en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

韩月,女,2000年出生。主要研究方向为超浸润聚合物基光热材料。E-mail: hanyue@nimte.ac.cn

黎姗,女,1997年出生,博士研究生。主要研究方向为超疏水光热材料及其热管理器件。E-mail: lishan@nimte.ac.cn

张畅,男,1993年出生,博士。主要研究方向为高分子基复合光热转化材料及其热管理应用。E-mail: zhangchang@nbt.edu.cn

陈涛,男,1978年出生,博士,研究员,博士研究生导师。主要研究方向为智能驱动、软体机器人、伪装防伪、柔性可穿戴传感器件以及能量管理等方面的前沿应用。E-mail: tao.chen@nimte.ac.cn

肖鹏,男,1988年出生,博士,研究员,博士研究生导师。主要研究方向为聚合物基光热复合材料与太阳能热管理器件。E-mail: xiaopeng@nimte.ac.cn

通讯作者:

肖鹏,男,1988年出生,博士,研究员,博士研究生导师。主要研究方向为聚合物基光热复合材料与太阳能热管理器件。E-mail: xiaopeng@nimte.ac.cn

中图分类号:TK515

DOI:10.11933/j.issn.1007-9289.20231230006

参考文献 1
KHAJEVAND M,AZIZIAN S,BOUKHERROUB R.Naturally abundant green moss for highly efficient solar thermal generation of clean water[J].ACS Applied Materials & Interfaces,2021,13(27):31680-31690.
参考文献 2
SHANNON M A,BOHN P W,ELIMELECH M,et al.Science and technology for water purification in the coming decades[J].Nature,2008,452(7185):301-310.
参考文献 3
LI C,CAO S,LUTZKI J,et al.A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation[J].Journal of the American Chemical Society,2022,144(7):3083-3090.
参考文献 4
BLÖSCHL G,CHAFFE P L B.Water scarcity is exacerbated in the south[J].Science,2023,382(6670):512-513.
参考文献 5
DESHMUKH A,BOO C,KARANIKOLA V,et al.Membrane distillation at the water-energy nexus:limits,opportunities,and challenges[J].Energy & Environmental Science,2018,11(5):1177-1196.
参考文献 6
HEIRANIAN M,FAN H,WANG L,et al.Mechanisms and models for water transport in reverse osmosis membranes:history,critical assessment,and recent developments[J].Chemical Society Reviews,2023,52(24):8455-8480.
参考文献 7
YAO Y,ZHANG P,JIANG C,et al.High performance polyester reverse osmosis desalination membrane with chlorine resistance[J].Nature Sustainability,2020,4(2):138-146.
参考文献 8
ZHANG L,XU Z,ZHAO L,et al.Passive,high-efficiency thermally-localized solar desalination[J].Energy & Environmental Science,2021,14(4):1771-1793.
参考文献 9
ZHENG Y,CACERES GONZALEZ R A,HATZELL K B,et al.Large-scale solar-thermal desalination[J].Joule,2021,5(8):1971-1986.
参考文献 10
XU Z,ZHANG L,ZHAO L,et al.Ultrahigh-efficiency desalination via a thermally-localized multistage solar still[J].Energy & Environmental Science,2020,13(3):830-839.
参考文献 11
GAO J,ZHANG L,YOU J,et al.Extreme salt-resisting multistage solar distillation with thermohaline convection[J].Joule,2023,7(10):2274-2290.
参考文献 12
DELGADO-TORRES A M,GARCÍA-RODRÍGUEZ L,PEÑATE B,et al.Water desalination by solar-powered RO systems[A].Current Trends and Future Developments on(Bio-)Membranes[M].Elsevier,2019.
参考文献 13
LEWIS N S.Research opportunities to advance solar energy utilization[J].Science,2016,351(6271):1920.
参考文献 14
GONG J,LI C,WASIELEWSKI M R.Advances in solar energy conversion[J].Chemical Society Reviews,2019,48(7):1862-1864.
参考文献 15
HERNANDEZ R R,ARMSTRONG A,BURNEY J,et al.Techno-ecological synergies of solar energy for global sustainability[J].Nature Sustainability,2019,2(7):560-568.
参考文献 16
VEERS P,DYKES K,LANTZ E,et al.Grand challenges in the science of wind energy[J].Science,2019,366(6464):2027.
参考文献 17
AZIZ M J,GAYME D F,JOHNSON K,et al.A co-design framework for wind energy integrated with storage[J].Joule,2022,6(9):1995-2015.
参考文献 18
DALGAARD T,JØRGENSEN U,OLESEN J E,et al.Looking at biofuels and bioenergy[J].Science,2006,312(5781):1743-1744.
参考文献 19
DORNBURG V,VAN VUUREN D,VAN DE VEN G,et al.Bioenergy revisited:key factors in global potentials of bioenergy[J].Energy & Environmental Science,2010,3(3):258.
参考文献 20
LEWIS N S.Toward cost-effective solar energy use[J].Science,2007,315(5813):798-801.
参考文献 21
TAO P,NI G,SONG C,et al.Solar-driven interfacial evaporation[J].Nature Energy,2018,3(12):1031-1041.
参考文献 22
WANG Z,HORSEMAN T,STRAUB A P,et al.Pathways and challenges for efficient solar-thermal desalination[J].Science Advances,2019,5(7):763.
参考文献 23
JOTHI PRAKASH C G,PRASANTH R.Approaches to design a surface with tunable wettability:a review on surface properties[J].Journal of Materials Science,2021,56(1):108-135.
参考文献 24
ZHAO T,JIANG L.Contact angle measurement of natural materials[J].Colloids and Surfaces B:Biointerfaces,2018,161:324-330.
参考文献 25
ÖNER D,MCCARTHY T J.Ultrahydrophobic surfaces.effects of topography length scales on wettability[J].Langmuir,2000,16(20):7777-7782.
参考文献 26
WOODWARD I,SCHOFIELD W C E,ROUCOULES V,et al.Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films[J].Langmuir,2003,19(8):3432-3438.
参考文献 27
KIM H,JUNG S J,HAN Y H,et al.The effect of inductively coupled plasma treatment on the surface activation of polycarbonate substrate[J].Thin Solid Films,2008,516(11):3530-3533.
参考文献 28
FENG L,LI S,LI H,et al.Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J].Angewandte Chemie International Edition,2002,41(7):1221-1223.
参考文献 29
GENZER J,EFIMENKO K.Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J].Science,2000,290(5499):2130-2133.
参考文献 30
KIM D H,KIM Y,KIM B M,et al.Uniform superhydrophobic surfaces using micro/nano complex structures formed spontaneously by a simple and cost-effective nonlithographic process based on anodic aluminum oxide technology[J].Journal of Micromechanics and Microengineering,2011,21(4):045003.
参考文献 31
WANG J,CHEN X,KANG Y,et al.Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films[J].Applied Surface Science,2010,257(5):1473-1477.
参考文献 32
SONG S,JING L,LI S,et al.Superhydrophilic anatase TiO2 film with the micro-and nanometer-scale hierarchical surface structure[J].Materials Letters,2008,62(20):3503-3505.
参考文献 33
DU X,HE J.A self-templated etching route to surface-rough silica nanoparticles for superhydrophobic coatings[J].ACS Applied Materials & Interfaces,2011,3(4):1269-1276.
参考文献 34
YE J,YIN Q,ZHOU Y.Superhydrophilicity of anodic aluminum oxide films:from “honeycomb” to “bird’s nest”[J].Thin Solid Films,2009,517(21):6012-6015.
参考文献 35
ZHANG F,XU D,ZHANG D,et al.A durable and photothermal superhydrophobic coating with entwinned CNTs-SiO2 hybrids for anti-icing applications[J].Chemical Engineering Journal,2021,423:130238.
参考文献 36
TAN S,HAN X,CHENG S,et al.Photothermal solid slippery surfaces with rapid self-healing,improved anti/de-icing and excellent stability[J].Macromolecular Rapid Communications,2023,44(6):2200816.
参考文献 37
刘亚华,宋文卓,李文宗,等.耐用光热超疏水涂层的防/除冰性能及其稳定性研究[J].表面技术,2024(7):1-10.LIU Yahua,SONG Wenzhuo,LI Wenzong,et al.Research on the anti/de-icing performance and stability of durable superhydrophobic photothermal coatings[J].Surface Technology,2024(7):1-10.(in Chinese)
参考文献 38
DU X,HE J.Facile fabrication of hollow mesoporous silica nanospheres for superhydrophilic and visible/near-IR antireflection coatings[J].Chemistry-A European Journal,2011,17(29):8165-8174.
参考文献 39
CAO W T,FENG W,JIANG Y Y,et al.Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects[J].Materials Horizons,2019,6(5):1057-1065.
参考文献 40
HUANG G,LAI B,XU H,et al.Fabrication of a superhydrophobic fabric with a uniform hierarchical structure via a bottom-blown stirring method for highly efficient oil-water separation[J].Separation and Purification Technology,2021,258:118063.
参考文献 41
吴明明,林凯歌,阿依登古丽·木合亚提,等.超浸润光热材料的构筑及其多功能应用研究[J].化学进展,2022,34(10):2302-2315.WU Mingming,LIN Kaige,AYDENGUL Mugyati,et al.Research on the construction and application of superwetting materials with photothermal effect[J].Progress in Chemistry,2022,34(10):2302-2315.(in Chinese)
参考文献 42
LIU J,GUO H,SUN Z,et al.Preparation of photothermal membrane for vacuum membrane distillation with excellent anti-fouling ability through surface spraying[J].Journal of Membrane Science,2021,634:119434.
参考文献 43
付涛,上官华榕,方庆源.超疏水光热转换材料的研究进展[J].化工新型材料,2024,52(2):249-253.FU Tao,SHANGGUAN Huarong,FANG Qingyuan.Research progress of superhydrophobic photothermal conversion materials[J].New Chemical Materials,2024,52(2):249-253.(in Chinese)
参考文献 44
XUE C H,WU Y,GUO X J,et al.Superhydrophobic,flame-retardant and conductive cotton fabrics via layer-by-layer assembly of carbon nanotubes for flexible sensing electronics[J].Cellulose,2020,27(6):3455-3468.
参考文献 45
柳杨春,徐丽慧,万晶,等.超疏水导电材料的制备及应用研究进展[J].功能材料,2020,51(11):11089-11095.LIU Yangchun,XU Lihui,WAN Jing,et al.Research progress on preparation and application of superhydrophobic conductive materials[J].Journal of Functional Materials,2020,51(11):11089-11095.(in Chinese)
参考文献 46
FUZIL N S,OTHMAN N H,ALIAS N H,et al.A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production[J].Desalination,2021,517:115259.
参考文献 47
GAO M,ZHU L,PEH C K,et al.Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J].Energy & Environmental Science,2019,12(3):841-864.
参考文献 48
WANG Y,MENG H M,SONG G,et al.Conjugated-polymer-based nanomaterials for photothermal therapy[J].ACS Applied Polymer Materials,2020,2(10):4258-4272.
参考文献 49
YU C,XU L,ZHANG Y,et al.Polymer-based nanomaterials for noninvasive cancer photothermal therapy[J].ACS Applied Polymer Materials,2020,2(10):4289-4305.
参考文献 50
LIU J G,ZHANG H,LINK S,et al.Relaxation of plasmon-induced hot carriers[J].ACS Photonics,2018,5(7):2584-2595.
参考文献 51
CHEN J,YE Z,YANG F,et al.Plasmonic nanostructures for photothermal conversion[J].Small Science,2021,1(2):2000055.
参考文献 52
GÄRTNER W W.Photothermal effect in semiconductors[J].Physical Review,1961,122(2):419-424.
参考文献 53
CHENG X,XING C,LIU W,et al.Structure regulation of two-dimensional composites facilitates solar/electric desalination[J].Chemical Engineering Journal,2023,474:145752.
参考文献 54
CUI X,RUAN Q,ZHUO X,et al.Photothermal nanomaterials:a powerful light-to-heat converter[J].Chemical Reviews,2023,123(11):6891-6952.
参考文献 55
JIA J,LIU G,XU W,et al.Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR‐II window[J].Angewandte Chemie International Edition,2020,59(34):14443-14448.
参考文献 56
SUN Z,WANG J,WU Q,et al.Plasmon based double-layer hydrogel device for a highly efficient solar vapor generation[J].Advanced Functional Materials,2019,29(29):1901312.
参考文献 57
LI N,YANG D J,SHAO Y,et al.Nanostructured black aluminum prepared by laser direct writing as a high-performance plasmonic absorber for photothermal/electric conversion[J].ACS Applied Materials & Interfaces,2021,13(3):4305-4315.
参考文献 58
CHEN J,FENG J,YANG F,et al.Space-confined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation[J].Angewandte Chemie International Edition,2019,58(27):9275-9281.
参考文献 59
CHANG M,HOU Z,WANG M,et al.Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy[J].Angewandte Chemie International Edition,2021,60(23):12971-12979.
参考文献 60
CHEN C,LI Y,SONG J,et al.Highly flexible and efficient solar steam generation device[J].Advanced Materials,2017,29(30):1701756.
参考文献 61
YU Y,CHEN S,JIA Y,et al.Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification[J].Carbon,2020,169:134-141.
参考文献 62
WANG W,HAN B,ZHANG Y,et al.Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect[J].Advanced Functional Materials,2021,31(1):2006179.
参考文献 63
WEI W,GUAN Q,YOU C,et al.Highly compact nanochannel thin films with exceptional thermal conductivity and water pumping for efficient solar steam generation[J].Journal of Materials Chemistry A,2020,8(28):13927-13934.
参考文献 64
WEI Y,LIANG N,JIANG W,et al.Rylene-fullerene hybrid an emerging electron acceptor for high-performing and photothermal-stable ternary solar cells[J].Small,2022,18(4):2104060.
参考文献 65
SHI H,GU R,XU W,et al.Near-infrared light-harvesting fullerene-based nanoparticles for promoted synergetic tumor phototheranostics[J].ACS Applied Materials & Interfaces,2019,11(48):44970-44977.
参考文献 66
GONG F,WANG W,LI H,et al.Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification[J].Applied Energy,2020,261:114410.
参考文献 67
ZHANG Z,MU P,HE J,et al.Facile and scalable fabrication of surface-modified sponge for efficient solar steam generation[J].ChemSusChem,2019,12(2):426-433.
参考文献 68
WANG X,LIU Q,WU S,et al.Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J].Advanced Materials,2019,31(19):1807716.
参考文献 69
XIAO L,CHEN X,YANG X,et al.Recent advances in polymer-based photothermal materials for biological applications[J].ACS Applied Polymer Materials,2020,2(10):4273-4288.
参考文献 70
CHENG S,LATTHE S S,NAKATA K,et al.Recent advancements in design,development and demands of photothermal superhydrophobic materials[J].Materials Today Chemistry,2024,35:101868.
参考文献 71
YOUNG T.III.An essay on the cohesion of fluids[J].Philosophical transactions of the royal society of london,1805,95:65-87.
参考文献 72
WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial & Engineering Chemistry,1936,28(8):988-994.
参考文献 73
WENZEL R N.Surface roughness and contact angle.[J].The Journal of Physical and Colloid Chemistry,1949,53(9):1466-1467.
参考文献 74
CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546.
参考文献 75
SU B,TIAN Y,JIANG L.Bioinspired interfaces with superwettability:from materials to chemistry[J].Journal of the American Chemical Society,2016,138(6):1727-1748.
参考文献 76
BU Y,ZHOU Y,LEI W,et al.A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation[J].Journal of Materials Chemistry A,2022,10(6):2856-2866.
参考文献 77
MU P,ZHANG Z,BAI W,et al.Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation[J].Advanced Energy Materials,2019,9(1):1802158.
参考文献 78
WANG X,HE Y,CHENG G,et al.Direct vapor generation through localized solar heating via carbon-nanotube nanofluid[J].Energy Conversion and Management,2016,130:176-183.
参考文献 79
JIANG H,AI L,CHEN M,et al.Broadband nickel sulfide/nickel foam-based solar evaporator for highly efficient water purification and electricity generation[J].ACS Sustainable Chemistry & Engineering,2020,8(29):10833-10841.
参考文献 80
LU Y,WANG X,FAN D,et al.Biomass derived Janus solar evaporator for synergic water evaporation and purification[J].Sustainable Materials and Technologies,2020,25:180.
参考文献 81
ZHU R,LIU M,HOU Y,et al.Mussel-inspired photothermal synergetic system for clean water production using full-spectrum solar energy[J].Chemical Engineering Journal,2021,423:129099.
参考文献 82
MIAO J,LV F,GULFAM R,et al.Synergistic effect of superhydrophilic skeleton decorated with hierarchical micro/nanostructures and graphene oxide on solar evaporation[J].Applied Energy,2023,350:121779.
参考文献 83
CHEN Z,LIN Y,QIAN Q,et al.Picosecond laser treated aluminium surface for photothermal seawater desalination[J].Desalination,2022,528:115561.
参考文献 84
LIANG P,LIU S,DING Y,et al.A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination[J].Chemosphere,2021,280:130719.
参考文献 85
WANG S,NIU Y,YAN L,et al.Polyimide-based superhydrophilic porous membrane with enhanced thermal insulation for efficient interfacial solar evaporation[J].Composites Science and Technology,2022,228:109683.
参考文献 86
XIAO X,PAN L,CHEN T,et al.Scalable core-sheath yarn for boosting solar interfacial desalination through engineering controllable water supply[J].Engineering,2023,30:153-160.
参考文献 87
XIA Y,HOU Q,JUBAER H,et al.Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting[J].Energy & Environmental Science,2019,12(6):1840-1847.
参考文献 88
WANG C,WANG J,LI Z,et al.Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency[J].Journal of Materials Chemistry A,2020,8(19):9528-9535.
参考文献 89
XU Z,YANG Y,YE C,et al.Salt-resistance holocellulose-based solar steam evaporator for desalination brine water[J].Journal of Environmental Chemical Engineering,2023,11(5):110634.
参考文献 90
GU J,XIAO P,GUAN J,et al.Coral-like hierarchically nanostructured membrane with high free volume for salt-free solar-enabled water purification[J].Materials Today Physics,2022,25:100715.
参考文献 91
HAN J,XING W,YAN J,et al.Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination[J].Advanced Fiber Materials,2022,4(5):1233-1245.
参考文献 92
DONG Y,MA L,TANG C Y,et al.Stable superhydrophobic ceramic-based carbon nanotube composite desalination membranes[J].Nano Letters,2018,18(9):5514-5521.
参考文献 93
LIU Y,CHEN J,GUO D,et al.Floatable,self-cleaning,and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface[J].ACS Applied Materials & Interfaces,2015,7(24):13645-13652.
参考文献 94
PENG Y,ZHAO W,NI F,et al.Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency[J].ACS Nano,2021,15(12):19490-19502.
参考文献 95
ZHANG C,XIAO P,NI F,et al.Breathable and superhydrophobic photothermic fabric enables efficient interface energy management via confined heating strategy for sustainable seawater evaporation[J].Chemical Engineering Journal,2022,428:131142.
参考文献 96
XIAO P,YANG W,QIU N,et al.Engineering biomimetic nanostructured “melanosome” textiles for advanced solar-to-thermal devices[J].Nano Letters,2022,22(23):9343-9350.
参考文献 97
WU W,ZHAO M,MIAO S,et al.A solar-driven interfacial evaporator for seawater desalination based on mussel-inspired superhydrophobic composite coating[J].Carbon,2024,217:118593.
参考文献 98
SHEN C,ZHU Y,XIAO X,et al.Economical salt-resistant superhydrophobic photothermal membrane for highly efficient and stable solar desalination[J].ACS Applied Materials & Interfaces,2020,12(31):35142-35151.
目录contents

