cages as large animal-exclusion devices in the deep sea[J].Journal of Marine Research,2001,59(1):79-95.

    • [5] SCHULTZ M P,BENDICK J A,HOLM E R,et al.Economic impact of biofouling on a naval surface ship[J].Biofouling,2011,27(1):87-98.

    • [6] POURHASHEM S,SEIF A,SABA F,et al.Antifouling nanocomposite polymer coatings for marine applications:A review on experiments,mechanisms,and theoretical studies[J].Journal of Materials Science & Technology,2022,118:73-113.

    • [7] BUSKENS P,WOUTERS M,RENTROP C,et al.A brief review of environmentally benign antifouling and foul-release coatings for marine applications[J].Journal of Coatings Technology and Research,2013,10(1):29-36.

    • [8] GU Y Q,YU S W,MOU J G,et al.Research progress on the collaborative drag reduction effect of polymers and surfactants[J].Materials,2020,13(2):444.

    • [9] LEJARS M,MARGAILLAN A,BRESSY C.Fouling release coatings:a nontoxic alternative to biocidal antifouling coatings[J].Chemical Reviews,2012,112(8):4347-4390.

    • [10] MIRALLES L,ARDURA A,ARIAS A,et al.Barcodes of marine invertebrates from north Iberian ports:Native diversity and resistance to biological invasions[J].Marine Pollution Bulletin,2016,112(1-2):183-188.

    • [11] KUMAR A,AL-JUMAILI A,BAZAKA O,et al.Functional nanomaterials,synergisms,and biomimicry for environmentally benign marine antifouling technology[J].Materials Horizons,2021,8(12):3201-3238.

    • [12] GU Y Q,YU L Z,MOU J G,et al.Research strategies to develop environmentally friendly marine antifouling coatings[J].Marine Drugs,2020,18(7):371.

    • [13] 谢庆宜,马春风,张广照.海洋防污材料[J].科学,2017,69(1):27-31.XIE Qingyi,MA Chunfeng,ZHANG Guangzhou.Mariao antifouling materials[J].Science,2017,69(1):27-31.(in Chinese)

    • [14] CHEN R Z,ZHANG Y S,XIE Q Y,et al.Transparent Polymer-ceramic hybrid antifouling coating with superior mechanical properties[J].Advanced Functional Materials,2021,31(19):2011145.

    • [15] PARMENTIER KOEN F V,VERHAEGEN Y,DE WITT BAVO P,et al.Tributyltin:A Bottom-Up regulator of the crangon crangon Population[J].Frontiers in Marine Science,2019,6:633.

    • [16] YTREBERG E,BIGHIU M A,LUNDGREN L,et al.XRF measurements of tin,copper and zinc in antifouling paints coated on leisure boats[J].Environmental Pollution,2016,213:594-599.

    • [17] SHAM R C T,TAO L S R,MAK Y K Y,et al.Occurrence and trophic magnification profile of triphenyltin compounds in marine mammals and their corresponding food webs[J].Environment International,2020,137:105567.

    • [18] CLAISSE D,ALZIEU C.Copper contamination as a result of antifouling paint regulations[J].Marine Pollution Bulletin,1993,26(7):395-397.

    • [19] SOROLDONI S,DA S S V,CASTRO I B,et al.Antifouling paint particles cause toxicity to benthic organisms:Effects on two species with different feeding modes[J].Chemosphere,2020,238:124610.

    • [20] WANG X Q,LI S H,HUANG J Y,et al.A multifunctional and environmentally-friendly method to fabricate superhydrophilic and self-healing coatings for sustainable antifogging[J].Chemical Engineering Journal,2021,409:128228.

    • [21] MARECHAL J,HELLIO C.Challenges for the Development of new non-toxic antifouling solutions[J].International Journal of Molecular Sciences,2009,10(11):4623-4637.

    • [22] CASSE F,STAFSLIEN SHANE J,BAHR JAMES A,et al.Combinatorial materials research applied to the development of new surface coatings V.Application of a spinning water-jet for the semi-high throughput assessment of the attachment strength of marine fouling algae[J].Biofouling,2007,23(2):121-130.

    • [23] WANG Y K,HAO D Z,YANG M,et al.Polyurethane antifouling coatings with various antifouling strategies in the side chain[J].Progress in Organic Coatings,2022,173:107225.