    摘要

    随着世界人口的快速增长和水污染的加剧,淡水资源短缺的问题日益严重。太阳能海水淡化技术因其环保、高效和可再生等优点被视为解决全球淡水危机的理想方案。光热转换作为一种直接且高效的策略,可以通过引入具有特殊表面设计的吸光材料将入射的太阳光转化为可观的热能,以实现进一步的能源利用。然而,传统的光热转换材料难以抵御海水中高浓度盐的聚集以及污染物的侵蚀,导致低的光热转换效率和水蒸发效率,难以满足材料科学发展的需求。因此,开发可持续发展、长效抗盐的光热材料迫在眉睫。目前,通过构筑超浸润光热转换材料表面是解决高效持续水蒸发的关键。作为一类具有超亲水或超疏水的极端浸润性表面,超浸润光热表面不仅可以提供高效的供水和离子扩散通道以阻止盐的聚集,实现快速输水; 而且可以防止盐离子渗透到光热材料中,从而减少热量损失,提高蒸发效率,为实现更加高效、长期和稳定的海水淡化工程提供了可能。介绍了光热转换材料的机理以及种类,讨论了超浸润光热表面的设计思路和制备方法,总结了超浸润材料的水蒸发机制,重点综述了超浸润性驱动的太阳能海水淡化的最新研究进展,展望了超浸润光热材料所面临的挑战和研究前景,可为未来超浸润光热材料的设计提供思路。

    Abstract

    Owing to the rapid growth of the world’s population and the aggravation of water pollution, the shortage of fresh water resources is becoming increasingly severe. Solar desalination is regarded as an ideal solution to the global freshwater crisis because of its environmental protection, high efficiency, and renewability. Photothermal conversion is a direct and efficient strategy that enables further energy utilization by introducing light-absorbing materials with specific surface designs to convert incident sunlight into appreciable heat energy. However, conventional photothermal-conversion materials cannot adequately resist the high concentrations of salt in seawater and the erosion of pollutants, thus resulting in low photothermal-conversion and water-evaporation efficiencies.Therefore, sustainable and long-term salt-resistant photothermal materials must be developed urgently to satisfy the demands of materials science. Currently, constructing the surface of superwetting photothermal-conversion materials is key to achieving efficient and sustainable water evaporation. Superwetting photothermal materials, which exhibit extensive solar-energy absorption and effective photothermal-conversion characteristics, are prepared using a photothermal material and superwetting surface. The superwetting surface exhibits excellent superhydrophilic / superhydrophobic properties because of its unique surface structural design. Owing to the development of advanced technologies and complex practical requirements, superwetting photothermal materials have become extremely promising for developing forward-looking and interesting applications. As a class of extremely wetting surfaces with superhydrophilic or superhydrophobic properties, superwetting photothermal surfaces can provide efficient water supply and ion-diffusion channels to prevent salt accumulation as well as realize rapid water transport. Moreover, salt ions can be prevented from penetrating photothermal materials, thereby reducing heat loss and improving evaporation efficiency. Thus, superwetting photothermal materials offer the possibility of achieving more efficient, long-term, and stable seawater desalination. Herein, the composition of superwetting photothermal materials, their mechanisms, and types of photothermal-conversion materials are discussed. The design idea and preparation method for a superwetting photothermal surface are summarized. Chemical composition and surface roughness are the two main factors that affect surface wettability. Additionally, two main methods are used to achieve superhydrophilic surfaces on photothermal materials. The first method is to coat a solid surface with a hydrophilic inorganic mediator or nanoparticle and use a hydrophilic polymer as the superhydrophilic surface of the coating material. Second, the surface of the hydrophilic polymer is roughened, or hydrophilic groups are coupled to the surface of the rough polymer to render the polymer superhydrophilic. Meanwhile, two main strategies are available for achieving superhydrophobic surfaces on photothermal materials. One is to construct a multilevel micro / nano structure on the surface to achieve hydrophobic materials with a rough surface. Another method involves modifying a rough surface with low-surface-energy materials. The water-evaporation mechanism in superwetting materials are discussed. A superhydrophilic surface can achieve a continuous and stable water supply, promote the diffusion of salt ions, and prevent the salt concentration in seawater from reaching a hypersaturated state. A superhydrophobic surface with a self-cleaning function can not only inhibit salt crystallization but can also be used as a self-floating carrier and insulation material to prevent heat diffusion to the bottom and reduce heat loss, thus achieving long-term stable interface evaporation. Furthermore, the latest research progress in solar seawater desalination driven by superwetting is reviewed, and the current challenges and prospects of superwetting photothermal materials are discussed. To improve photothermal-conversion performance and stability, designing water supply and evaporation paths to achieve balance between water transfer and efficiency is key to achieving a solar desalination system with excellent desalting performance. We hope that this paper will inspire new ideas and efforts as well as encourage investigations into superwetting photothermal materials.

  • 0 前言

  • 地球表面约 70%被水覆盖,但只有 2.5%的水可以用作饮用水[1]。随着全球人口的快速增长和水污染的不断加剧,清洁水短缺已成为现代社会面临的一大全球性挑战[2-4]。据联合国估计,超过 1 亿人(约占世界人口的 8%)正在经历绝对缺水[5],此外,在人口和工业化的推动下,水资源短缺的问题在不久的将来会更加严重。考虑到地球上丰富的海水资源,通过海水淡化技术降低其盐浓度将其转化为饮用水以缓解水资源短缺是一种很有前景的方法。然而,海水由于其盐浓度过高,难以用作饮用水并被人体吸收。传统的海水淡化技术需要消耗大量的化石燃料以实现充足的能源供应,例如反渗透法[6-7]、热脱盐[8-9]和多级太阳能蒸馏[10-11]等。这些方法不仅受到高能耗和技术要求的制约,还对自然环境造成了不可逆的二次污染[12],在很大程度上阻碍了其实际应用。此外,在蒸发过程中,海水中的高浓度盐由于过饱和容易析出,这极大地阻碍了水传输通道的持续供应。因此,开发绿色可持续发展的抗盐海水蒸发技术是缓解新出现的能源和环境危机的重要解决方案。

  • 近年来,为了寻找新型可替代的绿色能源,太阳能[13-15]、风能[16-17]和生物能源[18-19]被广泛用于海水淡化、供能发电等领域。其中,太阳能因其储量丰富、可直接获取、环保且无成本等优点,是满足全球未来能源需求的最佳选择。据报道,太阳一小时在地球上产生的能量远多于地球一年消耗的[20],足以供应人类社会的需求。太阳能驱动的水蒸发策略也因其环境友好性和低基础设施要求而被认为是有一种具有应用前景的海水淡化和净化技术[21-22]。实现太阳能驱动水蒸发的关键是具有光热转换效应的光热材料的构筑,其需要高的太阳光吸收率和低反射率,以提高能源利用率。此外,光热材料的表面设计也至关重要,其表面浸润性控制着许多关键因素,包括水的扩散、传输、蒸发、盐粘附等,在提高能量转换效率方面起着主导作用。众所周知,在海水蒸发过程中不可避免地会出现盐积聚的问题,它不仅会阻碍水通道的传输,而且聚集在表面的盐会进一步影响光热材料的光吸收,进而导致蒸发速率降低。因此,通过表面浸润性的设计与调控阻止盐聚集,发展能够长效抗盐水蒸发的材料迫在眉睫。而超浸润材料是一类具有极端的浸润能力(水接触角大于 150°或无限接近于 0°[23-25])的新型材料,与光热组分结合所产生的协同效应可以获得更优异的性能,实现更加长效稳定的界面蒸发,在许多应用领域得到了广泛的应用。

  • 随着太阳能海水淡化技术的快速发展,浸润性调控已成为近期的研究热点。各种新材料、新概念和新制造方法也已经应用于界面蒸发技术,以实现高效、长期、稳定的海水淡化。在这篇综述中,我们重点关注超浸润性光热表面用于高效持续的太阳能海水淡化的进展,讨论了各种界面蒸发材料的设计策略、工作原理和关键问题。最后,展望了开发基于超浸润性的高性能太阳能蒸发系统面临的挑战和未来的研究前景。

  • 1 超浸润光热材料的组成

  • 超浸润光热材料由光热材料与超浸润表面协同构建而成,其中光热材料具有广泛的太阳能吸收和有效的光热转换特性,超浸润表面因其特殊的表面结构设计而表现出优异的超亲水 / 超疏水。随着先进技术的发展和复杂的实际需求,超浸润光热材料在探索前瞻性和有趣的应用方面极具吸引力。超浸润光热材料既可以通过对光热材料进行超浸润性的修饰,也可以通过在超浸润材料中引入光热组分来实现。超浸润性包括超疏水性、超亲水性、超疏油性和超亲油性等,本文主要关注超亲水性和超疏水性的超浸润光热材料。目前实现超浸润的方法主要有等离子体处理法[26-27]、模板法[28]、自组装法[29]、喷涂法[30]、旋涂法[31-32]、化学气相沉积法[33]和电化学沉积法[34]等。由于同时具有超浸润性和光热效应,超浸润光热材料在防冰除冰[35-37]、防雾[38]、抗污自清洁[39]、油水分离[40-41]、海水淡化[42-43]、光热驱动[39]和传感[44-45]等领域显示出了广阔的应用前景,为替代传统的高能耗方法提供了一种绿色环保的新途径。

  • 1.1 光热材料

  • 光活化模式通常分为五种类型:光电导、光电化学、光伏、光热和荧光,其中光热模式可实现的能量转换效率是最高的[46]。如图1 所示,根据不同的材料体系可分为以下三种光热转换机制:分子的热振动、等离子体局部加热以及电子-空穴的产生和弛豫[47]。对于 π 共轭体系,光热转换主要是分子的热振动,跃迁到最低未占分子轨道( Lowest unoccupied molecular orbital,LUMO)的电子在通过分子振动返回基态时释放热量[48-49];对于金属体系,光激发后产生的表面等离子体共振(Surface plasmon resonance,SPR)效应是热源,SPR 效应会受到朗道阻尼的作用而衰减,热电子的能量会转移到晶格中并使温度升高[50-51];对于半导体系统,当半导体材料被具有足够能量的光子激发时,会产生电子空穴对,其能量与带隙相当。受激电子的能量可以通过发射光子来释放,也可以通过非辐射弛豫转移到材料晶格[52-53]

  • 图1 光热转换机理示意图[4753]

  • Fig.1 Schematic diagram of photothermal mechanisms[47, 53]

  • 光热材料可以转换或储存光能[54],通过太阳能热蒸发实现海水淡化原理如下:材料的分子或原子吸收光子能量从基态进入激发态,加速材料内部粒子的不规则运动,产生的热量增多,导致材料温度的升高。光热材料主要有天然材料、金属纳米结构、碳基材料、无机半导体材料和聚合物材料(图2)。

  • 图2 光热材料的种类[46]

  • Fig.2 Types of photothermal materials[46]

  • 金属材料非常适合用作太阳能吸收器,因为他们的电磁辐射吸收可以导致局域表面等离子体共振效应。金[55]、银[56]、铝[57]、铜[58]和钯[59]等金属材料已被广泛开发、改性和研究,以纳米粒子或复合材料的形式用于光热应用。半导体的导电性介于导体和绝缘体之间,通常在可见光下不透明,在红外光下透明。较窄带隙的半导体往往表现出较宽的吸收光谱和较高的光子捕获效率,具有较强的光热转换能力[46]。碳基光热材料,如碳纳米管[60-61]、石墨烯[62-63]、富勒烯[64-65]、石墨[66-67]和碳化天然产物等,与金属材料和半导体相比更便宜、储量丰富,并且具有优异的广谱光吸收和高光热转换效率,也是光热材料的潜在候选者。高分子材料具有适当的柔韧性、易于成型、高且广泛的太阳能吸收等优点,细胞毒性较低,具有生物相容性,可长期使用。高分子材料有多种类型,例如聚多巴胺(PDA),具有柔性、可扩展且可生物降解;聚苯胺(PAN)和聚吡咯(PPy)具有大量 π 电子离域结构,可产生独特的光学性质[4868-69]

  • 1.2 表面浸润现象

  • 浸润性可以定义为液体保持与固体表面接触的能力,可通过接触角测量来确定。接触角(Contact angle,CA)是指在气、液、固三相交点处所作的气-液界面的切线在液体一方与固-液交界线之间的夹角。如图3 所示,浸润状态主要分为 Young、Wenzel 和 Cassie-Baxter 三种。

  • 图3 Young、Wenzel 和 Cassie-Baxter 浸润状态示意图[70]

  • Fig.3 Schematic diagram of Young, Wenzel, and Cassie-Baxter wetting states[70]

  • 杨氏方程忽略了粗糙度、化学非均质性、溶胀和溶解的影响,它只适用于理想的光滑固体表面,而不适用于粗糙表面[71]。在 Wenzel 模型[72-73]中,当液滴与粗糙固体表面接触时,固体表面的沟槽完全浸没并被液体填充,因此,Wenzel 方程只适用于固体表面与液滴的接触面积较大,粘附力较强,液滴难以从固体表面移动和滚下的完全浸润状态。在 Cassie-Baxter 模型[74]中,考虑到表面化学非均质性的影响,液体并不完全与基体中的微沟槽接触,而是只与粗糙表面的顶部接触。假设气穴被困在粗糙表面的微槽中,形成复合界面模型。液体在复合状态下不能充分浸润粗糙固体表面,很容易移动和滚出表面。

  • 2 超浸润光热材料的设计

  • 超浸润是液体、气体和固体之间浸润现象的一种特殊情况,包括各种表面极端浸润性,如超疏水性、超亲水性等。具体来说,固体表面与水的接触角小于 10°或大于 150°被认为是超亲水或超疏水的表面[2475]。超浸润材料极端的浸润能力与光热材料结合所产生的协同效应可以得到更优异的性能,实现更加长效稳定的界面蒸发,因此在海水淡化方面引起了广泛的关注。

  • 近年来,通过模仿生物表面结构、超疏水表面的制造以及扩展其在不同领域的潜在功能应用来控制表面浸润性受到了越来越多的关注。化学成分和表面粗糙度是控制表面浸润性的两个主要因素。在光热材料表面实现超亲水主要有两种方法,一是将亲水性无机介体或纳米颗粒涂覆在固体表面上,使亲水聚合物作为涂层材料的超亲水表面;二是使亲水聚合物表面粗糙化或将亲水性基团偶联到粗糙聚合物表面使聚合物超亲水。在光热材料表面实现超疏水表面主要有两种策略:一是构筑表面多级微纳结构,即对疏水材料进行表面粗糙化处理,二是用低表面能材料修饰粗糙表面。

  • 3 超浸润光热表面水蒸发机制

  • 太阳能界面蒸发(Solar interface evaporation, SIE)技术将太阳能热转换和蒸汽产生定位在水-空气界面,具有高转化效率和环保特性,是一种很有前景的水净化策略。传统的太阳能辐射蒸发通过太阳辐射直接照射在水-空气界面上,大部分太阳光被反射,只有少量的光转化为热量,存在太阳光热转换效率低的问题[76-77]。通过界面蒸发技术,将少量的水和热量集中在太阳能蒸发器的表面,有效地避免热量向水的传递,选择性地加热少量水进行蒸发,避免了对大量本体水的加热,最大限度地减少了太阳能热转换材料的消耗,并为动态调节蒸发性能提供了方法[78-80]

  • 在太阳能海水淡化过程中,液-固界面发生水蒸发、盐结晶和蒸汽冷凝等相变,长期运行会出现盐沉积,堵塞蒸汽逸出的通道,削弱表面的光吸收能力,进而导致蒸发效率的降低。浸润性是影响隔热和输水的关键因素,对太阳能海水淡化效率有显著影响,通过调整光热膜的浸润性来防止盐沉积是一种可行有效的方法。如图4 所示,超亲水性表面可以实现连续稳定的供水,促进盐离子的扩散,使海水中的盐浓度难以达到过饱和状态,因此能够有效防止盐析出,实现长效可持续抗盐的水蒸发。超疏水性表面不仅可以抑制盐结晶,具有自清洁的功能,还可以用作自浮载体和隔热材料,防止热量扩散到底部,减少热量损失,实现长效稳定的界面蒸发。

  • 图4 超亲水 / 超疏水光热表面水蒸发示意图

  • Fig.4 Schematic illustration for superhydrophilic / superhydrophobic photothermal surface water evaporation

  • 4 超浸润光热表面用于界面蒸发的研究进展

  • 4.1 基于超亲水光热表面的海水淡化

  • 亲水性光热蒸发系统具有以下优势:一是基于亲水材料的界面蒸发系统具有更简单的配置。水动力系统是为了驱动疏水性系统中的水输送而建造的,并且在运行过程中会消耗一些电能。在亲水系统中,可以通过亲水大孔的毛细作用实现水的输送,因此可以省去额外的水动力系统。二是亲水性能够提高光热蒸发效率。在亲水系统中,水可以很好地浸润蒸发器的孔隙,然后在整个蒸发器上形成一层薄薄的水膜,从而充分保证蒸发的空气与水的接触面积。由于超亲表面水传输快速且稳定,海水中的盐浓度难以达到过饱和状态,因此能够有效防止盐析出,这为长效可持续抗盐的水蒸发提供了一种有效的策略。目前,基于超亲水的光热表面被广泛应用于海水淡化领域,例如金属基、碳基、聚合基超亲水光热材料,下面将详细介绍这三类材料。

  • 金属材料具有优异的电磁辐射吸收能力,可以通过不同的形式广泛用作光吸收剂。除了 Au、Ag、 Pd 等贵金属之外,低成本的 Cu、Al 也具有良好的光热性能,可以用于构筑超亲水金属表面并应用于海水淡化。

  • ZHU 等[81]通过简单的一步强碱氧化方法接将疏水性 Cu 氧化为具有万寿菊状纳米片结构的亲水性 CuO,制备过程如图5a 所示,将具有立方结构和高比表面积的普鲁士蓝(PB,Fe4[(CN)6]3)纳米颗粒通过多巴胺(PDA)自聚合粘附在具有多孔结构的 CuO 表面,构筑了具有光热和光催化性能的复合体系。图5b、5c 分别展示了其光热转换性能和循环稳定性。亲水性和具有光热转换特性的 PB 纳米颗粒的引入进一步增强了表面粗糙度和水亲和力,使泡沫铜由疏水性转变为超亲水性。在一个太阳光照下,CuO@PDA / PB 具有 1.39 kg·m−2 ·h−1 的高蒸发速率和 87.10%蒸发效率。图5d 表明该体系的蒸发效率优于大多数以往的报道。由于具有良好的耐盐性和防污性能,超亲水性 CuO@PDA / PB 也可用于对盐溶液、含油废水和染色废水的净化。这种超亲水复合材料(CuO@PDA / PB)具有优异的全光谱太阳能吸收能力,在太阳辐射下界面加热可以稳定地产生水蒸气,在解决水资源短缺的规模化制造方面有着巨大的潜力

  • 图5 CuO@PDA / PB 制备及其性能示意图[81](a)万寿菊花状纳米片结构 CuO@PDA / PB 的制备示意图(b)CuO@PDA / PB 在 0.5-2.0 太阳光照下温度随时间的变化图(c)超亲水 CuO@PDA / PB 在 1.0 太阳光照下的循环性能图(d)CuO@PDA / PB 的蒸发效率与先前研究报道的对比图

  • Fig.5 Schematic illustration for preparing and performance of CuO@PDA / PB[81] (a) Schematic illustration for preparing marigold flower-like nanosheet structure CuO@PDA / PB (b) Temperature changes as a function of irradiation time of CuO@PDA / PB under 0.5-2.0 sun illumination on and off (c) Cycling performance of superhydrophilic CuO@PDA / PB under solar illumination of 1.0 sun (d) Evaporation efficiency of CuO@PDA / PB compared with that reported in previous studies

  • MIAO 等[82]以多孔泡沫铜为支撑基体,通过简单的化学氧化处理和氧化石墨烯(GO)的物理沉积制备了创新的圆形太阳能蒸发器。所制备的太阳能蒸发系统如图6a 所示,超亲水泡沫铜 (Superhydrophilic copper foam,SHiCF)具有多孔形貌,微观内部有独特的骨架堆积,表面有一层球状微结构,经过超亲水处理后被片状纳米结构装饰,以增加漫反射的振幅,进一步提高反复吸收的光量。同时,附着在表面的微观结构的形成也提高了表面粗糙度,进一步导致超亲水性的增强。如图6b 所示, SHiCF 与其他三种蒸发器相比蒸发速率是最高的,同时探究了 GO 的含量对蒸发速率的影响。SHiCF-GO 的太阳吸收系数可达 93.6%,在一个太阳光强下的蒸发速率和效率分别为 1.25 kg·m−2 ·h −1 和 88.9%,可以实现高效的蒸发能量利用,是一种高效的三维太阳能蒸发器。