    • [24] TONG Z,GUO H,DI Z,et al.Squid inspired elastomer marine coating with efficient antifouling strategies:Hydrophilized defensive surface and lower modulus[J].Colloids Surf B Biointerfaces,2022,213:112392.

    • [25] WU W T,ZHAO W J,WU Y H,et al.Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J].Applied Surface Science,2019,465:279-287.

    • [26] FENG K,NI C H,YU L M,et al.Synthesis and evaluation of acrylate resins suspending indole derivative structure in the side chain for marine antifouling[J].Colloids and Surfaces B-Biointerfaces,2019,184:110518.

    • [27] SHAO C L,XU R F,WANG C Y,et al.Potent Antifouling marine dihydroquinolin-2(1H)-one-containing alkaloids from the gorgonian coral-derived fungus scopulariopsis sp[J].Marine Biotechnology,2015,17(4):408-415.

    • [28] LIU H,CHEN S Y,GUO J Y,et al.Effective natural antifouling compounds from the plant Neriwn oleander and testing[J].International Biodeterioration & Biodegradation,2018,127:170-177.

    • [29] ZHANG J,LING W,YANG Z Q,et al.Isolation and structure-activity relationship of subergorgic acid and synthesis of its derivatives as antifouling agent[J].Marine Drugs,2019,17(2):101.

    • [30] WANG K L,XU Y,LU L,et al.Low-toxicity Diindol-3-ylmethanes as potent antifouling compounds[J].Marine Biotechnology,2015,17(5):624-632.

    • [31] NASROLLAHI N,ABER S,VATANPOUR V,et al.Development of hydrophilic microporous PES ultrafiltration membrane containing CuO nanoparticles with improved antifouling and separation performance[J].Materials Chemistry and Physics,2019,222:338-350.

    • [32] 毛田野,陆刚,余红伟,等.聚乙二醇-氧化亚铜微胶囊防污涂料的制备及性能[J].高分子材料科学与工程,2019,35(9):8-13.MAO Tianye,LU Gang,YU Hongwei,et al.Preparation and properties of polyethylene Glycol-CuO2 microcapsule antifouling coating[J].Polymer Materials Science and Engineering,2019,35(9):8-13.(in Chinese)

    • [33] LI Y,ZHANG L Y,ZHANG C,et al.Bioinspired antifouling Fe-based amorphous coating via killing-resisting dual surface modifications[J].Sci Rep,2022,12(1):819.

    • [34] ALMEIDA JOANA R,VASCONCELOS V.Natural antifouling compounds:Effectiveness in preventing invertebrate settlement and adhesion[J].Biotechnology Advances,2015,33(3-4):343-357.

    • [35] CHEN Y,XIE X G,REN C G,et al.Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari[J].Bioresource Technology,2013,129:568-574.

    • [36] DOBRETSOV S,XIONG H,XU Y,et al.Novel antifoulants:Inhibition of larval attachment by proteases[J].Marine Biotechnology,2007,9(3):388-397.

    • [37] XIONG H R,SONG L S,XU Y,et al.Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases[J].Journal of Industrial Microbiology & Biotechnology,2007,34(1):63-71.

    • [38] TASSO M,PETTITT MICHALA E,CORDEIRO ANA L,et al.Antifouling potential of Subtilisin a immobilized onto maleic anhydride copolymer thin films[J].Biofouling,2009,25(6):505-516.

    • [39] LIU L L,WU C H,QIAN P Y.Marine natural products as antifouling molecules-a mini-review(2014-2020)[J].Biofouling,2020,36(10):1210-1226.

    • [40] XIE Q Y,PAN J S,MA C F,et al.Dynamic surface antifouling:mechanism and systems[J].Soft Matter,2019,15(6):1087-1107.

    • [41] PAVLOVIC D,LAFOND S,MARGAILLAN A,et al.Facile synthesis of graft copolymers of controlled architecture.Copolymerization of fluorinated and non-fluorinated poly(dimethylsiloxane)macromonomers with trialkylsilyl methacrylates using RAFT polymerization[J].Polymer Chemistry,2016,7(15):2652-2664.

    • [42] PAN J S,XIE Q Y,MA C F,et al.Preparation and performance of natural product-based copper-free self-polishing marine antifouling coatings[J].China Surface Engineering,2019,32(4):109-114.

    • [43] SHA J N,YU J,CHEN R R,et al.Eco-friendly self-polishing antifouling coating via eugenol ester hydrolysis[J].Progress in Organic Coatings,2022,172:107077.

    • [44] SHA J N,CHEN R R,YU J,et al.Dynamic multi-level microstructured antifouling surfaces by combining quaternary ammonium modified GO with self-polishing copolymers[J].Carbon,2023,201:1038-1047.

    • [45] ZHANG J B,LIU Y Z,WANG X W,et al.Self-polishing emulsion platforms:Eco-friendly surface engineering of coatings toward water borne marine antifouling[J].Progress in Organic Coatings,2020,149:105945.

    • [46] TAN L,XING J X,CAO F F,et al.Synthesis of double-hydrophilic double-grafted copolymers PMA-g-PEG/PDMA and their protein-resistant properties[J].Chinese Journal of Polymer Science,2013,31(4):691-701.

    • [47] WU J,WANG Z,LIN W F,et al.Investigation of the interaction between poly(ethylene glycol)and protein molecules using low field nuclear magnetic resonance[J].Acta Biomaterialia,2013,9(5):6414-6420.

    • [48] WU J,ZHAO C,HU R D,et al.Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers[J].Acta Biomaterialia,2014,10(2):751-760.

    • [49] LENG C,SUN S W,ZHANG K X,et al.Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ[J].Acta Biomaterialia,2016,40:6-15.

    • [50] BANERJEE I,PANGULE RAVINDRA C,KANE RAVI S.Antifouling coatings:recent developments in the design of surfaces that prevent fouling by proteins,bacteria,and marine organisms[J].Advanced Materials,2011,23(6):690-718.

    • [51] WANKA R,ALDRED N,FINLAY J A,et al.Antifouling properties of dendritic polyglycerols against marine macrofouling organisms[J].Langmuir,2019,35(50):16568-16575.

    • [52] WANG R L C,KREUZER H J,GRUNZE M.The interaction of oligo(ethylene oxide)with water:a quantum mechanical study[J].Physical Chemistry Chemical Physics,2000,2(16):3613-3622.

    • [53] PERTSIN A J,GRUNZE M.Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers[J].Langmuir,2000,16(23):8829-8841.

    • [54] MA C F,ZHOU H,WU B,et al.Preparation of polyurethane with zwitterionic side chains and their protein resistance[J].Acs Applied Materials & Interfaces,2011,3(2):455-461.

    • [55] ZHANG Z,CHEN S F,CHANG Y,et al.Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings[J].Journal of Physical Chemistry B,2006,110(22):10799-10804.

    • [56] CHANG Y,CHEN S F,ZHANG Z,et al.Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines[J].Langmuir,2006,22(5):2222-2226.

    • [57] CHANG Y,CHEN S F,YU Q M,et al.Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance[J].Biomacromolecules,2007,8(1):122-127.

    • [58] WEI Q,ZHANG F L,LI J,et al.Oxidant-induced dopamine polymerization for multifunctional coatings[J].Polymer Chemistry,2010,1(9):1430-1433.

    • [59] CHEN S Q,SHI J S,ZHAO Y D,et al.Rapid fabrication of zwitterionic coating on 316L stainless steel surface for marine biofouling resistance[J].Progress in Organic Coatings,2021,161:106552.

    • [60] BRADY R F,SINGER I L.Mechanical factors favoring release from fouling release coatings[J].Biofouling,2000,15(1-3):73-81.

    • [61] YANG J P,XUE B,ZHOU Y Y,et al.Spray-painted hydrogel coating for marine antifouling[J].Advanced Materials Technologies,2021,6(3):2000911.

    • [62] YEBRA D M,KIIL S,DAM-JOHANSEN K,et al.Reaction rate estimation of controlled-release antifouling paint binders:Rosin-based systems[J].Progress in Organic Coatings,2005,53(4):256-275.

    • [63] 谢松伯.聚硫氨酯基海洋防污涂料的制备及其性能研究[D].南宁:广西大学,2020.XIE Songbo.Studies on preparation and properties of polythiourethanebased parine coatings[D].Nanning:Guangxi university,2020.(in Chinese)

    • [64] GALHENAGE TELUKA P,HOFFMAN D,SILBERT S.,et al.Fouling-release performance of silicone oil-modified siloxane-polyurethane coatings[J].Acs Applied Materials & Interfaces,2016,8(42):29025-29036.

    • [65] CHEN Z G,CHISHOLM B,KIM J,et al.UV-curable,oxetane-toughened epoxy-siloxane coatings for marine fouling-release coating applications[J].Polymer International,2008,57(6):879-886.