  • 图6 SHiCF-GO 太阳能蒸发系统及其性能[82](a)SHiCF-GO 太阳能蒸发系统(b)不同构型的蒸发特性

  • Fig.6 SHiCF-GO solar evaporation system and its performance[82] (a) SHiCF-GO solar evaporation system (b) Evaporation characteristics of various configurations

  • CHEN 等[83]报道了一种皮秒激光处理的铝 (Picosecond laser treated aluminium,PLAL)太阳能海水淡化蒸发器,试验装置如图7a 所示。在铝表面激光烧蚀产生许多直径小于 1 μm 的氧化铝纳米颗粒分布在条形凹槽之间,当太阳光照射到 PLAL 表面时,在表面的条形凹槽和纳米颗粒中被反复折射和吸收。同时,PLAL 表面具有超亲水性、吸光性和反重力芯吸性,表面的开放毛细管结构由条形凹槽和微腔组成,充当水快速输送到蒸发区的通道,有助于海水的快速转移和蒸发。图7b 展示了 PLAL 表面蒸发的水质量变化,PLAL 不同方位表面温度随时间的变化,不同太阳辐射强度下、不同放置角度的 PLAL 表面蒸发水的质量随时间的变化。这种蒸发器蒸发水分所需的蒸发焓低,有效提高了蒸发速率,在 1 kW·m−2 太阳照射下表面的蒸发速率达到 1.24 kg·m−2 ·h−1,在连续 25 d 的太阳能海水淡化中表现出稳定的海水淡化性能。

  • 图7 太阳能驱动的 PLAL 表面海水淡化[83](a)蒸发率测量试验装置及 PLAL 横截面示意图(b)PLAL 表面蒸发性能

  • Fig.7 Solar-driven desalination of PLAL surface[83] (a) Evaporation rate measurement experimental device and PLAL cross-section diagram (b) PLAL surface evaporation performance

  • 综上所述,以金属材料作为光吸收剂,通过在纳米尺度上调整尺寸、取向排列、形状和结构可以进一步调整材料的吸收范围,通过亲水性纳米颗粒对其进行表面亲水性修饰,获得的金属基超亲水光热材料具有优异的光吸收能力和超疏水的性质,同时,随着铜、铝等低成本金属材料的引入,金属基光热材料在海水淡化方面将拥有更广阔的应用前景。

  • 碳基化合物中存在大量共轭 π 键,通过太阳光中大范围波长的照射可以实现电子的激发,这也是这些材料呈黑色的原因。激发后电子松弛,从光中吸收的能量被转移到整个原子晶格的振动中,这种能量的转化导致碳质材料温度升高。

  • LIANG 等[84]制备了一种多孔、超亲水、自浮的碳纳米管-聚偏二氟乙烯-聚乙烯吡咯烷酮 (CNT-PVDF-PVP)纳米纤维毡,超亲水性 CNT 与多孔纤维结构的协同作用赋予了纳米纤维毡超亲水性,即使在 20wt.% NaCl 模拟海水中,也能实现并保持高蒸发效率,为设计高效稳定的太阳能海水淡化系统提供了一种新的技术方法。WANG 等[85]首次报道了使用聚酰胺酸(PAA)、改性空心玻璃微球 (Modified hollow glass microspheres,MHGM)、导电炭黑(Cabon Black,CB)和成孔剂氯化钠颗粒通过旋涂制备新型聚酰亚胺基多孔膜(PI-CB-MHGM),其制备过程如图8a 所示,图8b 分别展示了 PI-CB-MHGM 膜的光吸收曲线、光热性能、蒸发性能、能量转换效率和循环稳定性。改性后的膜具有丰富的微米级孔隙和超亲水性,在 15% NaCl 溶液中保持 1.323 3 kg·m−2 ·h −1 的高蒸发速率,表面无盐沉积,具有优异的蒸发稳定性和耐盐性。

  • 图8 超亲水性 PI-CB-MHGM 杂化膜的制备及其性能[85](a)超亲水性 PI-CB-MHGM 多孔杂化膜的制备过程(b)PI-CB-MHGM 膜的太阳能蒸发性能

  • Fig.8 Preparation and performance of superhydrophilic PI-CB-MHGM hybrid membrane[85] (a) Preparation process of superhydrophilic PI-CB-MHGM porous hybrid membran; (b) Solar evaporation performance of the PI-CB-MHGM membrane

  • 传统设计中过度输水会导致吸收器产生热量损失,从而限制蒸发速率,解决这个问题的一个关键控制点是光热蒸发器中的供水平衡。XIAO 等[86]提出了芯-鞘纱(Core-sheath yarn,CSY)的新概念,碳纤维基光热纤维护套作为吸收剂用于太阳能捕获,超亲水莫代尔纱芯层,用于增强碳纤维护套的供水。图9a 是芯-鞘结构纱线和织物的制作示意图,芯-鞘纱作为经线、碳纤维作为纬线制造基于织物的蒸发器,芯-鞘纱-编织布(CSY-woven fabric, CSY-F)在整个太阳光谱范围内具有显著的光热效应。图9b、9c 分别为水洗后的 CSY-F(CSY-F after water washing,WCSY-F)在一个太阳光强下的温度时间图和水蒸发量随时间的变化图,在织造过程中调整芯-鞘纱中的莫代尔纱线数量,在 1 kW·m−2 光照下,蒸发速率最高可以达到 2.12 kg·m−2 ·h−1,能量转换效率为 93.7%。该方法具有实用性和可扩展性,有助于控制供水,以实现稳定高效的界面太阳能海水淡化。

  • 图9 CSY-F 结构及性能示意图[86](a)芯-鞘结构纱线和织物的制作示意图(b)WCSY-Fs 的光热性能(c)WCSY-Fs 的蒸发性能

  • Fig.9 Schematic of CSY-F structure and performance[86] (a) Schematic illustration of the fabrication of core-sheath structure yarn and fabric; (b) Photothermal properties of WCSY-Fs; (c) Evaporation properties of WCSY-Fs

  • XIA 等[87]提出了一种带有水平蒸发盘和垂直溶液吸收螺纹的伞形蒸汽发生器。蒸发盘的三层结构由吸光层(碳纳米管,CNT)、铺水层(超亲水滤纸) 和隔热层(聚苯乙烯泡沫,PS)组成。CNT 层的多孔结构通过延长光的行进路径来捕获光并改善光收集,在整个太阳光谱上具有优异的光吸收性能。超亲水滤纸由直径约 15 μm 随机堆叠的纤维素纤维组成,在内部形成巨大的毛细管,其优异的亲水性(接触角∼0°)和高孔隙率(72.6%)可以显著提高溶液的传输能力。缠绕的棉线作为毛细管 “泵”插入蒸发盘的中心,将大量水从底部输送到顶部的盘。悬浮的水在蒸发盘上扩散,产生从中心到边缘的径向浓度梯度。盐只会沉淀在蒸发盘的边缘,保留了中心表面以实现有效的光吸收。随着盐的生长,积累的盐在重力作用下从表面脱落。该系统在一个太阳强度的照射下,蒸发量稳定为 1.42 kg·m−2 ·h−1,太阳能转换效率为 81.2%,由于边缘积盐的边缘择优结晶和自落现象,在长期运行(超过 600 h,如图10 所示)下也可以同时实现连续的蒸汽产生和盐收集。

  • 图10 长效脱盐应用的示例[87](a)太阳能蒸汽发生器运行照片(b)蒸发速率对比(c)盐收集量随时间的变化

  • Fig.10 Demonstration of the long-term performance and desalination applications [87] (a) Solar steam generator operating photos (b) Comparison of evaporation rates (c) Salt collection over time

  • WANG 等[88]基于一步简易煅烧得到自浮式超亲水多孔泡沫碳(Superhydrophilic porous carbon foam, SPCF)的自脱盐界面太阳能蒸汽产生 (Interfacial solar steam generation,ISSG)装置,SPCF 的水接触角小于 5°,具有均匀分布的大孔,孔内有丰富的绒球状结构,同时 N-H / O-H、C=O 和C-O-C 官能团产生优异的亲水性能,超强的亲水性和丰富的相互连接的微孔产生了出色的毛细管作用力,解决了传统多层复合体系中出现的复杂性和潜在不稳定性问题,保证了快速的水输送和太阳能蒸汽产生。SPCF 具有超亲水性、多孔结构、低导热系数和优异的光吸收,同时具有优异的机械强度、低成本、易于制造、无盐特性和耐用性等优点,便于大面积实际应用,有望为大面积和低成本的自脱盐集成太阳能吸收器的工业制造开辟新的途径。

  • 综上所述,碳基材料具有天然的高光吸收率、化学和热稳定性,同时还具有多孔结构、重量轻、易加工、成本低、来源丰富、优异的柔韧性等优点,在光热材料中的应用最为广泛。通过碳基光热材料和超亲水性结合,可以实现有效的光吸收和更高的蒸发效率,在太阳能海水淡化方面显示出巨大的潜力。

  • XU 等[89]采用简单温和的原位聚合方法制备了聚吡咯-全纤维素( Polypyrrole-Holocellulose, PPy-HC)蒸发器。制备过程如图11a 所示,PPy-HC 具有典型的双层结构,上层为黑色 PPy,在整个太阳光谱范围内具有大于 95%的高吸光度,可将太阳能转化为热能并产生水蒸气;下层为去除了疏水性木质素的 HC,具有优异的亲水性能,表面接触角约为 0°,它具有蜂窝状的微观结构、丰富的微通道形成的巨大多孔结构,具有优异的输水能力,参与向上层水-空气界面供水,并将盐分溶解回本体水中。图11b 中分别为 PPy-HC 蒸发器在不同光强、不同盐浓度下水的蒸发量、蒸发速率及效率。在一个太阳光照下 5wt.% NaCl 溶液中,PPy-HC 蒸发器的蒸发速率为 1.45 kg·m−2 ·h−1,转化效率为 93.4%,并在长期循环试验中表现出优异的耐盐性和稳定性。得益于制备工艺简单、转化效率高、耐盐能力强等优点,这种基于全纤维素的蒸发器在可持续和可扩展的实用海水淡化和清洁水生产方面具有巨大潜力。

  • 图11 PPy-HC 蒸发器的设计及性能示意图[89](a)PPy-HC 蒸发器的制备过程(b)蒸发器在不同光强、不同盐浓度下水的蒸发量、蒸发速率及效率

  • Fig.11 Schematic illustration of the design and performance of the PPy-HC evaporator[89] (a) Fabrication process of the PPy-HC evaporator; (b) Mass change, water evaporation rate and efficiency of evaporator at different solar intensities and at various solution salinities

  • GU 等[90]通过 d-葡萄糖醇(DG)和四(羟甲基) 氯化磷(Tetrakis(hydroxymethyl)phosphonium chloride,THPC)的界面改性,提出了一种基于珊瑚状聚吡咯(PPy)的光热膜。如图12a 所示,d葡萄糖醇通过超分子氢键对 PPy 进行修饰,增强了 PPy 膜的结构稳定性和亲水性。THPC 分子具有较大的亲水官能团,赋予了 PPy@DG 膜丰富的电荷。图12b 为 PPy@DG / THPC 膜分别在不同 THPC 含量、不同 PPy 分散体积、不同浓度盐水下的蒸发速率。PPy@DG / THPC 膜由于其分层纳米结构而表现出广泛的阳光吸收能力,效率高达 97.6%。在一个太阳光照下, PPy@DG / THPC 膜在模拟盐水 ( 3.5wt.% NaCl)中的蒸发速率达到 1.46 ± 0.02 kg·m−2 ·h−1,超亲水性和丰富的电荷使其具有优异的耐盐性能,表现出优异的防污能力。总体而言,该膜可以实现有效且可持续的太阳能蒸发,生产满足饮用水标准的淡水,为开发有效的太阳能蒸发水体修复提供了一种新方法。

  • 图12 PPy@DG / THP 膜的制备及其蒸发性能[90](a)改性流程(b)PPy@DG / THPC 膜的蒸发性能

  • Fig.12 Preparation of PPy@DG / THPC membrane and its solar evaporation performance[90] (a) Modified flow diagram; (b) PPy@DG / THPC film evaporation properties

  • HAN 等[91]报道了一种可拉伸、机械耐久性和超亲水性的聚苯胺(PANI) / 埃洛石纳米管(HNTs) 修饰的聚氨酯(PU)纳米纤维(Polyaniline / halloysite nanotubes decorated polyurethane nanofiber, PANI / HNTs@PU)。亲水的聚合物纳米纤维作为核心,将水向太阳能吸收器输送;PANI / HNTs 形成外壳,锚定在 PU 纳米纤维表面的棒状 PANI / HNTs 上形成分级结构,充当许多毛细管,用于快速运输水、随后的蒸发和高效蒸汽逸出,而且微米级孔隙和纳米级空心以及粗糙的纳米纤维表面可以对吸收的光产生多次反射,提高了对太阳能的吸收。如图13a、13c 所示,PANI / HNTs@PU 在宽波长范围内具有很强的光吸收能力,在湿态下具有优异的光热转换效率,这种强太阳能吸收能力和超亲水性在拉伸、磨损和超声波洗涤后仍表现出优异的表面稳定性和耐久性。如图13b 所示,淡化后的海水可达到 WTO 饮用水标准。图13d 记录了连续七天的室外海水蒸发速率,平均日蒸发速率为 4.93 kg·m−2。当 PANI / HNTs@PU 用于界面蒸发时,蒸发速率和效率分别高达 1.61 kg·m−2 ·h−1 和 94.7%,即使在高盐度下或在长期循环蒸发试验中,在太阳能吸收器表面上也没有观察到盐沉淀。

  • 具有共轭结构的有机聚合物因其多功能的分子设计、对近红外光的强吸收、高光热转换效率和良好的生物相容性而成为了一类新的光热材料。与碳基材料类似,共轭聚合物在可见光和近红外区域的吸收能力源于其丰富的离域 π 电子的非辐射弛豫。结合天然超亲水的基材或后期亲水性修饰,在最基本的共轭结构基础上策略性地设计各种聚合物光热材料,可以实现快速的输水、高效的蒸发速率和优异的耐盐性,为海水淡化提供了一条新的途径。

  • 图13 PANI / HNTs@PU 的超亲水性和脱盐性[91](a)拉伸态 PANI / HNTs@PU 的光吸收谱(b)脱盐前后的离子浓度(c)不同光强下的水蒸发量(d)室外海水蒸发速率

  • Fig.13 Superhydrophilicity and desalinability of the PANI / HNTs@PU[91] (a) Light absorption spectrum of the stretched PANI / HNTs@ PU (b) Ion concentration before and after desalting (c) Water evaporation under different light intensity (d) Outdoor seawater evaporation rate

  • 4.2 基于超疏水光热表面的海水淡化

  • 无论水的复杂性如何,构建超疏水表面是降低疏水膜蒸发器膜浸润风险的有效途径。超疏水太阳能驱动界面蒸发器由坚固的光热超疏水涂层和基材组成,是一种用于海水淡化的节能技术。一般来说,超疏水蒸发器是通过疏水表面粗糙化和低表面能材料改性相结合的方法来制备的。近年来,受具有超疏水性的天然结构的启发,人们开发了纳米颗粒沉积法、蚀刻法、光刻法、溶胶-凝胶合成法、模板辅助合成法、溅射沉积法等多种方法来构建超疏水性材料。在光吸收层上构建高表面粗糙度,不仅可以提高疏水性,在盐不渗透的情况下使用更大的膜孔提高脱盐率,还可以捕获水和材料表面之间的气泡,从而减少界面蒸发过程中的热量损失。因此,在合适的基底上构建超疏水光热涂层以实现高效的太阳能驱动界面蒸发是一个可行的想法。目前,常用的基于超疏水表面的光热材料包括碳基以及聚合物基超疏水光热材料,下面分别对二者进行详细讨论。

  • 碳基材料包括石墨烯、氧化石墨烯和碳纳米管等,由于其宽带光吸收和化学稳定性,具有优异的光吸收和快速的光热转换能力。其中碳纳米管的不规则和粗糙的微观结构使他们很容易被改性形成超疏水表面以实现高蒸发率。

  • 当前聚合物或疏水改性无机膜面临的一个关键挑战是操作稳定性不足,导致浸润、结垢和截留率下降。碳纳米管具有优异的物理化学性能,如疏水性高、比表面积大、热稳定性、机械稳定性和化学稳定性好、导电性优异等,可用作改性剂,以提高包括膜蒸馏(Membrane distillation,MD)在内的分离应用的性能。DONG 等[92]提出了一种具有热稳定超疏水操作稳定性的坚固的超疏水陶瓷基碳纳米管 (CNT)海水淡化膜,对原位生长的碳纳米管进行定量调控,通过原位化学气相分解生长具有高热力学稳定性和高磁导率的特殊结构中空纤维陶瓷基板,构建了一种超疏水和超孔 CNT 网络结构。如图14 所示,在加速稳定性测试下,完全覆盖的碳纳米管 (Fully covered CNT network,FC-CNT)表现出显著的热和超疏水稳定性,独特的表面结构提供了超孔和超疏水的夹层,使水以 Cassie-Baxter 状态存在,大大减小了给水与固体膜表面的接触面积,使其具有非常高的水接触角,约为 170°,表现出超疏水特性。由于超孔表面网络的独特结构,提供了较大的液-气超疏水界面和内部长通道指状大孔隙, FC-CNT 膜表现出稳定的高通量、高脱盐率,可用于高盐度废水的膜蒸馏处理。

  • 图14 FC-CNT 的制备及其超疏水性[92]

  • Fig.14 Schematic illustration of the fabrication of FC-CNT membranes and its superhydrophobicity[92]

  • LIU 等[93]通过浸涂吸光炭黑纳米颗粒和聚二甲基硅氧烷(PDMS)制备了可漂浮的超疏水纱布。 CB 纳米颗粒因其固有的疏水性和纳米级粒径而被用作超疏水基板材料,PDMS 将纳米颗粒拴在基材上来制造疏水涂层,改性后疏水层不仅固化在超细纤维的表面,还固化在超细纤维之间的间隙中,纱布呈现出纳米级粗糙度,接触角均超过 150°,表现出明显的超疏水性能。

  • 受森林结构高效利用阳光的启发,PENG 等[94] 通过在聚苯并恶嗪树脂(poly(Ph-ddm))上采用激光刻划的方法,设计并制备了一种由密集排列的多孔石墨烯组成的森林状激光诱导石墨烯 (Laser-induced graphene,LIG)。如图15 所示,分层结构显著降低了石墨烯的光反射,在太阳光的整个波长范围内具有 99%的高光吸收率,在模拟光照下30 s内达到87.7℃,平衡温度达到90.7 ± 0.4℃。特殊的结构以及低比例的氮原子和氧原子使其表现出超疏水性,水接触角(Water contact angle, WCA)为 154.4°± 1.3°,可以作为具有快速驱动响应和高运动速度的光热致动器,以及具有持久除盐特性和高太阳蒸发效率的太阳能驱动的界面海水淡化膜。

  • 图15 森林状激光诱导石墨烯用于海水淡化[94]

  • Fig.15 Forest-like laser-induced graphene for solar-driven desalination[94]

  • 以织物为基底,涂覆聚合物基光热材料作为光热层,使用疏水性物质进行改性,可以获得超疏水织物。这种方法不仅简便易扩展,得到的纺织品也具有强大的光热转换能力和高的蒸发效率,在海水淡化方面有着广阔的应用前景。

  • 利用太阳能加热实现可持续的海水净化是缓解全球水危机的战略之一,为了防止实际应用中的盐污染,迫切需要以简单且可扩展的方式实现高效稳定的海水蒸发。ZHANG 等[95]提出了一种透气、光热的超疏水织物(Photothermal superhydrophobic fabric,PSHF),制备过程如图16a 所示,采用氧化聚合法在织物表面涂覆一层致密的黑色聚吡咯层, PFDTS(1H,1H,2H,2H-全氟癸基三乙氧基硅烷) 作为偶联剂通过降低表面能来提高材料的疏水性,并提供超疏水所必需的粗糙度,如图16b 所示,改性后 PSHF 转变为超疏水表面,在强烈的太阳照射下仍能保持稳定。聚吡咯和 PFDTS 对 PSHF 的蒸汽渗透性基本没有影响,蒸发过程中蒸汽仍然可快速穿过光热表面层。有限加热策略通过有效的能量管理显著减少了蒸发过程中的热传导损失,当蒸发器厚度优化为 4 mm 时,热传导可降低至 0.98%,总热损失仅为 7.1%。如图16c、16d 所示,在一个太阳照射下,蒸发速率可达 1.49 kg·m−2 ·h−1,蒸发效率为 91.68%,同时还可以保持长期的脱盐稳定性,效率和蒸发速率优于以往报道的基于超疏水表面的太阳能驱动蒸发器。

  • 图16 PSHF 的制备及其性能[95](a)PSHF 的制备(b)PPy-Fabric 和 PSHF 两侧的接触角(c)不同光照强度下蒸发器的蒸发速率和效率(d)超疏水表面太阳能驱动蒸发器的效率和蒸发速率对比

  • Fig.16 Preparation of PSHF and its performance[95] (a) Fabricating process of PSHF (b) Contact angles for both sides of PPy-Fabric and PSHF (c) Evaporation rate and efficiency under different optical concentrations (d) Comparison of efficiency and evaporation rates of superhydrophobic surface solar-driven evaporators

  • 受深海鱼类紧密堆积的黑素体显著降低光反射的启发,XIAO 等[96]通过反聚合在纺织品表面设计了由聚吡咯(PPy)和全氟癸基三乙氧基硅烷 (Perfluorodecyl triethoxysilane,PFTS)组成的仿生黑素体分层纳米球层,开发了仿生超黑纺织品。首先在纺织品表面形成均匀的 PPy 涂层,随着纳米球数量的不断增加,分级 PPy 纳米球完全覆盖了织物,形成密排纳米结构。如图17 所示,与层压式织物蒸发器相比,分层式织物基蒸发器达到的温度更高,蒸发速率更高、更稳定。疏水性 PFTS 的引入使分级纳米结构表面具有超疏水性,正面和背面的 WCA 值分别为 159°和 156°。织物表面存在紧密堆积的纳米球和相对均匀的间隙,可以产生多次光散射和内反射,使制成的纺织品具有低于 4%的反射率和高达 96%的高度增强的吸收率,基于仿生纺织品的无盐太阳能蒸发器在一个太阳下的可持续海水蒸发率高达 1.54 kg·m−2 ·h−1。仿生分层纺织品表现出良好的超疏水性、增强的光热性能和高电热转换,在水条件下的可穿戴热管理(救援背心)方面展现出巨大的潜力。

  • 图17 层压和分层织物的性能对比[96](a)2D IR 图像(b)织物蒸发 10 小时后的照片(c)织物长时间连续蒸发速率

  • Fig.17 Comparison of properties of laminated and hierarchical fabrics[96] (a) 2D IR images (b) Photos of the textile after 10 h evaporation (c) Long-time continuous evaporation rates of the fabric

  • 碳基材料作为光热材料,使用聚合物进行改性,二者的结合可以获得性能更为优异的复合材料。

  • 三聚氰胺海绵作为三维多孔亲水材料之一,具有低阻力的蒸汽扩散路径和快速输水的能力,可用作太阳能蒸发器的基体材料,但三聚氰胺海绵基太阳能驱动界面蒸发器的光热疏水上部的设计仍然是一个挑战。涂层材料的设计不仅要考虑光热性能,还需要考虑超疏水性,以减少盐结晶,传统的超疏水表面通常很脆弱,缺乏坚固性和耐久性,难以满足三聚氰胺海绵基太阳能驱动界面蒸发器涂层适应真实海水环境的要求。WU 等[97]采用贻贝法合成了一种双功能掺杂全氟辛酸的聚苯胺@聚多巴胺@碳纳米管 / 环氧树脂 / 1H,1H,2H,2H-全氟癸基三乙氧基硅烷 (Polyaniline doped with perfluorooctanoic acid(PANI)@ polydopamine(PDA)@CNT / epoxy resin(EP)/ 1H,1H,2H,2H-perfluorodecyltriethoxysilane, PANI@PDA@ CNT / EP / FAS-17)复合涂层材料,机理如图18a 所示,它可以通过喷涂灵活地涂覆在三聚氰胺海绵表面。EP 将复合材料牢固地粘结在海绵骨架上,FAS-17 的加入使其获得超疏水性能。图18b 为不同光强下 PANI@PDA@CNT / EP / FAS-17 的蒸发速率和转换效率。图18c 展示了蒸发器的循环稳定性。PANI@ PDA@CNT / EP / FAS-17 太阳能驱动界面蒸发器在一个太阳光照下的蒸汽转换效率为 84.93%,蒸发率为 1.3 kg·m−2 ·h−1,转换效率和蒸发速率稳定。

  • 由粗糙结构和低表面能材料组成的超疏水表面很难被水浸润,可以防止盐侵入。然而超疏水处理后引入了更多的界面热阻,导致能源效率明显低于亲水表面。SHEN 等[98]提出了一种超疏水改性的顶部宽带太阳能吸收层和底部隔热支架组成的新结构,其能源效率与亲水对照组的能源效率接近。碳纳米管在大多数溶剂中的分散性较差,难以成膜,且成膜后易以粉末形式从基底上脱落。为了克服这一缺点,将原始碳纳米管与聚乙烯吡咯烷酮(PVP) 复合,促进碳纳米管在溶剂中的分散,并在碳纳米管之间产生相互作用。基于 CNT@PVP 光热膜的太阳能蒸汽发生装置的原理如图19a 所示,通过 1H,1H,2H,2H-全氟癸基三乙氧基硅烷(PFDTES)进行疏水改性,将-CF3 基团接枝到碳纳米管表面,获得超疏水 CNT@PVP 膜 ( Superhydrophobic CNT@PVP membrane,S-CPM)。碳纳米管相互交联形成多孔网络结构产生纳米级粗糙度,WCAs 的平均值高达 150.8°,产生超疏水性。图19b、19c 对比了 H-CPM(Hydrophilic CNT@PVP membrane) 和 S-CPM 的蒸发速率随连续蒸发时间和蒸发循环次数的变化,表明了超疏水表面可以有效防止盐阻塞,保持长期高效稳定的蒸发速率。多孔结构也减少了光的散射损失,增加了光的吸收。该设备在一个太阳光照下能效高达 91.1%,蒸发率为 1.41 kg·m−2 ·h−1,在连续照射 40 h 或蒸发循环 18 h 下仍稳定运行,确保了高效的海水淡化和长期的光热转换。

  • 图18 PANI@PDA@CNT / EP / FAS-17 的机理及性能[97](a)PANI@PDA@CNT / EP / FAS-17 复合材料的机理(b)不同光强下的蒸发速率及转换效率(c)蒸发器的循环稳定性