    • [66] RATH S K,CHAVAN J G,SASANE S,et al.Two component silicone modified epoxy foul release coatings:Effect of modulus,surface energy and surface restructuring on pseudobarnacle and macrofouling behavior[J].Applied Surface Science,2010,256(8):2440-2446.

    • [67] SOMMER S,EKIN A,WEBSTER DEAN C,et al.A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane)(PDMS)macromers[J].Biofouling,2010,26(8):961-972.

    • [68] RAHMAN M M,CHUN H,PARK H.Waterborne polysiloxane-urethane-urea for potential marine coatings[J].Journal of Coatings Technology and Research,2011,8(3):389-399.

    • [69] LIU C,MA C F,XIE Q Y,et al.Self-repairing silicone coatings for marine anti-biofouling[J].Journal of Materials Chemistry A,2017,5(30):15855-15861.

    • [70] HU P,XIE R,XIE Q Y,et al.Simultaneous realization of antifouling,self-healing,and strong substrate adhesion via a bioinspired self-stratification strategy[J].Chemical Engineering Journal,2022,449:137875.

    • [71] QIU H Y,HOELKEN I,GAPEEVA A,et al.Development and characterization of mechanically durable silicone-polythiourethane composites modified with tetrapodal shaped ZnO particles for the potential application as fouling-release coating in the marine sector[J].Materials,2018,11(12):2413.

    • [72] SELIM MOHAMED S,EL-SAFTY SHERIF A,EL-SOCKARY MAHER A,et al.Tailored design of Cu2O nanocube/silicone composites as efficient foul-release coatings[J].Rsc Advances,2015,5(26):19933-19943.

    • [73] SELIM MOHAMED S.EL-SAFTY SHERIF A,AZZAM AHMED M,et al.Superhydrophobic silicone/TiO2-SiO2 nanorod-like composites for marine fouling release coatings[J].Chemistryselect,2019,4(12):3395-3407.

    • [74] SELIM MOHAMED S,YANG H EL-SAFTY SHERIF A,et al.Superhydrophobic coating of silicone/beta-MnO2 nanorod composite for marine antifouling[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2019,570:518-530.

    • [75] CHEN R Z,ZHANG Y S,XIE Q Y,et al.Transparent polymer-ceramic hybrid antifouling coating with superior mechanical properties[J].Advanced Functional Materials,2021,31(19):2011145.

    • [76] MOLINO PAUL J,CHILDS SAMANTHA,EASON HUBBARD MAEVE R,et al.Development of the primary bacterial microfouling layer on antifouling and fouling release coatings in temperate and tropical environments in Eastern Australia[J].Biofouling,2009,25(2):149-162.

    • [77] LIU C,YAN B H,SUN J W,et al.Cu@C core-shell nanoparticles modified polydimethylsiloxane-based coatings with improved static antifouling performance[J].Progress in Organic Coatings,2022,171:107026.

    • [78] GUO H S,YANG JING,ZHAO W Q,et al.Direct formation of amphiphilic crosslinked networks based on PVP as a marine anti-biofouling coating[J].Chemical Engineering Journal,2019,374:1353-1363.

    • [79] SOKOLOVA A,CILZ N,DANIELS J,et al.A comparison of the antifouling/foul-release characteristics of non-biocidal xerogel and commercial coatings toward micro-and macrofouling organisms[J].Biofouling,2012,28(5):511-523.

    • [80] GU Y J,ZHOU S X,LUO H L,et al.Temperature-dependent phase-segregation behavior and antifouling performance of UV-Curable methacrylated PDMS/PEG coatings[J].Journal of Polymer Science Part B-Polymer Physics,2016,54(16):1612-1623.

    • [81] ZHAO W Q,YANG J,GUO H S,et al.Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix[J].Chemical Engineering Science,2019,207:790-798.

    • [82] TIAN S,JIANG D Y,PU J B,et al.A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties[J].Chemical Engineering Journal,2019,370:1-9.

    • [83] 田军,辜志俊,李克恭,等.低表面能材料上海洋生物附着的研究[J].涂料工业,1998(1):11-14.TIAN Jun,GU Zhijun,LI Kegong,et al.Study on the adhesion of halobios on low surface energy materials[J].Paint & Coatings Industry,1998(1):11-14.(in Chinese)

    • [84] MARABOTTI I,MORELLI A,ORSINI LORENZO M,et al.Fluorinated/siloxane copolymer blends for fouling release:chemical characterisation and biological evaluation with algae and barnacles[J].Biofouling,2009,25(6):481-493.