  • Fig.18 Mechanism and performance of PANI@PDA@CNT / EP / FAS-17 composite[97] (a) Schematic illustration of mechanism of PANI@PDA@CNT / EP / FAS-17 composite (b) Evaporation rate and conversion efficiency at different light intensities (c) Cycle stability of evaporator

  • 图19 基于 CNTs@PVP 光热膜的太阳能蒸汽发生装置及性能[98](a)太阳能蒸汽发生装置原理图(b)H-CPM 和 S-CPM 的蒸发速率随连续蒸发时间和(c)蒸发周期数的变化

  • Fig.19 Solar steam-generation device based on CNTs@PVP photothermal membrane and its performance[98] (a) Schematic diagram of solar steam generating device; (b) Evaporation rate variations of H-CPM and S-CPM with the continuous evaporation time and (c) number of evaporation cycles

  • 综上所述,将光热转换特性与超疏水性相结合,超疏水基光热材料具有高通量和高脱盐率,防止了盐阻塞蒸汽逸出的通道,不仅解决了表面污染问题,而且通过反复反射和吸收光线,增强了对太阳辐射的吸收,有望为大面积和低成本的自脱盐界面蒸发系统的工业制造开辟新的途径,以满足对环保、低成本、高效和稳健的太阳能海水淡化的需求。

  • 5 结论与展望

  • 综述了超浸润光热材料在太阳能海水淡化中的应用进展,主要结论如下:

  • (1)浸润性影响光热材料的隔热和输水,从而影响太阳能海水淡化的效率,构筑超浸润光热表面可以实现更加长效稳定的海水淡化。

  • (2)总结了具有特殊浸润性的光热材料的优缺点:金属基超浸润光热材料具有高强度、高韧性和优异的热稳定性,但制造过程复杂,生产成本较高; 碳基超浸润光热材料吸光范围广、稳定性高、易于制成各种结构、来源广泛,但生产成本较高,碳化生物质结构较为脆弱;聚合物基超浸润光热材料灵活性高、易于成型,但可选择的范围有限,在使用过程中可能会发生光老化和光降解。

  • (3)超浸润光热材料将光热转换与超浸润性相结合,可以实现稳定的水供应,防止盐析出,抑制盐结晶,减少热量损失,提高太阳能海水淡化的效率,有望为大面积、低成本制造自脱盐太阳能界面蒸发系统开辟新的途径。

  • 主要挑战和前景总结如下:

  • (1)输水量与效率之间存在冲突,较高的供水率可以减少盐分的积累,但会增加热传导损失。超亲水光热表面的高亲水性提供了高效的供水和离子扩散通道,实现了快速输水,但也导致盐的快速积累和盐晶体对表面的强烈粘附。因此,在亲水蒸发器系统中,特别是对于高盐度盐水,高蒸发速率和脱盐很难同时实现。疏水表面可以通过防止盐离子渗透到光热材料中来阻止盐的积累,但大多数水分子也会因此被限制在蒸发表面之外,普遍表现出因供水不足而导致的蒸发效率低的问题。因此,开发具有优异脱盐性能、耐久性和稳定性的太阳能海水淡化系统,以实现持续的高蒸发效率,已成为当前满足实际需求的瓶颈,应通过合理设计供水和蒸发路径,达到输水量和效率之间的平衡。

  • (2)目前的隔盐技术是被动的,通常在低日照强度和低浓度下起作用,在较高的日照强度下会由于蒸发速率增加和供水率不足的问题而导致盐分加速积累;在较高的盐浓度下也会导致水流量不足。因此需开发在高日照强度和高盐浓度下工作能同时保持光热转换效率的新型活性盐阻断技术。

  • (3)光热材料的低成本、大规模制备、环境相容性、灵活性和长期稳定的光热转换性能对于超浸润光热材料在日常生活中的应用至关重要,提高超浸润光热材料的光热转换性能和稳定性,有助于进一步扩大其应用范围。

  • (4)由于试验方法、测量技术和数据处理的差异,目前没有统一的标准来评价各种超浸润光热材料在实际应用中的潜力。因此,需要建立统一的评价方法,使不同材料的比较更加直观。

  • (5)各种基于超浸润光热材料的蒸发装置已用于太阳能海水淡化,减少了热量损失并显著提高了水的蒸发率。在实际应用中,一些挥发性有机化合物在蒸发过程中可能会与水一起被收集,导致二次污染,虽然目前已经有对混合污染物影响的研究,也有一些著作对此进行了探讨,但还缺乏对该系统的进一步探索,未来可以通过开发具有光热超浸润性和去除挥发性有机化合物能力的多功能材料来解决。

  • 参考文献

    • [1] KHAJEVAND M,AZIZIAN S,BOUKHERROUB R.Naturally abundant green moss for highly efficient solar thermal generation of clean water[J].ACS Applied Materials & Interfaces,2021,13(27):31680-31690.

    • [2] SHANNON M A,BOHN P W,ELIMELECH M,et al.Science and technology for water purification in the coming decades[J].Nature,2008,452(7185):301-310.

    • [3] LI C,CAO S,LUTZKI J,et al.A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation[J].Journal of the American Chemical Society,2022,144(7):3083-3090.

    • [4] BLÖSCHL G,CHAFFE P L B.Water scarcity is exacerbated in the south[J].Science,2023,382(6670):512-513.

    • [5] DESHMUKH A,BOO C,KARANIKOLA V,et al.Membrane distillation at the water-energy nexus:limits,opportunities,and challenges[J].Energy & Environmental Science,2018,11(5):1177-1196.

    • [6] HEIRANIAN M,FAN H,WANG L,et al.Mechanisms and models for water transport in reverse osmosis membranes:history,critical assessment,and recent developments[J].Chemical Society Reviews,2023,52(24):8455-8480.

    • [7] YAO Y,ZHANG P,JIANG C,et al.High performance polyester reverse osmosis desalination membrane with chlorine resistance[J].Nature Sustainability,2020,4(2):138-146.

    • [8] ZHANG L,XU Z,ZHAO L,et al.Passive,high-efficiency thermally-localized solar desalination[J].Energy & Environmental Science,2021,14(4):1771-1793.

    • [9] ZHENG Y,CACERES GONZALEZ R A,HATZELL K B,et al.Large-scale solar-thermal desalination[J].Joule,2021,5(8):1971-1986.

    • [10] XU Z,ZHANG L,ZHAO L,et al.Ultrahigh-efficiency desalination via a thermally-localized multistage solar still[J].Energy & Environmental Science,2020,13(3):830-839.

    • [11] GAO J,ZHANG L,YOU J,et al.Extreme salt-resisting multistage solar distillation with thermohaline convection[J].Joule,2023,7(10):2274-2290.

    • [12] DELGADO-TORRES A M,GARCÍA-RODRÍGUEZ L,PEÑATE B,et al.Water desalination by solar-powered RO systems[A].Current Trends and Future Developments on(Bio-)Membranes[M].Elsevier,2019.

    • [13] LEWIS N S.Research opportunities to advance solar energy utilization[J].Science,2016,351(6271):1920.

    • [14] GONG J,LI C,WASIELEWSKI M R.Advances in solar energy conversion[J].Chemical Society Reviews,2019,48(7):1862-1864.

    • [15] HERNANDEZ R R,ARMSTRONG A,BURNEY J,et al.Techno-ecological synergies of solar energy for global sustainability[J].Nature Sustainability,2019,2(7):560-568.

    • [16] VEERS P,DYKES K,LANTZ E,et al.Grand challenges in the science of wind energy[J].Science,2019,366(6464):2027.

    • [17] AZIZ M J,GAYME D F,JOHNSON K,et al.A co-design framework for wind energy integrated with storage[J].Joule,2022,6(9):1995-2015.

    • [18] DALGAARD T,JØRGENSEN U,OLESEN J E,et al.Looking at biofuels and bioenergy[J].Science,2006,312(5781):1743-1744.

    • [19] DORNBURG V,VAN VUUREN D,VAN DE VEN G,et al.Bioenergy revisited:key factors in global potentials of bioenergy[J].Energy & Environmental Science,2010,3(3):258.

    • [20] LEWIS N S.Toward cost-effective solar energy use[J].Science,2007,315(5813):798-801.

    • [21] TAO P,NI G,SONG C,et al.Solar-driven interfacial evaporation[J].Nature Energy,2018,3(12):1031-1041.

    • [22] WANG Z,HORSEMAN T,STRAUB A P,et al.Pathways and challenges for efficient solar-thermal desalination[J].Science Advances,2019,5(7):763.

    • [23] JOTHI PRAKASH C G,PRASANTH R.Approaches to design a surface with tunable wettability:a review on surface properties[J].Journal of Materials Science,2021,56(1):108-135.

    • [24] ZHAO T,JIANG L.Contact angle measurement of natural materials[J].Colloids and Surfaces B:Biointerfaces,2018,161:324-330.

    • [25] ÖNER D,MCCARTHY T J.Ultrahydrophobic surfaces.effects of topography length scales on wettability[J].Langmuir,2000,16(20):7777-7782.

    • [26] WOODWARD I,SCHOFIELD W C E,ROUCOULES V,et al.Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films[J].Langmuir,2003,19(8):3432-3438.

    • [27] KIM H,JUNG S J,HAN Y H,et al.The effect of inductively coupled plasma treatment on the surface activation of polycarbonate substrate[J].Thin Solid Films,2008,516(11):3530-3533.

    • [28] FENG L,LI S,LI H,et al.Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J].Angewandte Chemie International Edition,2002,41(7):1221-1223.

    • [29] GENZER J,EFIMENKO K.Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J].Science,2000,290(5499):2130-2133.

    • [30] KIM D H,KIM Y,KIM B M,et al.Uniform superhydrophobic surfaces using micro/nano complex structures formed spontaneously by a simple and cost-effective nonlithographic process based on anodic aluminum oxide technology[J].Journal of Micromechanics and Microengineering,2011,21(4):045003.

    • [31] WANG J,CHEN X,KANG Y,et al.Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films[J].Applied Surface Science,2010,257(5):1473-1477.

    • [32] SONG S,JING L,LI S,et al.Superhydrophilic anatase TiO2 film with the micro-and nanometer-scale hierarchical surface structure[J].Materials Letters,2008,62(20):3503-3505.

    • [33] DU X,HE J.A self-templated etching route to surface-rough silica nanoparticles for superhydrophobic coatings[J].ACS Applied Materials & Interfaces,2011,3(4):1269-1276.

    • [34] YE J,YIN Q,ZHOU Y.Superhydrophilicity of anodic aluminum oxide films:from “honeycomb” to “bird’s nest”[J].Thin Solid Films,2009,517(21):6012-6015.

    • [35] ZHANG F,XU D,ZHANG D,et al.A durable and photothermal superhydrophobic coating with entwinned CNTs-SiO2 hybrids for anti-icing applications[J].Chemical Engineering Journal,2021,423:130238.

    • [36] TAN S,HAN X,CHENG S,et al.Photothermal solid slippery surfaces with rapid self-healing,improved anti/de-icing and excellent stability[J].Macromolecular Rapid Communications,2023,44(6):2200816.

    • [37] 刘亚华,宋文卓,李文宗,等.耐用光热超疏水涂层的防/除冰性能及其稳定性研究[J].表面技术,2024(7):1-10.LIU Yahua,SONG Wenzhuo,LI Wenzong,et al.Research on the anti/de-icing performance and stability of durable superhydrophobic photothermal coatings[J].Surface Technology,2024(7):1-10.(in Chinese)

    • [38] DU X,HE J.Facile fabrication of hollow mesoporous silica nanospheres for superhydrophilic and visible/near-IR antireflection coatings[J].Chemistry-A European Journal,2011,17(29):8165-8174.

    • [39] CAO W T,FENG W,JIANG Y Y,et al.Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects[J].Materials Horizons,2019,6(5):1057-1065.

    • [40] HUANG G,LAI B,XU H,et al.Fabrication of a superhydrophobic fabric with a uniform hierarchical structure via a bottom-blown stirring method for highly efficient oil-water separation[J].Separation and Purification Technology,2021,258:118063.

    • [41] 吴明明,林凯歌,阿依登古丽·木合亚提,等.超浸润光热材料的构筑及其多功能应用研究[J].化学进展,2022,34(10):2302-2315.WU Mingming,LIN Kaige,AYDENGUL Mugyati,et al.Research on the construction and application of superwetting materials with photothermal effect[J].Progress in Chemistry,2022,34(10):2302-2315.(in Chinese)

    • [42] LIU J,GUO H,SUN Z,et al.Preparation of photothermal membrane for vacuum membrane distillation with excellent anti-fouling ability through surface spraying[J].Journal of Membrane Science,2021,634:119434.

    • [43] 付涛,上官华榕,方庆源.超疏水光热转换材料的研究进展[J].化工新型材料,2024,52(2):249-253.FU Tao,SHANGGUAN Huarong,FANG Qingyuan.Research progress of superhydrophobic photothermal conversion materials[J].New Chemical Materials,2024,52(2):249-253.(in Chinese)

    • [44] XUE C H,WU Y,GUO X J,et al.Superhydrophobic,flame-retardant and conductive cotton fabrics via layer-by-layer assembly of carbon nanotubes for flexible sensing electronics[J].Cellulose,2020,27(6):3455-3468.

    • [45] 柳杨春,徐丽慧,万晶,等.超疏水导电材料的制备及应用研究进展[J].功能材料,2020,51(11):11089-11095.LIU Yangchun,XU Lihui,WAN Jing,et al.Research progress on preparation and application of superhydrophobic conductive materials[J].Journal of Functional Materials,2020,51(11):11089-11095.(in Chinese)

    • [46] FUZIL N S,OTHMAN N H,ALIAS N H,et al.A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production[J].Desalination,2021,517:115259.

    • [47] GAO M,ZHU L,PEH C K,et al.Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J].Energy & Environmental Science,2019,12(3):841-864.

    • [48] WANG Y,MENG H M,SONG G,et al.Conjugated-polymer-based nanomaterials for photothermal therapy[J].ACS Applied Polymer Materials,2020,2(10):4258-4272.

    • [49] YU C,XU L,ZHANG Y,et al.Polymer-based nanomaterials for noninvasive cancer photothermal therapy[J].ACS Applied Polymer Materials,2020,2(10):4289-4305.

    • [50] LIU J G,ZHANG H,LINK S,et al.Relaxation of plasmon-induced hot carriers[J].ACS Photonics,2018,5(7):2584-2595.

    • [51] CHEN J,YE Z,YANG F,et al.Plasmonic nanostructures for photothermal conversion[J].Small Science,2021,1(2):2000055.

    • [52] GÄRTNER W W.Photothermal effect in semiconductors[J].Physical Review,1961,122(2):419-424.

    • [53] CHENG X,XING C,LIU W,et al.Structure regulation of two-dimensional composites facilitates solar/electric desalination[J].Chemical Engineering Journal,2023,474:145752.

    • [54] CUI X,RUAN Q,ZHUO X,et al.Photothermal nanomaterials:a powerful light-to-heat converter[J].Chemical Reviews,2023,123(11):6891-6952.

    • [55] JIA J,LIU G,XU W,et al.Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR‐II window[J].Angewandte Chemie International Edition,2020,59(34):14443-14448.

    • [56] SUN Z,WANG J,WU Q,et al.Plasmon based double-layer hydrogel device for a highly efficient solar vapor generation[J].Advanced Functional Materials,2019,29(29):1901312.

    • [57] LI N,YANG D J,SHAO Y,et al.Nanostructured black aluminum prepared by laser direct writing as a high-performance plasmonic absorber for photothermal/electric conversion[J].ACS Applied Materials & Interfaces,2021,13(3):4305-4315.

    • [58] CHEN J,FENG J,YANG F,et al.Space-confined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation[J].Angewandte Chemie International Edition,2019,58(27):9275-9281.

    • [59] CHANG M,HOU Z,WANG M,et al.Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy[J].Angewandte Chemie International Edition,2021,60(23):12971-12979.

    • [60] CHEN C,LI Y,SONG J,et al.Highly flexible and efficient solar steam generation device[J].Advanced Materials,2017,29(30):1701756.

    • [61] YU Y,CHEN S,JIA Y,et al.Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification[J].Carbon,2020,169:134-141.

    • [62] WANG W,HAN B,ZHANG Y,et al.Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect[J].Advanced Functional Materials,2021,31(1):2006179.

    • [63] WEI W,GUAN Q,YOU C,et al.Highly compact nanochannel thin films with exceptional thermal conductivity and water pumping for efficient solar steam generation[J].Journal of Materials Chemistry A,2020,8(28):13927-13934.

    • [64] WEI Y,LIANG N,JIANG W,et al.Rylene-fullerene hybrid an emerging electron acceptor for high-performing and photothermal-stable ternary solar cells[J].Small,2022,18(4):2104060.

    • [65] SHI H,GU R,XU W,et al.Near-infrared light-harvesting fullerene-based nanoparticles for promoted synergetic tumor phototheranostics[J].ACS Applied Materials & Interfaces,2019,11(48):44970-44977.

    • [66] GONG F,WANG W,LI H,et al.Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification[J].Applied Energy,2020,261:114410.

    • [67] ZHANG Z,MU P,HE J,et al.Facile and scalable fabrication of surface-modified sponge for efficient solar steam generation[J].ChemSusChem,2019,12(2):426-433.

    • [68] WANG X,LIU Q,WU S,et al.Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J].Advanced Materials,2019,31(19):1807716.

    • [69] XIAO L,CHEN X,YANG X,et al.Recent advances in polymer-based photothermal materials for biological applications[J].ACS Applied Polymer Materials,2020,2(10):4273-4288.

    • [70] CHENG S,LATTHE S S,NAKATA K,et al.Recent advancements in design,development and demands of photothermal superhydrophobic materials[J].Materials Today Chemistry,2024,35:101868.

    • [71] YOUNG T.III.An essay on the cohesion of fluids[J].Philosophical transactions of the royal society of london,1805,95:65-87.

    • [72] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial & Engineering Chemistry,1936,28(8):988-994.

    • [73] WENZEL R N.Surface roughness and contact angle.[J].The Journal of Physical and Colloid Chemistry,1949,53(9):1466-1467.

    • [74] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546.

    • [75] SU B,TIAN Y,JIANG L.Bioinspired interfaces with superwettability:from materials to chemistry[J].Journal of the American Chemical Society,2016,138(6):1727-1748.

    • [76] BU Y,ZHOU Y,LEI W,et al.A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation[J].Journal of Materials Chemistry A,2022,10(6):2856-2866.

    • [77] MU P,ZHANG Z,BAI W,et al.Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation[J].Advanced Energy Materials,2019,9(1):1802158.

    • [78] WANG X,HE Y,CHENG G,et al.Direct vapor generation through localized solar heating via carbon-nanotube nanofluid[J].Energy Conversion and Management,2016,130:176-183.

    • [79] JIANG H,AI L,CHEN M,et al.Broadband nickel sulfide/nickel foam-based solar evaporator for highly efficient water purification and electricity generation[J].ACS Sustainable Chemistry & Engineering,2020,8(29):10833-10841.

    • [80] LU Y,WANG X,FAN D,et al.Biomass derived Janus solar evaporator for synergic water evaporation and purification[J].Sustainable Materials and Technologies,2020,25:180.

    • [81] ZHU R,LIU M,HOU Y,et al.Mussel-inspired photothermal synergetic system for clean water production using full-spectrum solar energy[J].Chemical Engineering Journal,2021,423:129099.

    • [82] MIAO J,LV F,GULFAM R,et al.Synergistic effect of superhydrophilic skeleton decorated with hierarchical micro/nanostructures and graphene oxide on solar evaporation[J].Applied Energy,2023,350:121779.

    • [83] CHEN Z,LIN Y,QIAN Q,et al.Picosecond laser treated aluminium surface for photothermal seawater desalination[J].Desalination,2022,528:115561.

    • [84] LIANG P,LIU S,DING Y,et al.A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination[J].Chemosphere,2021,280:130719.

    • [85] WANG S,NIU Y,YAN L,et al.Polyimide-based superhydrophilic porous membrane with enhanced thermal insulation for efficient interfacial solar evaporation[J].Composites Science and Technology,2022,228:109683.

    • [86] XIAO X,PAN L,CHEN T,et al.Scalable core-sheath yarn for boosting solar interfacial desalination through engineering controllable water supply[J].Engineering,2023,30:153-160.

    • [87] XIA Y,HOU Q,JUBAER H,et al.Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting[J].Energy & Environmental Science,2019,12(6):1840-1847.

    • [88] WANG C,WANG J,LI Z,et al.Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency[J].Journal of Materials Chemistry A,2020,8(19):9528-9535.

    • [89] XU Z,YANG Y,YE C,et al.Salt-resistance holocellulose-based solar steam evaporator for desalination brine water[J].Journal of Environmental Chemical Engineering,2023,11(5):110634.

    • [90] GU J,XIAO P,GUAN J,et al.Coral-like hierarchically nanostructured membrane with high free volume for salt-free solar-enabled water purification[J].Materials Today Physics,2022,25:100715.

    • [91] HAN J,XING W,YAN J,et al.Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination[J].Advanced Fiber Materials,2022,4(5):1233-1245.

    • [92] DONG Y,MA L,TANG C Y,et al.Stable superhydrophobic ceramic-based carbon nanotube composite desalination membranes[J].Nano Letters,2018,18(9):5514-5521.

    • [93] LIU Y,CHEN J,GUO D,et al.Floatable,self-cleaning,and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface[J].ACS Applied Materials & Interfaces,2015,7(24):13645-13652.

    • [94] PENG Y,ZHAO W,NI F,et al.Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency[J].ACS Nano,2021,15(12):19490-19502.

    • [95] ZHANG C,XIAO P,NI F,et al.Breathable and superhydrophobic photothermic fabric enables efficient interface energy management via confined heating strategy for sustainable seawater evaporation[J].Chemical Engineering Journal,2022,428:131142.

    • [96] XIAO P,YANG W,QIU N,et al.Engineering biomimetic nanostructured “melanosome” textiles for advanced solar-to-thermal devices[J].Nano Letters,2022,22(23):9343-9350.

    • [97] WU W,ZHAO M,MIAO S,et al.A solar-driven interfacial evaporator for seawater desalination based on mussel-inspired superhydrophobic composite coating[J].Carbon,2024,217:118593.

    • [98] SHEN C,ZHU Y,XIAO X,et al.Economical salt-resistant superhydrophobic photothermal membrane for highly efficient and stable solar desalination[J].ACS Applied Materials & Interfaces,2020,12(31):35142-35151.

  • 参考文献

    • [1] KHAJEVAND M,AZIZIAN S,BOUKHERROUB R.Naturally abundant green moss for highly efficient solar thermal generation of clean water[J].ACS Applied Materials & Interfaces,2021,13(27):31680-31690.

    • [2] SHANNON M A,BOHN P W,ELIMELECH M,et al.Science and technology for water purification in the coming decades[J].Nature,2008,452(7185):301-310.

    • [3] LI C,CAO S,LUTZKI J,et al.A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation[J].Journal of the American Chemical Society,2022,144(7):3083-3090.

    • [4] BLÖSCHL G,CHAFFE P L B.Water scarcity is exacerbated in the south[J].Science,2023,382(6670):512-513.

    • [5] DESHMUKH A,BOO C,KARANIKOLA V,et al.Membrane distillation at the water-energy nexus:limits,opportunities,and challenges[J].Energy & Environmental Science,2018,11(5):1177-1196.

    • [6] HEIRANIAN M,FAN H,WANG L,et al.Mechanisms and models for water transport in reverse osmosis membranes:history,critical assessment,and recent developments[J].Chemical Society Reviews,2023,52(24):8455-8480.

    • [7] YAO Y,ZHANG P,JIANG C,et al.High performance polyester reverse osmosis desalination membrane with chlorine resistance[J].Nature Sustainability,2020,4(2):138-146.

    • [8] ZHANG L,XU Z,ZHAO L,et al.Passive,high-efficiency thermally-localized solar desalination[J].Energy & Environmental Science,2021,14(4):1771-1793.

    • [9] ZHENG Y,CACERES GONZALEZ R A,HATZELL K B,et al.Large-scale solar-thermal desalination[J].Joule,2021,5(8):1971-1986.

    • [10] XU Z,ZHANG L,ZHAO L,et al.Ultrahigh-efficiency desalination via a thermally-localized multistage solar still[J].Energy & Environmental Science,2020,13(3):830-839.

    • [11] GAO J,ZHANG L,YOU J,et al.Extreme salt-resisting multistage solar distillation with thermohaline convection[J].Joule,2023,7(10):2274-2290.

    • [12] DELGADO-TORRES A M,GARCÍA-RODRÍGUEZ L,PEÑATE B,et al.Water desalination by solar-powered RO systems[A].Current Trends and Future Developments on(Bio-)Membranes[M].Elsevier,2019.

    • [13] LEWIS N S.Research opportunities to advance solar energy utilization[J].Science,2016,351(6271):1920.

    • [14] GONG J,LI C,WASIELEWSKI M R.Advances in solar energy conversion[J].Chemical Society Reviews,2019,48(7):1862-1864.

    • [15] HERNANDEZ R R,ARMSTRONG A,BURNEY J,et al.Techno-ecological synergies of solar energy for global sustainability[J].Nature Sustainability,2019,2(7):560-568.

    • [16] VEERS P,DYKES K,LANTZ E,et al.Grand challenges in the science of wind energy[J].Science,2019,366(6464):2027.

    • [17] AZIZ M J,GAYME D F,JOHNSON K,et al.A co-design framework for wind energy integrated with storage[J].Joule,2022,6(9):1995-2015.

    • [18] DALGAARD T,JØRGENSEN U,OLESEN J E,et al.Looking at biofuels and bioenergy[J].Science,2006,312(5781):1743-1744.

    • [19] DORNBURG V,VAN VUUREN D,VAN DE VEN G,et al.Bioenergy revisited:key factors in global potentials of bioenergy[J].Energy & Environmental Science,2010,3(3):258.

    • [20] LEWIS N S.Toward cost-effective solar energy use[J].Science,2007,315(5813):798-801.

    • [21] TAO P,NI G,SONG C,et al.Solar-driven interfacial evaporation[J].Nature Energy,2018,3(12):1031-1041.

    • [22] WANG Z,HORSEMAN T,STRAUB A P,et al.Pathways and challenges for efficient solar-thermal desalination[J].Science Advances,2019,5(7):763.

    • [23] JOTHI PRAKASH C G,PRASANTH R.Approaches to design a surface with tunable wettability:a review on surface properties[J].Journal of Materials Science,2021,56(1):108-135.

    • [24] ZHAO T,JIANG L.Contact angle measurement of natural materials[J].Colloids and Surfaces B:Biointerfaces,2018,161:324-330.

    • [25] ÖNER D,MCCARTHY T J.Ultrahydrophobic surfaces.effects of topography length scales on wettability[J].Langmuir,2000,16(20):7777-7782.

    • [26] WOODWARD I,SCHOFIELD W C E,ROUCOULES V,et al.Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films[J].Langmuir,2003,19(8):3432-3438.