    • [85] YANG Z C,CHANG J F,HE X Y,et al.Construction of robust slippery lubricant-infused epoxy-nanocomposite coatings for marine antifouling application[J].Progress in Organic Coatings,2023,177.

    • [86] DENG R,SHEN T,CHEN H L,et al.Slippery liquid-infused porous surfaces(SLIPSs):a perfect solution to both marine fouling and corrosion[J].Journal of Materials Chemistry A,2020,8(16):7536-7547.

    • [87] TONG Z M,SONG L N,CHEN S F,et al.Hagfish-inspired smart SLIPS marine antifouling coating based on supramolecular:lubrication modes responsively switching and self-healing properties[J].Advanced Functional Materials,2022,32(27):2201290.

    • [88] CHEN Y X,ZHANG G L,ZHANG G Z,et al.Rapid curing and self-stratifying lacquer coating with antifouling and anticorrosive properties[J].Chemical Engineering Journal,2021,421:129755.

    • [89] WANG P,HE B L,WANG B W,et al.Durable self-polishing antifouling coating based on fluorine-containing pyrrolidone amphiphilic copolymer-functionalized nanosilica[J].Progress in Organic Coatings,2022,165:106706.

    • [90] LU G M,TIAN S,LI J Y,et al.Fabrication of bio-based amphiphilic hydrogel coating with excellent antifouling and mechanical properties[J].Chemical Engineering Journal,2021,409:128134.

    • [91] CHENG Z,ZHANG F,SUN X Y,et al.Preparation and properties of amphiphilic fluorinated silicone modified acrylic resin coatings containing PEG for anti-fouling application[J].Acta Polymerica Sinica,2016,15370(8):1112-1120.

    • [92] GUDIPATI C S,FINLAY J A,CALLOW J A,et al.The antifouling and fouling-release perfomance of hyperbranched fluoropolymer(HBFP)-poly(ethylene glycol)(PEG)composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva[J].Langmuir,2005,21(7):3044-3053.

    • [93] PAN J S,XIE Q Y,MA C F,et al.Progress in Biodegradable Polymer-based Marine Antifouling Materials[J].Surface Technology,2019,48(7):185-192.

    • [94] YAO J H,CHEN S S,MA C F,et al.Marine anti-biofouling system with poly(epsilon-caprolactone)/clay composite as carrier of organic antifoutant[J].Journal of Materials Chemistry B,2014,2(31):5100-5106.

    • [95] KYEI S K,DARKO G,AKARANTA O.Chemistry and application of emerging ecofriendly antifouling paints:a review[J].Journal of Coatings Technology and Research,2020,17(2):315-332.

    • [96] MA C F,XU L G,XU W T,et al.Degradable polyurethane for marine anti-biofouling[J].Journal of Materials Chemistry B,2013,1(24):3099-3106.

    • [97] AI X Q,XIE Q Y,MA C F,et al.Fouling release coating consisting of hyperbranched poly(epsilon-caprolactone)/siloxane elastomer[J].Acs Applied Polymer Materials,2020,2(4):1429-1437.

    • [98] YANG H J,CHANG H,ZHANG Q,et al.Highly branched copolymers with degradable bridges for antifouling coatings[J].Acs Applied Materials & Interfaces,2020,12(14):16849-16855.

    • [99] BOOTH A M,HANSEN B H,FRENZEL M,et al.Uptake and toxicity of methylmethacrylate-based nanoplastic particles in aquatic organisms[J].Environ Toxicol Chem,2016,35(7):1641-1649.

    • [100] CHEN S S,MA C F,ZHANG G Z.Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling[J].Progress in Organic Coatings,2017,104:58-63.

    • [101] PAN J S,XIE Q Y,CHIANG H Y,et al.“From the nature for the nature”:An eco-friendly antifouling coating consisting of poly(lactic acid)-based polyurethane and natural antifoulant[J].Acs Sustainable Chemistry & Engineering,2020,8(3):1671-1678.

    • [102] CHIANG H Y,PAN J S,MA C F,et al.Combining a bio-based polymer and a natural antifoulant into an eco-friendly antifouling coating[J].Biofouling,2020,36(2):200-209.

  • 手机扫一扫看