    • [27] KIM H,JUNG S J,HAN Y H,et al.The effect of inductively coupled plasma treatment on the surface activation of polycarbonate substrate[J].Thin Solid Films,2008,516(11):3530-3533.

    • [28] FENG L,LI S,LI H,et al.Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J].Angewandte Chemie International Edition,2002,41(7):1221-1223.

    • [29] GENZER J,EFIMENKO K.Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J].Science,2000,290(5499):2130-2133.

    • [30] KIM D H,KIM Y,KIM B M,et al.Uniform superhydrophobic surfaces using micro/nano complex structures formed spontaneously by a simple and cost-effective nonlithographic process based on anodic aluminum oxide technology[J].Journal of Micromechanics and Microengineering,2011,21(4):045003.

    • [31] WANG J,CHEN X,KANG Y,et al.Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films[J].Applied Surface Science,2010,257(5):1473-1477.

    • [32] SONG S,JING L,LI S,et al.Superhydrophilic anatase TiO2 film with the micro-and nanometer-scale hierarchical surface structure[J].Materials Letters,2008,62(20):3503-3505.

    • [33] DU X,HE J.A self-templated etching route to surface-rough silica nanoparticles for superhydrophobic coatings[J].ACS Applied Materials & Interfaces,2011,3(4):1269-1276.

    • [34] YE J,YIN Q,ZHOU Y.Superhydrophilicity of anodic aluminum oxide films:from “honeycomb” to “bird’s nest”[J].Thin Solid Films,2009,517(21):6012-6015.

    • [35] ZHANG F,XU D,ZHANG D,et al.A durable and photothermal superhydrophobic coating with entwinned CNTs-SiO2 hybrids for anti-icing applications[J].Chemical Engineering Journal,2021,423:130238.

    • [36] TAN S,HAN X,CHENG S,et al.Photothermal solid slippery surfaces with rapid self-healing,improved anti/de-icing and excellent stability[J].Macromolecular Rapid Communications,2023,44(6):2200816.

    • [37] 刘亚华,宋文卓,李文宗,等.耐用光热超疏水涂层的防/除冰性能及其稳定性研究[J].表面技术,2024(7):1-10.LIU Yahua,SONG Wenzhuo,LI Wenzong,et al.Research on the anti/de-icing performance and stability of durable superhydrophobic photothermal coatings[J].Surface Technology,2024(7):1-10.(in Chinese)

    • [38] DU X,HE J.Facile fabrication of hollow mesoporous silica nanospheres for superhydrophilic and visible/near-IR antireflection coatings[J].Chemistry-A European Journal,2011,17(29):8165-8174.

    • [39] CAO W T,FENG W,JIANG Y Y,et al.Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects[J].Materials Horizons,2019,6(5):1057-1065.

    • [40] HUANG G,LAI B,XU H,et al.Fabrication of a superhydrophobic fabric with a uniform hierarchical structure via a bottom-blown stirring method for highly efficient oil-water separation[J].Separation and Purification Technology,2021,258:118063.

    • [41] 吴明明,林凯歌,阿依登古丽·木合亚提,等.超浸润光热材料的构筑及其多功能应用研究[J].化学进展,2022,34(10):2302-2315.WU Mingming,LIN Kaige,AYDENGUL Mugyati,et al.Research on the construction and application of superwetting materials with photothermal effect[J].Progress in Chemistry,2022,34(10):2302-2315.(in Chinese)

    • [42] LIU J,GUO H,SUN Z,et al.Preparation of photothermal membrane for vacuum membrane distillation with excellent anti-fouling ability through surface spraying[J].Journal of Membrane Science,2021,634:119434.

    • [43] 付涛,上官华榕,方庆源.超疏水光热转换材料的研究进展[J].化工新型材料,2024,52(2):249-253.FU Tao,SHANGGUAN Huarong,FANG Qingyuan.Research progress of superhydrophobic photothermal conversion materials[J].New Chemical Materials,2024,52(2):249-253.(in Chinese)

    • [44] XUE C H,WU Y,GUO X J,et al.Superhydrophobic,flame-retardant and conductive cotton fabrics via layer-by-layer assembly of carbon nanotubes for flexible sensing electronics[J].Cellulose,2020,27(6):3455-3468.

    • [45] 柳杨春,徐丽慧,万晶,等.超疏水导电材料的制备及应用研究进展[J].功能材料,2020,51(11):11089-11095.LIU Yangchun,XU Lihui,WAN Jing,et al.Research progress on preparation and application of superhydrophobic conductive materials[J].Journal of Functional Materials,2020,51(11):11089-11095.(in Chinese)

    • [46] FUZIL N S,OTHMAN N H,ALIAS N H,et al.A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production[J].Desalination,2021,517:115259.

    • [47] GAO M,ZHU L,PEH C K,et al.Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J].Energy & Environmental Science,2019,12(3):841-864.

    • [48] WANG Y,MENG H M,SONG G,et al.Conjugated-polymer-based nanomaterials for photothermal therapy[J].ACS Applied Polymer Materials,2020,2(10):4258-4272.

    • [49] YU C,XU L,ZHANG Y,et al.Polymer-based nanomaterials for noninvasive cancer photothermal therapy[J].ACS Applied Polymer Materials,2020,2(10):4289-4305.

    • [50] LIU J G,ZHANG H,LINK S,et al.Relaxation of plasmon-induced hot carriers[J].ACS Photonics,2018,5(7):2584-2595.

    • [51] CHEN J,YE Z,YANG F,et al.Plasmonic nanostructures for photothermal conversion[J].Small Science,2021,1(2):2000055.

    • [52] GÄRTNER W W.Photothermal effect in semiconductors[J].Physical Review,1961,122(2):419-424.

    • [53] CHENG X,XING C,LIU W,et al.Structure regulation of two-dimensional composites facilitates solar/electric desalination[J].Chemical Engineering Journal,2023,474:145752.

    • [54] CUI X,RUAN Q,ZHUO X,et al.Photothermal nanomaterials:a powerful light-to-heat converter[J].Chemical Reviews,2023,123(11):6891-6952.

    • [55] JIA J,LIU G,XU W,et al.Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR‐II window[J].Angewandte Chemie International Edition,2020,59(34):14443-14448.

    • [56] SUN Z,WANG J,WU Q,et al.Plasmon based double-layer hydrogel device for a highly efficient solar vapor generation[J].Advanced Functional Materials,2019,29(29):1901312.

    • [57] LI N,YANG D J,SHAO Y,et al.Nanostructured black aluminum prepared by laser direct writing as a high-performance plasmonic absorber for photothermal/electric conversion[J].ACS Applied Materials & Interfaces,2021,13(3):4305-4315.

    • [58] CHEN J,FENG J,YANG F,et al.Space-confined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation[J].Angewandte Chemie International Edition,2019,58(27):9275-9281.

    • [59] CHANG M,HOU Z,WANG M,et al.Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy[J].Angewandte Chemie International Edition,2021,60(23):12971-12979.

    • [60] CHEN C,LI Y,SONG J,et al.Highly flexible and efficient solar steam generation device[J].Advanced Materials,2017,29(30):1701756.

    • [61] YU Y,CHEN S,JIA Y,et al.Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification[J].Carbon,2020,169:134-141.

    • [62] WANG W,HAN B,ZHANG Y,et al.Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect[J].Advanced Functional Materials,2021,31(1):2006179.

    • [63] WEI W,GUAN Q,YOU C,et al.Highly compact nanochannel thin films with exceptional thermal conductivity and water pumping for efficient solar steam generation[J].Journal of Materials Chemistry A,2020,8(28):13927-13934.

    • [64] WEI Y,LIANG N,JIANG W,et al.Rylene-fullerene hybrid an emerging electron acceptor for high-performing and photothermal-stable ternary solar cells[J].Small,2022,18(4):2104060.

    • [65] SHI H,GU R,XU W,et al.Near-infrared light-harvesting fullerene-based nanoparticles for promoted synergetic tumor phototheranostics[J].ACS Applied Materials & Interfaces,2019,11(48):44970-44977.

    • [66] GONG F,WANG W,LI H,et al.Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification[J].Applied Energy,2020,261:114410.

    • [67] ZHANG Z,MU P,HE J,et al.Facile and scalable fabrication of surface-modified sponge for efficient solar steam generation[J].ChemSusChem,2019,12(2):426-433.

    • [68] WANG X,LIU Q,WU S,et al.Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J].Advanced Materials,2019,31(19):1807716.

    • [69] XIAO L,CHEN X,YANG X,et al.Recent advances in polymer-based photothermal materials for biological applications[J].ACS Applied Polymer Materials,2020,2(10):4273-4288.

    • [70] CHENG S,LATTHE S S,NAKATA K,et al.Recent advancements in design,development and demands of photothermal superhydrophobic materials[J].Materials Today Chemistry,2024,35:101868.

    • [71] YOUNG T.III.An essay on the cohesion of fluids[J].Philosophical transactions of the royal society of london,1805,95:65-87.

    • [72] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial & Engineering Chemistry,1936,28(8):988-994.

    • [73] WENZEL R N.Surface roughness and contact angle.[J].The Journal of Physical and Colloid Chemistry,1949,53(9):1466-1467.

    • [74] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546.

    • [75] SU B,TIAN Y,JIANG L.Bioinspired interfaces with superwettability:from materials to chemistry[J].Journal of the American Chemical Society,2016,138(6):1727-1748.

    • [76] BU Y,ZHOU Y,LEI W,et al.A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation[J].Journal of Materials Chemistry A,2022,10(6):2856-2866.

    • [77] MU P,ZHANG Z,BAI W,et al.Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation[J].Advanced Energy Materials,2019,9(1):1802158.

    • [78] WANG X,HE Y,CHENG G,et al.Direct vapor generation through localized solar heating via carbon-nanotube nanofluid[J].Energy Conversion and Management,2016,130:176-183.

    • [79] JIANG H,AI L,CHEN M,et al.Broadband nickel sulfide/nickel foam-based solar evaporator for highly efficient water purification and electricity generation[J].ACS Sustainable Chemistry & Engineering,2020,8(29):10833-10841.

    • [80] LU Y,WANG X,FAN D,et al.Biomass derived Janus solar evaporator for synergic water evaporation and purification[J].Sustainable Materials and Technologies,2020,25:180.

    • [81] ZHU R,LIU M,HOU Y,et al.Mussel-inspired photothermal synergetic system for clean water production using full-spectrum solar energy[J].Chemical Engineering Journal,2021,423:129099.

    • [82] MIAO J,LV F,GULFAM R,et al.Synergistic effect of superhydrophilic skeleton decorated with hierarchical micro/nanostructures and graphene oxide on solar evaporation[J].Applied Energy,2023,350:121779.

    • [83] CHEN Z,LIN Y,QIAN Q,et al.Picosecond laser treated aluminium surface for photothermal seawater desalination[J].Desalination,2022,528:115561.

    • [84] LIANG P,LIU S,DING Y,et al.A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination[J].Chemosphere,2021,280:130719.

    • [85] WANG S,NIU Y,YAN L,et al.Polyimide-based superhydrophilic porous membrane with enhanced thermal insulation for efficient interfacial solar evaporation[J].Composites Science and Technology,2022,228:109683.

    • [86] XIAO X,PAN L,CHEN T,et al.Scalable core-sheath yarn for boosting solar interfacial desalination through engineering controllable water supply[J].Engineering,2023,30:153-160.

    • [87] XIA Y,HOU Q,JUBAER H,et al.Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting[J].Energy & Environmental Science,2019,12(6):1840-1847.

    • [88] WANG C,WANG J,LI Z,et al.Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency[J].Journal of Materials Chemistry A,2020,8(19):9528-9535.

    • [89] XU Z,YANG Y,YE C,et al.Salt-resistance holocellulose-based solar steam evaporator for desalination brine water[J].Journal of Environmental Chemical Engineering,2023,11(5):110634.

    • [90] GU J,XIAO P,GUAN J,et al.Coral-like hierarchically nanostructured membrane with high free volume for salt-free solar-enabled water purification[J].Materials Today Physics,2022,25:100715.

    • [91] HAN J,XING W,YAN J,et al.Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination[J].Advanced Fiber Materials,2022,4(5):1233-1245.

    • [92] DONG Y,MA L,TANG C Y,et al.Stable superhydrophobic ceramic-based carbon nanotube composite desalination membranes[J].Nano Letters,2018,18(9):5514-5521.

    • [93] LIU Y,CHEN J,GUO D,et al.Floatable,self-cleaning,and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface[J].ACS Applied Materials & Interfaces,2015,7(24):13645-13652.

    • [94] PENG Y,ZHAO W,NI F,et al.Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency[J].ACS Nano,2021,15(12):19490-19502.

    • [95] ZHANG C,XIAO P,NI F,et al.Breathable and superhydrophobic photothermic fabric enables efficient interface energy management via confined heating strategy for sustainable seawater evaporation[J].Chemical Engineering Journal,2022,428:131142.

    • [96] XIAO P,YANG W,QIU N,et al.Engineering biomimetic nanostructured “melanosome” textiles for advanced solar-to-thermal devices[J].Nano Letters,2022,22(23):9343-9350.

    • [97] WU W,ZHAO M,MIAO S,et al.A solar-driven interfacial evaporator for seawater desalination based on mussel-inspired superhydrophobic composite coating[J].Carbon,2024,217:118593.

    • [98] SHEN C,ZHU Y,XIAO X,et al.Economical salt-resistant superhydrophobic photothermal membrane for highly efficient and stable solar desalination[J].ACS Applied Materials & Interfaces,2020,12(31):35142-35151.

  • 手机扫一扫看